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Abstract—The integration of Distributed Access Points (APs)
in cell-free massive MIMO networks poses challenges for efficient
routing and parent selection, particularly in scenarios involving
dense AP deployment. This paper introduces a reinforcement
learning-based approach for optimal parent selection in Destina-
tion Oriented Directed Acyclic Graph (DODAG) based routing
within cell-free massive MIMO networks. Unlike traditional
routing protocols that rely heavily on static or computationally
intensive methods, our framework enables each AP to act as
an autonomous agent, dynamically selecting parent nodes based
on throughput, congestion, hop count, and link stability. We
model the problem using Q-learning, where each AP learns an
optimal parent selection policy through interactions with the
network. Simulation results demonstrate the proposed scheme’s
ability to maintain high throughput and packet delivery ratios
even in dense network environments. The framework achieves
an average throughput of 14.9 Mbps and a packet delivery
ratio of 79% for a 50-node network, effectively addressing the
challenges of interference and congestion. This work highlights
the potential of reinforcement learning to enhance the scalability
and performance of cell-free networks, paving the way for their
application in future 6G communication systems.

Index Terms—Cell-Free Massive MIMO, DODAG Routing,
Backhaul, Reinforcement Learning, Parent Selection

I. INTRODUCTION

Cell-free massive MIMO (CF-mMIMO) is an emerging
technology poised to play a key role in future 6G telecom-
munication systems due to its ability to enhance spectral
efficiency, expand coverage, and reduce user interference [1].
A typical CF-mMIMO system comprises a Central Processing
Unit (CPU), Access Points (APs), and User Equipment (UEs).
The CPU manages multiple APs, which are distributed across
the network and connected to the CPU via wireless backhaul
links. APs provide connectivity to UEs, with each UE poten-
tially connecting to multiple APs. Since its inception, research
on CF-mMIMO has addressed various topics, including AP
selection, clustering, and beam combining [2] [3] [4].

However, most existing studies assume simplistic CF-
mMIMO architectures, such as the one illustrated in Fig. 1,
without considering scenarios involving a large number of
APs. This limitation ignores the need for data forwarding
between APs in densely deployed networks. In such cases,
multi-hop data forwarding becomes critical, highlighting the
need for research on routing protocols tailored to CF-mMIMO
networks.

A dense CF-mMIMO architecture resembles the Integrated
Access and Backhaul (IAB) architecture standardized in 3GPP

Fig. 1. CF-mMIMO Network Architecture

TS 38.401 [5]. An IAB network consists of two main entities:
the IAB-donor node, which manages IAB nodes via wireless
links and forwards data to the core network, and the IAB
nodes, which provide connectivity to UEs within their range
and forward data to the IAB-donor node. Fig. 2 depicts a
simplified IAB architecture. One study highlights the use
of wideband mmWave access spectrum and resource sharing
between wireless backhaul and access links, emphasizing the
potential of IAB [6]. While CF-mMIMO lacks standardized
routing protocols, the Backhaul Adaptation Protocol (BAP),
under development for IAB, offers insights for CF-mMIMO
routing [7]. However, BAP is still evolving, and details on
inter-node routing remain undefined, necessitating novel ap-
proaches for CF-mMIMO routing.

Routing in CF-mMIMO networks presents several chal-
lenges. Flooding-based routing protocols, commonly used in
wireless networks, are resource-intensive and unsuitable for
CF-mMIMO, where access and backhaul links share the
frequency spectrum. Similarly, mesh routing protocols involve
high computational and network overhead due to frequent con-
trol message exchanges, reducing application-layer through-
put. A promising alternative is the use of DODAG (Destination
Oriented Directed Acyclic Graph) topology-based routing, as
employed in protocols like RPL (Routing Protocol for Low-
Power and Lossy Networks) [8].

DODAG topology construction requires only two types of
control messages: DODAG request messages, flooded by the
root node (CPU in this case), and DODAG reply messages,
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Fig. 2. Example of a problem scenario with DODAG applied in CF-mMIMO
Networks

sent by nodes wishing to join the DODAG. The CPU floods
request messages, and APs receiving them decide whether to
join the DODAG. If an AP chooses to participate, it sends
a reply to the upper node; otherwise, it ignores the request.
However, in CF-mMIMO networks, single links between APs
can limit throughput. When an AP receives multiple DODAG
request messages from different parent candidates, it must
select one parent based on specific routing metrics. Fig. 2
illustrates such a scenario, where APA receives two DODAG
requests and must decide between Link 1 and Link 2 to
construct the DODAG.

Given the complexity and dynamic nature of CF-mMIMO
networks, traditional equation-based parent selection meth-
ods may not suffice to achieve optimal throughput. Machine
learning approaches offer a viable solution by identifying
optimal routing metrics to ensure high network performance
and scalability. This study focuses on addressing the parent se-
lection problem in CF-mMIMO networks, exploring machine
learning-based approaches to optimize routing and guarantee
network throughput for future applications.

In the remainder of this paper, Section II provides a compre-
hensive review of the relevant literature. Section III describes
the system model in detail. Sections IV and V present the pro-
posed scheme and the corresponding performance evaluation,
respectively. Finally, Section VI concludes the paper with key
findings and future research directions.

II. LITERATURE REVIEW

This section discusses recent research contributions and
their limitations, highlighting the requirement for further ad-
vancement.

To address challenges in CF-mMIMO networks, researchers
have explored a subgroup-centric multicast framework for
mitigating pilot contamination [9] and a finite blocklength
(FBL) transmission scheme to address traditional infinite
blocklength assumptions [10]. The former enhances spectral
efficiency through optimized pilot sharing and precoding tech-
niques, while the latter develops low-complexity majorization-
minimization algorithms and asymptotically optimal beam-
forming structures, achieving computational efficiency im-

provements. Despite their performance gains, both approaches
require perfect channel state information (CSI) and specific
channel models, limiting their applicability in realistic envi-
ronments.

The federated learning-enhanced QoS multicast routing
protocol (FLQMR) [11] combines federated learning (FL),
reconfigurable intelligent surfaces (RIS), and edge computing
into a cross-layer design to optimize multicast routing in IoT-
enabled MANETs. By integrating physical layer data (e.g.,
spectral efficiency) with network layer information (e.g., route
stability), this approach establishes more stable multicast trees.
Simulation results indicate improvements in packet delivery
ratios and reduced routing delays, but the protocol introduces
significant computational complexity for participating devices.

CF-mMIMO research has also focused on two critical
challenges: joint fronthaul load balancing with computation
resource allocation under the O-RAN paradigm [12] and serv-
ing highly mobile IoT devices under imperfect CSI conditions
[13]. The former optimizes fronthaul topology through quanti-
zation bit optimization at remote units (RUs) while satisfying
computation constraints, whereas the latter develops advanced
channel models incorporating line-of-sight (LoS) knowledge,
non-isotropic scattering, and channel aging effects. These ap-
proaches assume perfect synchronization among access points
and depend on idealized channel models, which may not hold
in complex, dynamic network scenarios.

Recent advancements in CF-mMIMO systems address joint
unicast and multi-group multicast transmissions [14] and
energy-efficient beamforming with STAR-RIS integration [15].
The first utilizes an APG-based algorithm for joint access
point selection and power optimization, achieving significant
improvements in spectral efficiency. The second employs an
AO-GIPG framework to jointly optimize active and passive
beamforming with STAR-RIS, providing 360-degree coverage.
Both solutions showcase significant enhancements in network
performance but rely on perfect CSI, indicating opportuni-
ties for research in more robust, real-world scenarios with
advanced precoding schemes.

The integrated access and backhaul (IAB) technique [6]
addresses the challenges of mm-wave CF-mMIMO networks
by optimizing bandwidth allocation and beamforming ma-
trices to minimize end-to-end delays. While achieving no-
table improvements in network performance, this approach
significantly increases the computational demands on access
points (APs). Similarly, fronthaul queuing delay analysis [16]
provides a scalable model and closed-form expressions for
delay probabilities. The simulation results highlight lower
queuing delays compared to small cell networks, but this
comes at the cost of higher signaling overhead.

Full-duplex CF-mMIMO systems with practical limited-
capacity fronthaul links [17] integrate full-duplex APs with
randomly distributed half-duplex users in uplink and downlink
communication to enhance throughput and energy efficiency.
While this approach achieves throughput improvements and
minimizes energy consumption, it imposes increased compu-
tational complexity on APs. Spatially correlated Rician fading
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channel analysis [18] develops power control algorithms for
downlink CF-mMIMO systems, achieving significant gains in
achievable rates through phase-aware and non-phase-aware
minimum mean square error (MMSE) methods. However,
the approach struggles with dense user deployments, where
computational overhead grows rapidly.

Finally, integrated sensing and communication (ISAC)
systems [19] propose a joint beamforming and power al-
location framework, balancing sensing and communication
performance. The setup achieves better signal-to-noise and
interference-plus-noise ratios (SNR and SNIR) but introduces
additional computational complexity on the fronthaul. These
studies collectively highlight the need for further exploration
of CF-mMIMO systems under realistic conditions, incorpo-
rating dynamic environments, advanced channel models, and
efficient resource allocation schemes.

III. SYSTEM MODEL

Consider a cell-free massive MIMO network consisting of
M CPUs and N distributed access points (APs) deployed
across a geographical area A ∈ R2. Let M = {1, 2, . . . ,M}
denote the set of CPUs and N = {1, 2, . . . , N} represent
the set of APs. Each AP can establish a connection either
directly with a CPU or through other APs in a multi-hop
configuration, forming a DODAG topology G = (V, E), where
V =M∪N represents the set of all nodes and E denotes the
set of established connections.

The wireless channel between any two nodes (i, j) experi-
ences Rayleigh fading, characterized by the channel coefficient
hij which is given by:

hij =
√
βijgij (1)

where βij represents the large-scale fading coefficient in-
cluding path loss and shadowing, and gij ∼ CN (0, 1) denotes
the small-scale Rayleigh fading component. The Signal-to-
Noise Ratio (SNR) for a link between nodes i and j can be
expressed as:

γij =
Pt|hij |2

σ2
(2)

where Pt is the transmit power and σ2 is the noise variance.
The achievable capacity Cij for a link between nodes i and j
is determined by Shannon’s capacity formula:

Cij = B · log2(1 + γij) (3)

where B is the channel bandwidth and γij is the SNR for the
link.

A. DODAG Formation

The network topology formation follows a DODAG-based
routing protocol, initiated through control message exchanges
between CPUs and APs. CPUs, acting as root nodes, flood
DODAG Information Request (DIR) messages throughout the
network. Upon receiving these requests, APs make informed
decisions about joining the topology based on three critical

Algorithm 1 DODAG Initialization and Parent Selection
Require: N : Network nodes, C : CPU nodes, A : AP nodes,

Cmax : Max children per node, Hmax : Max hop count,
Cth : Min capacity threshold

1: procedure INITIALIZEDODAG(N , C)
2: for each c ∈ C do
3: c.hopCount ← 0, c.childCount ← 0,

c.seqNum← 0
4: BroadcastDIR(c)
5: end for
6: for each a ∈ A do
7: a.parentNode ← NULL, a.hopCount ← ∞,

a.childCount← 0
8: a.potentialParents← ∅
9: end for

10: end procedure
11: procedure PROCESSDIRMESSAGE(node, dir)
12: Cnp ← B · log2(1 + SNR(node, dir))
13: if dir.seqNum ≥ node.seqNum and Cnp ≥ Cth

then
14: Φ← Calculate-(Cnp, dirchildCount, dirhopCount)
15: node.potentialParents ←

node.potentialParents ∪ {dir.sourceID}
16: UpdateParentMetrics(node, dir.sourceID,Φ)
17: end if
18: end procedure
19: procedure SELECTPARENT(node)
20: bestParent, bestMetric← NULL,−∞
21: for each p ∈ node.potentialParents do
22: if p.childCount < Xmax and Metric(node, p) >

bestMetric then
23: bestParent, bestMetric ←

p,Metric(node, p)
24: end if
25: end for
26: if bestParent ̸= node.parentNode and ∆Φ >

∆Φth then
27:
28: SendDIPMessage(node, bestParent)
29: UpdateNodeStatus(node, bestParent)
30: end if
31: end procedure
32: procedure CALCULATEMETRIC(Cnp, Xp, Hp)
33: return w1 · Cnp

Cmax
+w2 ·

(
1− Xp

Xmax

)
+w3 ·

(
1− Hp

Hmax

)
34: end procedure
35: procedure UPDATENODESTATUS(node, newParent)
36: node.parentNode ← newParent,

node.hopCount← newParent.hopCount+ 1
37: node.seqNum← newParent.seqNum
38: BroadcastDIR(node)
39: end procedure
40: procedure BROADCASTDIR(node)
41: Broadcast({node.ID, node.hopCount,
42: node.childCount, node.seqNum})
43: end procedure
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parameters: achievable link capacity (Cij), congestion levels
(number of existing child nodes at potential parent nodes), and
hop count (distance from the CPU).

Let Pn denote the set of potential parent nodes for AP n.
For each AP n ∈ N , the parent selection metric Φn,p for a
potential parent p ∈ Pn is defined as:

Φn,p = w1
Cnp

Cmax
+ w2

(
1− Xp

Xmax

)
+ w3

(
1− Hp

Hmax

)
(4)

where:
• Cnp is the achievable capacity between AP n and parent

p, normalized by Cmax, the maximum system-defined
capacity.

• Xp represents the current number of child nodes con-
nected to parent p, normalized by Xmax.

• Hp denotes the hop count from parent p to its serving
CPU, normalized by Hmax.

• {w1, w2, w3} are non-negative weights satisfying∑3
i=1 wi = 1.

The topology optimization problem for each AP n can be
formulated as:

P∗
n = argmax

p∈Pn

Φn,p

subject to: Cnp ≥ Cth,

Xp ≤ Xmax,

Hp ≤ Hmax

|P∗
n| = 1

(5)

where Cth is the minimum capacity threshold required to
maintain reliable communication, and the constraint |P∗

n| = 1
ensures that each AP selects exactly one parent, maintaining
the DODAG property. The selected parent p∗ ∈ P∗

n updates its
child count as Xp∗ = Xp∗ +1, and the joining AP updates its
hop count as Hn = Hp∗+1. This process continues iteratively
until all APs establish their optimal connections, resulting in a
topology that maximizes network throughput while satisfying
the system constraints.

The detailed algorithm for DODAG initial connection setup
and Parent Selection topology is summarized in Algorithm 1.
The algorithm initializes with CPUs at hop count 0 and APs
at infinity, where each node maintains sequence numbers for
message freshness and monitors parameters including SNR,
hop count, and congestion levels. Nodes establish and maintain
parent-child relationships through DIR message processing
and parent selection metrics.

IV. PROPOSED SCHEME

This paper presents a reinforcement learning (RL) based
approach for parent selection in DODAGs to enhance overall
network throughput. The network topology consists of a CPU
as the root node and multiple connected nodes forming an
acyclic graph. Each node in the network is modeled as an RL
agent, learning to optimize its parent selection autonomously
based on local observations and network-wide metrics. The
primary goal of this approach is to address challenges such

as congestion, link instability, and suboptimal routing by
enabling nodes to make dynamic and distributed decisions that
maximize the overall network performance.

A. State Representation

Each node captures the environment’s state based on its
observations of the network. The state vector for a node i,
denoted as Si, includes several parameters for each potential
parent node j. These parameters are the (SNRi,j) between
node i and potential parent node j, which represents the
channel quality; the hop count (Hj) from the parent node j
to the CPU, which reflects the distance of the parent from
the root; and the congestion level (Cj) at the parent node j,
measured in terms of queue length or load. Additionally, the
state includes the stability (Si,j) of the link between node i and
parent node j, which is derived from historical success rates of
the connection, and the achievable throughput (Ti,j) between
node i and parent node j. The throughput is calculated as:

Ti,j = B · log2(1 + SNRi,j), (6)

where B is the bandwidth available for communication. This
comprehensive state representation enables each node to eval-
uate its parent selection options effectively and dynamically.

B. Action Space

The action space for each node represents the selection of
one parent from its set of potential parent nodes. For a node
i with n potential parents, the action space is:

Ai = {0, 1, ..., n− 1} (7)

where each action a ∈ Ai corresponds to choosing a specific
parent node j.

C. Reward Function

The reward function is designed to guide the RL agents
toward actions that maximize throughput while minimizing
hops and avoiding highly congested or unstable parents. For
a child node i selecting a parent node j, the reward Ri,j is
calculated as:

Ri,j = α · Ti,j − β ·Hj − γ · Cj + δ · Si,j (8)

where Ti,j represents the throughput between node i and
parent j as defined above, Hj is the hop count from the parent
j to the CPU, Cj represents the congestion level at parent j,
and Si,j is the stability of the link between i and j. The terms
α, β, γ, and δ are weighting factors that balance the impact
of each term, satisfying α + β + γ + δ = 1. This reward
structure incentivizes nodes to select parents that provide
high throughput, fewer hops, less congestion, and greater link
stability, aligning with the overall goal of maximizing network
throughput.

Q-learning, a model-free reinforcement learning algorithm,
is used for this scheme. Each node maintains a Q-value
table Q(S,A), where S is the current state and A is the
action (parent selection). The Q-value represents the expected
cumulative reward for taking a specific action in a given state.
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During training, the Q-value is updated iteratively using the
Bellman equation:

Q(St, At)← Q(St, At) + η ·
[
Rt + γ ·max

A
Q(St+1, A)

−Q(St, At)
]
(9)

where η is the learning rate, γ is the discount factor for
future rewards, and Rt is the immediate reward observed after
taking action At in state St. By iteratively refining the Q-
values, each node learns an optimal parent selection policy that
balances exploration and exploitation, adapting to dynamic
network conditions.

V. PERFORMANCE EVALUATION

The simulation is conducted to evaluate the proposed re-
inforcement learning-based parent selection approach in a
DODAG network. The network comprises a single root node
(CPU) and multiple connected nodes forming an acyclic graph.
The performance of the system is analyzed for varying network
sizes, ranging from 10 to 50 nodes.

The nodes are distributed randomly within the network,
and their communication follows the DODAG topology. Each
node acts as an independent RL agent, using Q-learning to
optimize its parent selection policy. The agents interact with
the environment by selecting parent nodes based on their
local observations, aiming to maximize the overall network
throughput. The environment provides feedback in the form
of a reward, which considers factors such as signal-to-noise
ratio (SNR), hop count, congestion, and link stability.

The machine learning framework for the simulation lever-
ages Q-learning, a model-free reinforcement learning algo-
rithm. The agents are initialized with a learning rate (η) of
0.1, which controls the speed at which the Q-value table
is updated during training. A discount factor (γ) of 0.9
is used to balance immediate and future rewards, ensuring
the agents consider the long-term impact of their decisions.
The exploration-exploitation trade-off is managed through an
epsilon-greedy strategy, where the exploration rate (ϵ) starts
at 1.0, allowing the agents to explore all possible actions
fully, and gradually decays to 0.1 over the episodes, favoring
exploitation of learned policies as the training progresses. Each
simulation runs for 50 episodes to ensure convergence of the
Q-values.

Additionally, the RL environment is structured to reflect re-
alistic network dynamics. The nodes receive state observations
that include SNR, hop count, congestion, and stability metrics.
The reward function integrates these metrics, with throughput
(T ) calculated using (6), where B is the bandwidth. Adjust-
ments for interference and congestion are incorporated by
penalizing effective SNR and increasing congestion penalties
as the number of nodes grows. This ensures that the simulation
captures the complexities of real-world network conditions
and evaluates the proposed framework under both ideal and
congested scenarios.
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Fig. 3. Average Throughput

Fig. 3 illustrates the average throughput per node as the
number of nodes in the network increases. The throughput
shows a slight decline as the network size grows, decreasing
from 20.26 Mbps for 10 nodes to 14.9 Mbps for 50 nodes.
This modest reduction indicates that the proposed reinforce-
ment learning-based scheme effectively adapts to network
conditions, maintaining satisfactory performance even as the
network becomes denser. The decline in throughput can be
attributed primarily to increased interference and congestion in
larger networks. As the number of nodes grows, the likelihood
of overlapping transmissions increases, reducing the effective
SNR for some links. Additionally, with more child nodes com-
peting for limited resources, parent nodes experience higher
congestion, which further impacts throughput. The penalty
for higher hop counts to the root node also contributes to
this reduction in performance. Despite these challenges, the
results demonstrate that the proposed scheme successfully
mitigates these effects through intelligent parent selection and
adaptive learning. The overall performance remains satisfac-
tory, highlighting the robustness of the reinforcement learning
framework in handling real-world network complexities.

Fig. 4 illustrates the Packet Delivery Ratio (PDR) as the
number of nodes in the network increases. The PDR shows a
gradual decline from 92% for 10 nodes to 79% for 50 nodes.
This decrease is expected as the network becomes denser, lead-
ing to increased interference and resource contention among
nodes.

The decline in PDR can be attributed to the higher proba-
bility of packet collisions and transmission failures in larger
networks. As the number of nodes increases, overlapping
transmissions cause interference, which impacts the reliability
of links. Additionally, congestion at parent nodes due to a
larger number of connected child nodes can result in packet
drops. The penalty for increased hop counts also contributes
to the slight reduction in PDR, as nodes farther from the root
face a higher risk of packet loss.

Despite these challenges, the proposed reinforcement
learning-based parent selection scheme demonstrates strong
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adaptability, maintaining a high PDR even in larger networks.
The system effectively mitigates the impact of interference and
congestion, ensuring reliable packet delivery under varying
network conditions.

VI. CONCLUSION

This paper presented a reinforcement learning-based parent
selection scheme for DODAG routing in cell-free massive
MIMO networks, addressing the challenges of dense AP
deployments. By modeling each AP as an autonomous Q-
learning agent, the framework optimally balances throughput,
congestion, hop count, and link stability in parent selection.
Simulations revealed that the proposed method sustains high
network performance under varying conditions, achieving an
average throughput of 14.9 Mbps and a packet delivery ratio
of 79% in a 50-node network. The decline in performance
with increased network size is mitigated through adaptive
learning, which dynamically optimizes decisions in response
to interference and congestion. Compared to traditional static
routing protocols, the reinforcement learning-based approach
demonstrates superior adaptability and efficiency. This study
underscores the importance of machine learning in addressing
real-world challenges in next-generation networks, particularly
for enabling scalable and robust routing mechanisms. Future
work will explore integrating additional metrics, such as
energy efficiency and latency, to further optimize network
performance in diverse operational scenarios.
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