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Abstract— Ports are vital infrastructures for global logistics 

and trade, with South Korea handling approximately 99.7% of 

its import and export cargo via maritime routes. Busan Port, the 

largest in the country and the seventh-largest container port 

worldwide, plays a crucial role in both national logistics and 

regional economic growth. However, congestion in port 

operations leads to delays, increased costs, and reduced 

efficiency. This study employs actual data from Busan Port 

(February to September 2024) to analyze the impact of temporal 

variables—such as day of the week, time of day, and monthly 

factors—on port congestion. Machine learning algorithms, 

including Random Forest, XGBoost, and LightGBM, were 

utilized to predict congestion levels using a refined dataset of 

approximately 1.4 million samples. Results indicate that Extra 

Trees and CatBoost classifiers achieved high accuracy (0.9654) 

and AUC (0.9952), while Extreme Gradient Boosting reached an 

AUC of 0.9989, demonstrating exceptional performance. These 

findings highlight the effectiveness of machine learning in 

capturing the nonlinear dynamics of port operations. Future 

research will aim to enhance model performance by expanding 

data collection and integrating external factors such as weather 

conditions and cargo characteristics. This study underscores the 

potential of machine learning tools in optimizing port 

management and improving logistical efficiency. 
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I. INTRODUCTION 

Ports serve as essential infrastructure for logistics and 
trade, playing a crucial role in the global economic system. In 
South Korea, approximately 99.7% of domestic import and 
export cargo is handled via maritime routes, making the 
shipping port logistics industry highly influential on the 
national economy [1]. Busan Port is the largest port in the 
country and ranks as the world's seventh-largest container port, 
with about 30% of shipping port workers concentrated in the 
region. The efficient operation of Busan Port is directly linked 
not only to the smooth functioning of the national logistics 
network but also to the revitalization of the regional economy. 

However, congestion arising during port operations 
negatively impacts the entire logistics system. Congestion 
leads to issues such as logistics delays, increased operational 
costs, and longer waiting times, which undermine the 
efficiency and economic effectiveness of port operations. To 

address these issues, a systematic approach utilizing data-
driven predictive tools is necessary. Existing studies primarily 
analyze congestion levels based on current data or focus on 
short-term predictions, with relatively limited development of 
medium- to long-term prediction models. 

This study analyzes the impact of temporal variables (day 
of the week, time of day, and monthly factors) on port 
congestion at Busan Port using actual data from February to 
September 2024. Furthermore, congestion was predicted 
using machine learning algorithms (Random Forest [2], 
XGBoost [3], LightGBM [4]). Specifically, approximately 
2.18 million raw data points were refined and about 1.4 
million data points were utilized for training. While handling 
real data, the diversity and size of the dataset were somewhat 
limited for applying AI models; nevertheless, the study 
confirmed the potential of AI-based predictions.  

II. RELATED WORKS 

Port congestion prediction is a significant research topic 
for optimizing port operations and logistics networks. Related 
studies are primarily categorized into three approaches: 
utilization of temporal variables, integration of external 
factors, and data-driven machine learning modeling. 

First, temporal variables are major determinants of port 
congestion, and research leveraging these variables has been 
actively conducted. W. S. Kang et al. analyzed temporal data 
using Random Forest and XGBoost models, demonstrating 
high predictive performance [5]. However, they highlighted 
limitations in achieving more precise predictions due to 
insufficient data segmentation and the lack of multivariate 
combination analysis.  

Second, external factors such as weather conditions and 
cargo characteristics are other important elements influencing 
port congestion [6-7]. 

L. Potgieter et al., study analyzes data from 2011 to 2018 
to assess weather- and system-related port congestion risks at 
the Cape Town Container Terminal[6]. Using a mixed-
methods approach, it incorporates qualitative insights from 
nine interviews and quantitative time-series data to evaluate 
congestion frequency and its time impact. Findings classify 
both weather- and system-related congestion as major risks, 



urging improved mitigation strategies for operational 
sustainability. 

L. Vukic and K. H. Lai focused on analyzing the risk of 
weather- and system-related port congestion at the Cape Town 
Container Terminal (CTCT) between 2011 and 2018 [7]. The 
study employed a mixed-method research approach 
comprising qualitative data (interviews and emails) and 
quantitative data (time series data analyzed using Excel), 
leading to the development of risk profiles and heatmaps. Key 
attributes analyzed included weather data (strong winds, fog, 
swells, etc.), system data (TOS errors, power outages, 
maintenance, etc.), congestion frequency, and the time impact. 
The study primarily relied on traditional statistical methods 
and visualization techniques for data processing, without 
utilizing AI-based techniques. In conclusion, this study 
systematically analyzed the risks at CTCT using quantitative 
and qualitative approaches and delivered meaningful results 
within the scope of traditional methodologies. 

 Weather conditions can cause operational delays or alter 
the speed of operations, while the type and quantity of cargo 
significantly impact the efficiency of terminal operations. 
Some studies have shown that integrating these external 
factors into data enhances the performance of predictive 
models. Nonetheless, the processes of collecting and 
integrating external data remain challenging. 

Third, data-driven machine learning models have 
established themselves as essential tools in port congestion 
prediction. T. N. Cuong et al. analyzed the cargo throughput 
data of Busan Port over a period of approximately 20 years, 
from January 2001 to July 2021[8]. The data used in this study 
were collected from the Korean PORT-MIS and consisted of 
monthly data with a total of 247 data points. It included 
metrics such as port entry, departure, and transshipment 
volumes, recorded in million tons. The data exhibited 
nonlinear and complex dynamic characteristics influenced by 
seasonal variations and long-term trends, which were 
effectively reflected in the analysis and forecasting. W. Peng 
et al. proposed a high-frequency container port congestion 
measurement method based on AIS (Automatic Identification 
System) data[9]. They analyzed the movement information of 
3,957 container ships from March to April 2017. The berth 
and anchorage areas. S. E. Mekkaoui et al., in their systematic 
literature review on the application of machine learning 
techniques in port operations, highlighted that while Artificial 
Neural Networks (ANN) are predominantly utilized, research 
in the field of Reinforcement Learning (RL) remains relatively 
scarce, emphasizing the need for further studies in this 
area[10]. 

This study combined machine learning models with 
temporal domains to predict port congestion and explored the 
potential integration of external factors by referencing 
previous studies. 

III. DATASETS 

A. Datasets 

In this study, an analysis was conducted to predict port 
congestion based on actual data from Busan Port. The 
collected dataset comprises approximately 966,276 records, as 
shown in Table 1, with a total of 32 attributes. These attributes 
include extensive information related to ship handling 
operations and terminal activities. 

TABLE I.  DATASETS INFORMATIONS 

Column Description 

TERMINAL_CODE Terminal Code 

TERMINAL_SHIP_YEAR Terminal Year 

TERMINAL_SHIP_VOYAGE_NO Terminal Voyage 

TERMINAL_SHIP_NAME Terminal Ship Name 

SHIPPING_CODE Shipping Company Code 

SHIPPING_VOYAGE_NO Shipping Voyage Number 

SHIPPING_ROUTE_CODE Shipping Route Code 

BERTH_CODE Berth Code 

ETB Estimated Berthing Time 

CCT Cargo Cut-off Time 

ETD Estimated Departure Time 

ALONGSIDE Berthing Direction 

DISCHARGING_COUNT Discharging Quantity 

LOAD_COUNT Loading Quantity 

SHIFT_COUNT Transshipment Quantity 

VVD_YEAR Shipping Company Year 

REG_DT Registration Date and Time 

ATB Actual Berthing Time 

ATD Actual Departure Time 

COMMENCE_TIME Operation Time 

DISCHARGE_COMPLETED Discharging Completed 

DISCHARGE_REMAIN Remaining Discharging 

DISCHARGE_TOTAL Total Discharging 

LOADING_COMPLETED Loading Completed 

LOADING_REMAIN Remaining Loading 

LOADING_TOTAL Total Loading 

CALL_INDEX Call Index 

TERMINAL_CODE Terminal Code 

VESSEL_STATUS Vessel Status 

INOUT_STATUS Cargo Movement Status 

VESSEL_STATUS_STR Vessel Congestion Level 

INOUT_STATUS_STR Cargo Movement Congestion 

 

Table 2 categorizes port area congestion levels, detailing 
the primary characteristics associated with each grade. In the 
Normal category, traffic for both vehicles and ships flows 
smoothly, and no additional measures are required. The 
Warning level is characterized by a slight increase in vehicle 
waiting times; however, congestion remains not severe, 
necessitating ongoing situation monitoring. At the Primary 
level, vehicle waiting times are significantly extended, 
requiring adjustments to work schedules and the 
implementation of preventive measures. The Danger category 
indicates intensified vehicle congestion that adversely affects 
port operations, thereby necessitating urgent responses and 
enhanced traffic management. Finally, the Critical level 
denotes severe waiting times for both vehicles and ships, 
demanding immediate action, the allocation of additional 
resources, and the deployment of robust countermeasures. 

TABLE II.  DATASETS INFORMATIONS 

 

B. Datasets Anylisis 

The Pearson Correlation Coefficient (PCC) is a statistical 
measure that quantitatively represents the degree of linear 
correlation between two variables. This coefficient is 
exclusively applicable to numerical data and is calculated 

Order Level Description 

1 Normal Low gate congestion and smooth conditions 

2 Warning Attention needed due to possible increase in gate 

congestion 

3 Primary Mid-level gate congestion with high chance of 
worsening, preventive measures needed 

4 Danger High gate congestion requiring immediate action 

5 Critical Very severe gate congestion threatening to paralyze 

port operations 



based on the Cauchy-Schwarz inequality. The value of the 
Pearson Correlation Coefficient ranges between -1 and +1, 
indicating both the strength and direction of the linear 
relationship between the variables. A coefficient close to +1 
signifies a perfect positive linear correlation, meaning that as 
one variable increases, the other variable also increases 
proportionally. Conversely, a coefficient near -1 indicates a 
perfect negative linear correlation, where an increase in one 
variable corresponds to a proportional decrease in the other. 
When the coefficient approaches 0, it suggests the absence of 
a linear correlation between the two variables. Generally, 
values between -1 and -0.3 or between 0.3 and 1 are 
considered to represent strong correlations, implying a 
significant linear relationship between the variables. Due to 
these characteristics, the Pearson Correlation Coefficient is 
widely utilized in research to analyze and interpret the 
relationships between variables. 

 

Fig. 1. Results of Correlation Analysis of Berth Planning History 

 

Fig. 2. Results of Correlation Analysis of Current Operations and Historical 

Data 

 

Fig. 3. Results of Correlation Analysis of Terminal Congestion History 

C. Validation Methods 

In this study, the classification performance metrics used 
as evaluation indicators include Accuracy, defined by 
Equation (1). Accuracy measures the proportion of correctly 
classified samples out of the total number of samples. Area 
Under the Curve (AUC) evaluates the model's classification 
performance by calculating the area under the Receiver 
Operating Characteristic (ROC) curve. Additionally, Recall, 
as defined by Equation (2), represents the proportion of 
correctly predicted positive samples out of all actual positive 
samples. Precision, defined by Equation (3), indicates the 
proportion of actual positive samples among those predicted 
as positive by the model. Furthermore, the F1 Score, 
according to Equation (4), is the harmonic mean of Recall and 
Precision, which is particularly important in the context of 
imbalanced datasets. Kappa, defined by Equation (5), 
measures the agreement between the classification results and 
random chance, while the Matthews Correlation Coefficient 
(MCC), as described by Equation (6), assesses classification 
performance by taking into account both positive and negative 
classes. These metrics provide a comprehensive set of criteria 
for evaluating the classification performance of the model 
from multiple perspectives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
  (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
        (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
   (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
   (4) 

𝐾𝑎𝑝𝑝𝑎 =
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)

(1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)
       (5) 

𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
 (6) 



IV. EXPERIEMENTS RESULTS 

Various classification models were employed as outlined 
in Table 3. Decision Tree-Based Models partition the data 
through a hierarchical structure, with splits at each node 
determined by the characteristics of the data. Ensemble 
Models aim to overcome the limitations of individual models 
by combining multiple models to reduce errors and enhance 
performance. Linear Models are favored for their high 
computational efficiency and relatively straightforward 
interpretability of results. Geometric Models focus on 
identifying the optimal boundaries that separate the data, 
thereby improving classification accuracy. Probabilistic 
Models assume independence among features and utilize 
conditional probabilities to perform classification. By 
leveraging this diverse set of models, the study aims to 
comprehensively evaluate and enhance the predictive 
performance for port congestion levels. 

TABLE III.  CLASSIFICATION MODELS 

Model Category 

Decision Tree Classifier (dt) Decision Tree Based 

Extra Trees Classifier (et) Decision Tree Based 

Random Forest Classifier (rf) Ensemble Models 

Gradient Boosting Classifier (gbc) Ensemble Models 

Extreme Gradient Boosting (xgboost) Ensemble Models 

CatBoost Classifier (catboost) Ensemble Models 

Ada Boost Classifier (ada) Ensemble Models 

Logistic Regression (lr) Linear Models 

Ridge Classifier Linear Models 

SVM - Linear Kernel (svm) Geometric Models 

Naive Bayes (nb) Probabilistic Models 

K Neighbors Classifier (knn) Other Models 

Dummy Classifier Other Models 

Linear Discriminant Analysis (lda) Other Models 

Quadratic Discriminant Analysis (qda) Other Models 

Decision tree classifiers utilize a tree structure to 
categorize data or predict values by applying decision rules 
based on features at each node. While this model is intuitive 
and easy to visualize, it is prone to overfitting. To address the 
issue of overfitting, Extra Trees introduce randomness to 
create trees more quickly and simply, whereas Random Forest 
employs an ensemble technique by combining multiple trees 
and averaging their predictions or determining the outcome 
through majority voting. Gradient Boosting applies a boosting 
technique where each tree sequentially corrects the errors of 
the previous ones, and Extreme Gradient Boosting (XGBoost) 
emphasizes efficiency and scalability for large and complex 
datasets, incorporating regularization and tuning options to 
prevent overfitting. CatBoost automatically handles 
categorical variables and offers rapid training speeds along 
with high accuracy. AdaBoost iteratively enhances weak 
learners by assigning greater weights to misclassified 
instances, making it applicable to various classification 
problems. 

Logistic Regression and Ridge Classifier are linear 
classification models known for their simplicity and ability to 
reduce overfitting. Support Vector Machines (SVM) identify 
optimal decision boundaries, making them effective even in 
high-dimensional data spaces. Naive Bayes is a 
straightforward probabilistic classifier that assumes 

independence among features. K Nearest Neighbors (KNN) 
classifies data based on the proximity of neighboring instances, 
while the Dummy Classifier serves as a basic benchmark for 
comparison. Linear Discriminant Analysis (LDA) and 
Quadratic Discriminant Analysis (QDA) utilize linear and 
quadratic decision boundaries, respectively, to maximize 
inter-class variance and minimize intra-class variance. By 
incorporating this diverse array of classification models, the 
study aims to thoroughly evaluate and enhance the predictive 
performance for port congestion levels. 

 

Fig. 4. Results of Correlation Analysis of Current Operations and Historical 

Data 

The Extra Trees Classifier (ET) and CatBoost Classifier 
demonstrate the highest performance among all models, 
exhibiting superior Accuracy, AUC, Recall, Precision, and F1 
Scores. These models exhibit balanced performance and 
consistency across various evaluation metrics. Specifically, 
the Extra Trees model achieves an exceptionally high 
Accuracy of 0.9654 and an AUC of 0.9952. Additionally, 
XGBoost showcases outstanding performance with an AUC 
of 0.9989 and also delivers strong results across other metrics. 
The robust performance of these classifiers underscores their 
effectiveness in predicting port congestion levels, highlighting 
their suitability for applications requiring high precision and 
reliability. 

V. CONCLUTIONS 

This study successfully predicted port congestion at Busan 
Port by integrating temporal variables with advanced machine 
learning algorithms. Utilizing actual data from February to 
September 2024, the research analyzed the influence of 
temporal factors—such as day of the week, time of day, and 
monthly variations—on congestion levels. The application of 
machine learning models, including Random Forest, 
XGBoost, and LightGBM, demonstrated the effectiveness of 
these techniques in forecasting port congestion accurately. 
Notably, the Extra Trees and CatBoost classifiers exhibited 
exceptionally high accuracy (0.9654) and AUC (0.9952), 
while Extreme Gradient Boosting achieved an outstanding 
AUC of 0.9989, underscoring the robustness of these models. 

The findings indicate that machine learning algorithms are 
adept at capturing the nonlinear dynamics inherent in port 
operations, thereby providing reliable predictions even in the 
presence of data limitations and the exclusion of external 
factors. This highlights the potential of AI-based tools in 
enhancing the efficiency of port management and optimizing 
the national logistics network. The high performance of the 
Extra Trees and CatBoost models suggests that ensemble 
methods and those capable of handling categorical variables 
effectively are particularly well-suited for this application. 



Despite the promising results, the study acknowledges 
certain limitations, primarily related to the diversity and size 
of the dataset. While approximately 9.6 million refined data 
points were utilized for training, expanding the dataset could 
further improve model accuracy and generalizability. 
Additionally, the integration of external factors such as 
weather conditions and cargo characteristics remain a 
challenge but is essential for achieving more comprehensive 
and precise predictions. 

This study empirically demonstrates that machine learning 
models based on temporal patterns can be effectively utilized 
for predicting port congestion. Specifically, models based on 
XGBoost and LightGBM can serve as practical tools to 
enhance the efficiency of port operations by reducing waiting 
times and lowering operational costs. To address existing 
limitations, future research should focus on expanding the 
scope of data collection and incorporating external factors 
such as weather conditions and cargo characteristics to 
improve prediction accuracy. 

In conclusion, this research highlights the potential of 
machine learning algorithms to enhance port operation 
efficiency and underscores the importance of developing data-
driven decision-making tools. It is anticipated that the 
practical application of these findings will make substantial 
contributions to the optimization of port management 
practices. 
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