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Abstract—Hyperspectral images (HSIs) offer rich spectral
details but pose challenges in analyzing spectral vector distances
due to high dimensionality and inter-class similarity. Existing
distance metrics, while effective in specific cases, often fail
to provide consistent comparisons across different tasks due
to varying scales. This study proposes novel similarity score
indices that normalize metrics onto a unified scale, ensuring
fair, interpretable comparisons tailored to the unique properties
of HSIs. Our evaluations on public datasets reveal the indices’
ability to improve accuracy and reliability in spectral similarity
assessments, addressing key challenges in HSI analysis.

Index Terms—Hyperspectral Images, Distance Metrics, Simi-
larity

I. INTRODUCTION

Hyperspectral images have emerged as a powerful analytical
tool across diverse fields, including remote sensing [14], [21],
environmental monitoring [20], medical diagnostics [3], and
food inspections [19] by capturing a continuous spectrum
for each pixel across hundreds of spectral bands. This rich
spectral data enables highly precise material discrimination
and composition analysis through unique spectral signatures.
However, hyperspectral datasets’ high dimensionality and in-
herent characteristics pose significant challenges in data anal-
ysis. Spectral signatures from different classes can sometimes
appear remarkably similar, while spectra within the same
class often exhibit considerable variability or inconsistency.
These factors necessitate developing appropriate measures that
effectively capture class-specific spectral characteristics, such
as shape and scale, to ensure accurate analysis [22]-[25].

Many types of distance metrics—such as Manhattan and
Euclidean distances [7] and cosine similarity—are used to
quantify dissimilarity between spectral vectors. However, the
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choice of metric significantly impacts the resulting distance
distributions, often making it difficult to directly compare met-
rics or determine the most effective one for a given analysis.
Various composite metrics have been proposed to resolve these
challenges, which often combine well-known metrics through
multiplication or as composite functions to capture more nu-
anced similarities or dissimilarities [6], [12], [16], [17]. While
such combined metrics can sometimes improve accuracy in
specific applications, their increased computational complexity
may result in diminishing returns, especially when applied to
large-scale hyperspectral data. This trade-off between accuracy
and computational cost becomes particularly critical in Al
model training, where efficiency is as important as precision.
Furthermore, these combined metrics often fail to address
the issue of different scales across individual metrics, which
can exacerbate the difficulty of fair comparisons and metric
selection.

These two challenges, differences in scale and computa-
tional demands, restrict the applicability of HSI analysis. For
example, while Keshava [9] proposed a Spectral Angle Mapper
(SAM)-based band selection method, their analysis focused on
SAM and Euclidean distance metrics, which limits its ability
to improve discrimination by leveraging a broader range of
distance metrics for hyperspectral data analysis. Additionally,
while Deborah, Richard, and Hardeberg [4] analyzed various
metric functions categorized by their properties, their study
did not account for the complexities of public hyperspectral
datasets, which often exhibit significant inter-class similarity
and intra-class variability [5], [18], [26]. This high variabil-
ity in spectral signatures within and between classes makes
similarity measurement particularly challenging.

In addition to these issues, the type and domain of hyper-
spectral data strongly influence metric performance [2], [15].
Datasets from natural landscapes, urban settings, or biomedical
samples each exhibit unique spectral profiles and data distri-



butions, often require suitable distance metrics that capture
relevant similarities best. Metrics that are sensitive to fine
spectral variations may perform well in vegetation and land
cover discrimination but underperform in urban environments,
where clear separations between classes are more valuable
[11]. This underscores the importance of metric selection
aligning with hyperspectral datasets’ specific characteristics.

To address the challenge of comparing different metrics,
this study proposes a similarity score index tailored to each
metric. This index enables more consistent and interpretable
comparisons across metrics by aligning to the uniform range
of scores. By focusing on spectral characteristics specific to
hyperspectral data, this approach ensures a more accurate eval-
uation of similarity. Moreover, we emphasize the importance
of selecting distance metrics that are adapted to the partic-
ularities of hyperspectral datasets, as this choice is crucial
for achieving optimal results across diverse application tasks.
Given the complexities outlined above, the proposed similarity
score indices bridge the gap between theoretical properties
and practical applications, offering a more interpretable and
standardized framework for hyperspectral image analysis.

This study presents a comprehensive evaluation of distance
metrics in HSI analysis, aiming to address the following key
questions: (1) How do different distance metrics perform in
hyperspectral image analysis, and how do they capture spectral
similarities across datasets with varying properties? (2) How
can distance metrics be reformulated to enable more consistent
and interpretable comparisons in hyperspectral image analy-
sis? (3) What is the most suitable distance metric index for
hyperspectral image analysis?

By analyzing and comparing a range of distance metrics
across multiple types of hyperspectral datasets, we explore
the potential for a more standardized framework to assess
the effectiveness of various distance metrics in hyperspectral
imaging, focusing on the proposed indices that best capture
spectral dissimilarities and similarities in specific dataset con-
texts. Our contributions are summarized as follows.

« We systematically evaluate numerous distance metrics in
HSI analysis, assessing their ability to capture relevant
spectral similarities and considering their sensitivity to
dataset-specific properties.

« We introduce a similarity score index tailored to each dis-
tance metric, enabling a more consistent and interpretable
comparison.

e We propose the most suitable index based on the ba-
sic distance metric by analyzing carefully implemented
experiments and taking diverse features of hyperspectral
data into account.

II. CHARACTERISTIC AND TRADE-OFFS OF COMMON
DISTANCE METRICS

Distance metrics are fundamental in HSI analysis for quanti-
fying spectral dissimilarity between pixels or spectral vectors.
Widely used metrics, including Cosine similarity, Manhattan,
Euclidean, Chebyshev, and others like Canberra, Chi-square,
and Jeffrey distances, each have distinct properties that impact

inter-class separability, a critical factor for tasks like classifica-
tion and clustering. This section introduces the characteristics,
strengths, and weaknesses of these metrics, emphasizing their
suitability for different analytical scenarios and the trade-offs
associated with their application.

A. Metrics in Hyperspectral Contexts

Cosine Similarity: Cosine similarity measures the angular
difference between spectral vectors, making it insensitive to
magnitude and effective for datasets where the shape of
spectral curves matters more than intensity. Spectral Angle
Mapper (SAM) [10], derived from cosine similarity, enhances
this approach by introducing rotational invariance, focusing
solely on angular relationships. While SAM performs well
under varying lighting conditions, it may neglect amplitude
differences crucial in fields like agriculture and environmental
monitoring. Its reliance on trigonometric computations also
creates challenges in large-scale or high-dimensional datasets.
To mitigate these issues, hybrid methods like combining Spec-
tral Information Divergence with angular metrics, proposed
by Chang [1], integrate shape-based similarity with statistical
divergence, improving performance across diverse applications
while retaining the core benefits of cosine similarity.

Manhattan Distance: The computational simplicity and
robustness to outliers of the Manhattan distance make it
particularly useful in noisy datasets or those non-uniform
distributions, where extreme values might influence other
metrics. However, its reliance on absolute differences limits
its sensitivity to subtle spectral variations, which can be
crucial in datasets requiring fine-grained separability, such as
those containing agricultural classes with overlapping spectral
signatures.

Euclidean Distance: Euclidean distance is one of the most
widely used metrics due to its intuitive geometric interpreta-
tion, representing the straight-line distance between spectral
vectors. It is effective in datasets with well-separated classes
and well-distributed spectral characteristics. However, it is
sensitive to scaling and high-dimensional noise, which can
lead to inflated distances in hyperspectral data. Preprocessing
techniques, such as normalization or dimensionality reduction,
are often necessary to ensure reliable performance.

Chebyshev Distance: The Chebyshev metric is particularly
suited for identifying large discrepancies and outliers in the
data, which can be advantageous for datasets with distinct,
large separations. However, it tends to overlook smaller but
meaningful spectral differences, which can reduce its effec-
tiveness in cases where the classes are spectrally similar, such
as in datasets with fine spectral variations between classes.

Canberra Distance: The Canberra distance [13] is highly
sensitive to small relative differences between spectral values.
This property is advantageous for distinguishing between
spectral vectors with subtle differences, which is often the
case in datasets with high spectral overlap, such as agricultural
datasets. However, its sensitivity to small differences can also
amplify noise, particularly in low-intensity spectral bands,
leading to inconsistent results in noisy datasets.



Chi-square Distance: The chi-square distance emphasizes
proportional differences, making it effective for datasets with
uneven spectral distributions, where smaller spectral values
play a significant role in class separability. This metric is
sensitive to discrepancies in smaller values, which is beneficial
when dealing with spectral distributions that are not uniform.
However, like the Canberra distance, it is prone to amplifying
noise, particularly in datasets with low signal-to-noise ratios,
and may require careful preprocessing.

Jeffrey Distance: The Jeffrey distance [8], derived from
information theory, is based on the Kullback-Leibler (KL)
divergence which is defined as

Z
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where P(i),Q(i) are discrete probability distributions. Then
the Jeffrey distance is a symmetrical form of KL divergence,
defined as Djs(P,Q) = DkL(P||Q) + DkL(Q||P), and is
particularly effective for capturing dissimilarities in spectral
distributions. It is useful in applications where statistical
differences are critical, such as in the comparison of materials
with varying spectral properties. However, its computational
intensity and sensitivity to small probabilities can make it
challenging to apply in practice, especially when dealing with
large datasets or noisy data.

Dy (P)Q) = ZP

III. METHODOLOGIES

This section introduces the definitions of various metrics
discussed in Section II, and based on these, we propose
carefully formulated similarity score indices. Additionally, we
describe the datasets used for the analysis.

A. Similarity Score Indices induced from the Distance Metrics

Distance metrics serve as the foundation for proposing
similarity score indices to measure spectral similarity and
dissimilarity in a unified manner across various metrics. To
begin with, let x = ([z;]2;)T € R"™ be a vector in n-
dimensional Euclidean space. Then, we shall give the basic
definitions of a metric space on Euclidean spaces for the sake
of completeness.

Definition 3.1: Let 9t C R™ be a metric space with a
distance function d satisfying the following properties:

o Non-negativity : For all x,y € 9, 0 < d(x,y) < 0.

o Reflexivity : d(x,y) =0 if and only if x =y

o Symmetry : d(x,y) = d(y,x) for all x,y € M.

o Triangle inequality : d(x,y) < d(x,z) + d(z,y) for all

X,y,z € M.
It is well known that the /P space is a metric space equipped
with the norm defined as

1/p

n
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Throughout this paper, || -
the ¢? norm.

p=>1 (1)

|| without specification stands for

Let S%, S7 € R* be spectrum data obtained across A\ number
of bands in classes ¢ and j with s, represents k-th data in S*.
Then, we give the formulae for the metrics as follows:
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Depending on the metric, the interpretation of the distance
values varies. For instance, in ¢P distances (e.g., Manhattan
(p = 1), Euclidean (p = 2), and Chebyshev (p = o0)
distances), larger values indicate greater dissimilarity, while in
distances like cosine similarity, larger values indicate higher
similarity. Metrics also differ in the scale of their distance
values, as can be seen in (2)—(6). This variability calls for a
standardized similarity score that aligns with a common scale,
ensuring more consistent and meaningful comparisons.

Now, we introduce similarity score indices mapping dis-
tance values to a common range [0, 1]. For metrics other than
cosine similarity, the similarity score S is defined as:

d

dmax

S=1- (7)
Here, d represents the computed distance, and dp,x denotes
the properly designed maximum distance across all spectrum
bands. For cosine similarity, the similarity score is identical to
the computed distance, Seos(S?, S7) = deos(S*, S7). The com-
plete definitions of similarity score indices for the remaining
metrics (3)—(6) are defined as follows:
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We provide a formal definition of max in the indices above.
Let max{a,b} denote the greater of the two values a and
b, and let maxy{ay} represent the maximum value in the
sequence {aj} over the index k. By combining these two,
we see maxg{ar,br} = maxi{max{ax,b;}}. In (8), as a
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Fig. 1: Mean spectral distributions of three hyperspectral datasets — Indian Pines, Salinas Valley, and University of Pavia.

variation derived from ¢P distances, we additionally define
the relative area index, offering an alternative perspective for
interpreting spectral data through the lens of its relative area.
Adopting these similarity score indices, we establish a foun-
dation for a unified framework in HSI analysis, eliminating
biases introduced by varying metric scales.

B. Datasets

Proposed similarity score indices are evaluated on three pub-
licly available hyperspectral datasets, each presenting unique
challenges that will highlight the strengths and weaknesses of
the distance measures in different scenarios.

Indian Pines (IP) Dataset: Captured by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, IP
contains 224 spectral bands and covers agricultural land with
16 classes. This dataset is characterized by subtle spectral
differences between classes, particularly among crop types,
making it challenging to distinguish classes based on their
spectral similarity.

Salinas Valley (SV) Dataset: This dataset was also captured
by a 224-band AVIRIS sensor over Salinas Valley, California,
with a high spatial resolution (3.7-meter pixels). The area
covered comprises 512 x 217 pixels and 20 water absorption
bands were discarded ([108—112], [154—167], 224). It includes
vegetables, bare soils, and vineyard fields classified into 16
classes.

University of Pavia (UP) Dataset: Acquired using the
Reflective Optics System Imaging Spectrometer (ROSIS-3)
sensor, the UP is composed of 610 x 340 pixels with 103
spectral bands. The image is categorized into 9 classes, con-
sisting of 42,776 labeled samples, representing various land
cover types. This dataset is useful for testing how well distance
metrics handle data where clear separations between classes
are generally more evident, particularly in urban environments.

IV. EXPERIMENTS AND RESULTS

In this section, we investigate the similarity score indices
induced from the various distance metrics for distinguishing
between classes in HSI datasets. Our analysis focuses on

determining which score index best captures class similar-
ity and dissimilarity among classes, considering the diverse
characteristics of datasets. Specifically, we focus on inter-class
spectral separability by analyzing representative profiles based
on the mean spectral signatures of each class.

A. Experimental Setup

For each class within each dataset, we first derive a mean
spectrum by averaging the spectral signatures across all pixels
in that class. This mean spectrum serves as a simplified but
representative profile for each class, allowing us to examine
spectral similarity at the class level. Next, we make use of the
similarity score indices in Section III-A to compute similarity
scores between the class mean spectra of all classes within
each dataset. These scores provide a comprehensive view of
how well each index separates different classes. After that, we
analyze the inter-class similarity scores to assess the general
effectiveness of different indices across all datasets. Our goal
is to identify one index that performs best according to the
dataset-specific characteristics.

B. Evaluation Criteria

To evaluate the effectiveness of each similarity score index,
we employ the following criteria:

Mean and Variance of Similarity Scores: The average
similarity score across all inter-class pairs indicates an index’s
overall effectiveness, with lower means reflecting better class
distinction. High variance suggests sensitivity to subtle spectral
differences, useful for datasets with overlapping classes, while
low variance may indicate limited adaptability to nuanced

distinctions in closely related classes.

Boxplot Visualization: Boxplots visually summarize the
performance of each index by displaying key statistics such
as the interquartile range (IQR), quartiles (Q1, Q2, Q3), and
outliers. These plots complement the mean and variance of
similarity scores which will be given in Table I, by providing
a clear visual distinction of score distributions, making it
easier to identify indices with consistently low medians (Q2)
or wider variability (longer IQR). This approach highlights
comparative trends across datasets, aiding in the interpretation
of the distinguishing capability of each index.
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Fig. 2: Boxplots of similarity scores for IP, SV, and UP datasets across different similarity score indices.
C. Results TABLE I: Average similarity scores across metrics and

As shown in Fig. 1, the distributions of classwise mean
spectra are notably similar between the IP and SV datasets,
whereas the UP dataset exhibits a distinctly different distri-
bution. Based on this, it can be hypothesized that the index
most suitable for the IP and SV is likely to coincide, while a
different index may perform better for distinguishing classes
in the UP dataset.

However, the results presented in Table I reveal a different
trend. Class-averaged similarity scores show that the index
defined in (9) with p = oo (Chebyshev index) yields the lowest
similarity scores across all three datasets. On the other hand,
the index derived from cosine similarity uniformly achieves the
highest or second-highest average similarity scores, regardless
of the dataset, reflecting its limited ability to distinguish
between different classes. These observations can be further
clarified and supported by the boxplots Fig. 2, which visualize
the distribution of similarity scores across datasets and indices.
The Chebyshev index shows the lowest Q2 scores across IP
and SV datasets, indicating its superior inter-class separability.
This result aligns with the result in Table I, where the Cheby-
shev index achieved the lowest average similarity scores.
Having a broader IQR than any other indices, the Chebyshev
index’s variability shows its adaptability to diverse spectral
characteristics, making it particularly effective in datasets with
subtle spectral distinctions, such as IP and SV. In contrast,
indices with narrower IQRs may struggle with datasets that
have more subtle spectral variations.

The boxplots in the left and middle of Fig. 2 show that
the similarity score distributions for IP and SV are closely
aligned, reinforcing the earlier observation of similar mean
spectra. In contrast, the UP dataset exhibits broader distri-
butions, reflecting its higher inter-class variability. Especially,
the Chebyshev index again demonstrates superior performance
due to its broader IQR despite similar Q2 values to the (2
based index for the UP dataset. In the left panel of Fig. 2,
there are some outliers of the Chebyshev index which do not
harm our assertion since they are close to the Q3.

In conclusion, the Chebyshev index is the best one that
captures subtle spectral differences between classes, making
it more effective in datasets with intricate class separability

datasets

Metric 1P NY UP
Cosine 98.75 + 1.38 94.05 £+ 6.17 89.31 £ 9.62
Area 95.18 + 2.42 90.54 £ 3.70 66.58 £ 19.09
2 89.00 £ 5.70 | 68.33 + 13.70 | 50.86 + 24.22
02 86.00 £ 7.19 | 65.19 + 15.38 | 48.30 + 24.94
£ 78.08 + 9.84 | 59.56 + 16.95 | 44.06 + 26.91
Canberra | 91.43 + 4.29 | 69.72 4+ 12.43 | 55.80 4+ 21.74
% 98.99 + 0.88 95.83 £+ 2.58 78.43 £+ 19.08
Jeffrey 89.04 + 4.06 79.43 £ 7.56 51.19 £ 12.39

and further justifying its position as the most reliable index
for hyperspectral analysis.

V. DISCUSSION

For certain pairs of classes used to measure similarity
scores, the Chebyshev index does not always yield the lowest
score. For instance, the Jeffrey similarity index (12) produces a
lower score than the Chebyshev index for the IP dataset when
comparing class 11 with classes 2, 3, 10, and 11. To further
validate our assertions in Section IV, we analyze the rank of
the Chebyshev index and compare differences in similarity
scores using the following two inequalities:

o Optimal Admissibility (O/A):
8187, 87) = Spe (87, 87)|

o oo (13)
< |Sp (5%, 57) — S5(S°, 57|,
o Sub-optimal Admissibility (So/A):
So(S%,87) — Sy (S, 57
[S2(8", 57) = S (8", 87)] "

< [Sa (57, 57) — Sp= (S, 57)],

where S;(S%,S7) represents the score of the t-th lowest
similarity index computed with the mean spectra of classes
i and j, and Sy~ denotes the Chebyshev index score. Also,
S02(5%,87) is computed by the average of Sy and Sy since
there are eight indices.

In (13), O/A indicates that the Chebyshev index achieves
the second-lowest score for the class pair (4, j) with a smaller
difference from the lowest index than from the third-lowest
index. This supports the distinguishing capability of the
Chebyshev index as near optimal. Additionally using (14),



So/A signifies that the Chebyshev index either achieves the
second-lowest score for the class pair (7, ) or it has a smaller
difference from the second-lowest index than from the Sgo
when it does not score at least the second-lowest. This justifies
the distinguishing capability of the Chebyshev index as sub-
optimal.

Using these definitions, the Chebyshev index is classified
as at least O/A for 93.33%(112/120) of cases, including pairs
where the index achieves the lowest score. Furthermore, all
the 120 cases are classified as at least So/A in the IP dataset.
Similarly, for the SV and UP datasets, the Chebyshev index is
at least O/A for 81.67%(98/120) and 58.33%(21/36) of cases,
and at least So/A for 93.33%(112/120) and 77.78%(28/36)
of cases, respectively.

VI. CONCLUSION

This study addressed the critical challenge of evaluating
distance metrics in hyperspectral image (HSI) analysis, where
high dimensionality and complex spectral properties hinder
effective metric selection. By introducing novel similarity
score indices that normalize metrics to a unified scale, we en-
abled consistent and interpretable comparisons across datasets,
improving inter-class separability and intra-class consistency.
Our experiments on benchmark HSI datasets demonstrated the
robustness of the proposed framework, with the Chebyshev-
based index consistently achieving superior performance. This
approach offers a scalable solution that balances computational
efficiency with analytical precision, making it suitable for
large-scale Al applications. Future work will explore integrat-
ing these indices into advanced machine learning models for
tasks such as anomaly detection and domain adaptation, while
also addressing robustness under noisy or incomplete data.
This research sets the stage for more reliable and interpretable
metric selection in hyperspectral image analysis.
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