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Abstract—3D object tracking plays a pivotal role in 3D com-
puter vision, with significant applications in robotics, autonomous
vehicles, and human-computer interaction. Despite progress,
leveraging multimodal information to enhance the accuracy of
multi-object detection and tracking (MODT) remains a key
research challenge. To address this, we introduce a multimodal
multi-object tracking (MOT) framework based on enhanced
Affinity computation-based multi-object detection and tracking
(ACMODT), specifically designed for autonomous driving scenar-
ios. This framework integrates data from cameras and LiDAR
sensors to deliver more reliable feature extraction and correlation
for real-time tracking and detection. Our approach employs a
deep neural network (DNN) that combines image (2D) and point
cloud (3D) data for simultaneous object detection, tracking, and
association. We design a reliable module to calculate motion
and appearance relationships in 3D space while accounting for
multiple occlusions and harsh weather conditions. We also create
a unified data association module to optimize detection reliability,
object associations, and start-end estimation. Experiments taken
on the KITTI car tracking dataset and RADIATE dataset
demonstrate our method achieves superior tracking accuracy and
precision compared to existing approaches.

Index Terms—Deep neural network, Affinity computation,
Data association, Autonomous driving, Multi-object Tracking.

I. INTRODUCTION

The importance of 3D object tracking [1], [2] has grown
significantly across various fields, including human-computer
interaction, robotics, and autonomous driving. Recent trends
show an increasing use of sensors like LiDARs, radars, RGB
cameras, and infrared sensors in vehicles. Autonomous ve-
hicles with these multi-sensors can gather richer perceptual
data, enabling safer and more dependable driving performance.
For instance, Kim et al. [3] introduced EagerMOT, a multi-
order data association approach that effectively integrates data
from various object detection modules and modalities. Shenoi
et al. developed JRMOT [4], which combines 2D camera
images with 3D point cloud data for real-time tracking. Zhang
et al. presented mmMOT [5], pioneering deep features from
point clouds in tracking tasks. Their findings demonstrate
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that fusing multi-sensor data significantly enhances tracking
accuracy compared to single-sensor approaches.

A major challenge in 3D object tracking lies in improving
detection precision when utilizing multimodal information
from multi-sensors. A conventional MOT approach comprises
object detection, correlation, data association with affinity
computation, and track management. To address the inherent
complexities in tracking, robust affinity metrics are required,
blending appearance and geometric features to manage subtle
visual differences and complex motion dynamics. However,
while fusion-based methods have been explored, the impact of
multimodal features from multi-sensors on multi-object detec-
tion remains insufficiently studied. Prior research in 3D-MOT
often prioritizes feature distance correlation while overlooking
the directional correlation between features.

This study makes the following contributions:

1) This study introduces an end-to-end framework called
Enhanced affinity computation multi-object detection
and tracking, designed to produce 3D bounding boxes
and best association scores in real-time by leveraging
camera and LiDAR data with the Enhanced Boost Cor-
relation Feature (EBcF).

2) The proposed method replaces 3D mean IoU [6] with 3D
Enhanced Generalized IoU (3D-EGIoU) for geometric
affinity calculations, enabling a more precise represen-
tation of the spatial relationships between objects.

3) The method is tested on the two datasets: KITTI
car tracking benchmark [7] and RADIATE [8] which
demonstrate significant improvements in tracking accu-
racy, precision, lesser ID switches (IDSW), and other
key evaluation metrics compared to existing methods
with great visualization in the form of 2D images.

The structure of this paper is outlined as follows: Section II
provides an overview of related work on MOT methodologies.
Section III details the system architecture of the proposed
work. Section IV explains the affinity computation framework
with its metrics. Section V presents the experimental evalu-
ations and analyzes the results. Finally, Sections VI and VII



summarize the key findings in the Conclusion, limitations, and
potential directions for future research respectively.

II. RELATED WORK

A. Multi-Object Tracking

Two primary paradigms exist for addressing MOT chal-
lenges. The first is the tracking-by-detection (TBD) approach,
which separates detection and tracking into independent tasks.
Mostly, MOT methods adhere to the TBD approach. How-
ever, TBD-based methods face significant limitations, such
as reduced performance speed and error accumulation, due
to the cascading nature of data association, object detection,
and their association. To address the shortcomings, the joint
detection and tracking (JDT) paradigm [9] integrates these
tasks into an end-to-end learning framework. Wu et al. [2]
introduced an innovative online tracking model called Track-
to-Detect and Segment (TraDeS), which enhances MOT by
integrating tracking information back into the detection stage
and incorporating a re-identification (Re-ID) loss that aligns
better with detection loss. Additionally, several tracking meth-
ods based on the JDT approach have been developed, such as
RetinaTrack [9], CenterTrack [10], ChainedTracker [11], JDE
[12], and JMODT [13]. For instance, ChainedTracker [11]
creates tracklets by linking paired boxes across consecutive
frames, while Zhang et al. [5] demonstrated that leveraging
correlations between detection pairs can enhance overall model
performance.

Despite the performance advantages of the JDT approach,
designing effective models for it remains challenging. The
success of the JDT paradigm relies heavily on creating robust
models that can effectively utilize multiple sensor’s informa-
tion. Notably, much of the research on 3D-MOT with multi-
sensor fusion has underscored the critical role of accurate
sensor calibration in achieving optimal tracking performance.
However, there remains a gap in addressing the attribute
relationships between objects, which are often overlooked in
existing studies. Our proposed ACMODT method follows the
JDT paradigm.

III. SYSTEM ARCHITECTURE

The architecture consists of multiple interconnected com-
ponents designed to facilitate continuous object tracking, as
illustrated in the figure 1. The system leverages a deep
neural network comprising many key subnetworks, including
a backbone network, a Region Proposal Network (RPN), an
RCNN [14], and a PointRCNN [15]. The backbone network
is responsible for extracting features from both the 2D images
and the 3D point cloud data. The RPN creates initial object
proposals, which are subsequently classified and refined by
the RCNN, and the PointRCNN completes the process by
conducting 3D object detection and segmenting individual
instances. Detection results are generated using the Region of
Interest (RoI) and proposal features provided by the detection
network. Meanwhile, the correlation network utilizes RoI
features along with the EBcF to compute re-identification (Re-
ID) and start-end estimation.

In GMM-based affinity methods, an affinity matrix (a cost
matrix) is constructed, where each element indicates the level
of similarity between a detection and a track. This matrix
incorporates affinities derived from the GMM, along with
additional metrics such as classification confidence scores,
which reflect the likelihood of detection being a relevant
object. It also includes other evaluation measures, such as In-
tersection over Union (IoU) and Euclidean distance, to assess
the alignment between detection and tracking predictions. Both
motion and appearance information contribute to calculating
object affinities, with appearance affinities represented by the
softmax-ranked outputs of the Re-ID network. For motion
prediction, this study utilizes the Kalman filter. GMM-based
data association is used to improve the matching of detections
between frames. The GMM helps model the distribution of
features extracted from the detected and predicted objects. To
ensure uninterrupted tracking, the track management module
handles cases of occlusion or object reappearance, maintaining
consistent tracking over time.

IV. AFFINITY COMPUTATION FRAMEWORK

The shared features generated by the RPN undergo further
processing to produce 3D bounding boxes and more precise
association scores using data from both the camera and LiDAR
sensors. This process does not alter the 2D or 3D encoding
modules but instead filters the RPN features based on a
predefined threshold, ensuring that object features with the
same ID are standardized. This study introduces an affinity
metric that combines Enhanced boost correlation features with
a 3D-enhanced generalized Intersection over Union to capture
appearance similarity and motion consistency better. It is
expressed as follows:

Y aff
p,q = λ ·Bapp

p,q + γ ·B3D-EGIoU
p,q (1)

Where:
• Bapp

p,q is the affinity calculated using the Enhanced Boost
Correlation Features.

• B3D-EGIoU
p,q is the geometric affinity metric using the new

3D Enhanced Generalized IoU.
• λ and γ are weighting factors where λ+ γ = 1.

A. Enhanced Boost Correlation Feature

The mmMOT method [5] uses element-wise absolute, sub-
traction, and multiplication to compute the correlation between
candidate features. Determining adjacency requires calculating
the correlation for each pair of detected objects. This corre-
lation process is not dependent on batch size, allowing it to
handle data from different modalities, and it operates channel
by channel to leverage the capabilities of the neural network.
In JMODT [13], features that are not effective are removed
using a standard IoU threshold, and absolute subtraction is
applied to find the correlation between candidate features,
which reflects the relationship between frames. However, these
approaches do not address the direction of the features. Thus, a
more comprehensive approach to feature correlation is needed



Fig. 1: Structure diagram of the affinity computation-based multi-object detection and tracking workflow using robust
data association with affinity metrics of Enhanced Boost Correlation Features and three dimensional-enhanced generalized
Intersection over Union.

to account for this limitation. EBcF is calculated consider-
ing features from the previous frame and the current frame
for a better understanding of the object-level dependencies
across frames. Unlike the traditional cosine similarity [16],
this method also considers temporal consistency and feature
variations. The correlation is determined using a modified
similarity function, which incorporates a temporal smoothing
factor. The equation is defined as follows:

EBcFp,q = (1− δ) ∥Gp −Gq∥+ δ · Gp ·Gq

∥Gp∥∥Gq∥
(2)

Where:

• Gp and Gq are the features of bounding boxes.
• Gp·Gq is the dot product between the two feature vectors.
• ∥Gp∥ and ∥Gq∥ are the magnitudes of the feature vectors.
• δ is a temporal consistency weighting factor that ensures

smoother feature correlations across frames.

This enhanced version provides a more robust correlation
score that accounts for both spatial differences and temporal
variations, thus improving association robustness in multi-
object tracking.

B. 3D Enhanced Generalized IoU

This study proposes a new geometric affinity measure called
3D-EGIoU. This measure extends the traditional IoU with
additional penalties for bounding boxes that are misaligned or
have large aspect ratio discrepancies, leading to better accuracy
when calculating overlap between 3D bounding boxes. The
3D-EGIoU is defined as follows:

3D − EGIoUp,q = Average (IoU3D +GIoU3D + EIoU3D)
(3)

Where:

• IoU3D represents the basic 3D Intersection over Union
between the two bounding boxes.

• GIoU3D represents the Generalized Intersection over
Union in 3D space, which adds a penalty for bounding
boxes that are not overlapping but are spatially close.

• EIoU3D represents the Enhanced Intersection over Union
in 3D space, which takes into account not only the
aspect ratios of the bounding boxes but also their relative
orientation in 3D space, thus providing a better measure
for similarity in complex scenes.

This measure is designed to handle various overlapping
situations while considering object orientation and aspect ratio,
making it more comprehensive than traditional IoU metrics.

C. Affinity Metric Computation

Unlike traditional methods that compute appearance affinity
solely based on the distance between camera-LiDAR fusion
features, this approach incorporates the Enhanced boosted
correlation features into the calculation. This study potentially
improves the accuracy and robustness of the multi-object
tracking framework by leveraging richer appearance infor-
mation through EBcF and a more comprehensive geometric
similarity metric using 3D-EGIoU. The pseudocode for the
affinity computation is outlined in Algorithm 1.

V. EXPERIMENTAL STUDY

The experiments were conducted on a system equipped
with an Intel(R) Core (TM) i7-8700K CPU and a TITAN
RTX GPU with 24 GB of memory. The implementation was
carried out using Python and PyTorch. A pre-trained EPNet
detection model [17] was utilized, and the correlation network
was trained for 40 epochs with a batch size of 4. The training
process employed the AdamW optimizer [18] with a cosine
annealing learning rate of 2 × 10−4. In this study, GMM
was adopted for data association, with its parameters aligned
and compared with the MIP-based data association used in
JMODT [13]. While computing affinities, the parameters were
optimized based on empirical evaluation to achieve their best



Algorithm 1: Affinity with EBcF and 3D-EGIoU
Input: Detection measurements E, tracks L, and

proposal features H = {Hi, i ∈ E ∩ L}.
Output: Refined affinities Y aff

p,q , p ∈ E, q ∈ L
1 for each track q ∈ L do
2 Predict the 3D bounding box Cq for track q using

Kalman Filter;
3 for each detection p ∈ E do
4 Feature correlation: Fp,q ← |Gp −Gq|;
5 Appearance Re-ID affinity for feature Fp,q:

Bapp
p,q ← Appearance Re-ID(Fp,q);

6 3D bounding box p: Cp;
7 B3D-EGIoU

p,q ← 3D-EGIoU(Cp, Cq);

8 Bapp ← {Bapp
p,q , p ∈ E, q ∈ L};

9 B3D-EGIoU ← {B3D-EGIoU
p,q , p ∈ E, q ∈ L};

10 P ← Softmax(Bapp) along columns;
11 Q← Softmax(Bapp) along rows;
12 Bapp ← 1

2 (P +Q);
13 Y aff

p,q ← λBapp + γB3D-EGIoU;

performance. For instance, the appearance score weight was
set to 2, the classification score weight was assigned a value of
100, the IoU score weight was set to 10, the distance measure
weight was adjusted to 10, and the start-end probability weight
was defined as 1.

In terms of data association, the weights for classification,
affinity, and spatial embedding were set to 100, 22, and 1,
respectively, and these values were fine-tuned using cross-
validation. The classification threshold for filtering detections
with low confidence was set to a high value of 0.80 to
eliminate unreliable detection results.

A. Evaluation Metrics

This proposed ACMODT method assessed the performance
using the KITTI car tracking dataset [7]. This dataset includes
29 testing and 21 training sequences, comprising forward-
facing camera 2D images and LiDAR 3D point cloud data.
Each ground truth annotation in the dataset contains a unique
ID associated with a 3D bounding box. An object is considered
a true positive (TP) only if its 2D-IoU [19] exceeds 0.5.
Following the KITTI evaluation standards, we used metrics
such as Multiple Object Tracking Precision (MOTP), Multiple
Object Tracking Accuracy (MOTA), Multiple Object Detec-
tion Accuracy (MODP), Multiple Object Detection Accuracy
(MODA), False Negative (FN), False Positive (FP), Mostly
Tracked (MT), Mostly Lost (ML), fragmentation (Frag), and
ID-switches (IDSW) to assess MOT performance [20].

B. Quantitative and Qualitative Results

In comparison to other published methods, including
AB3DMOT, mmMOT, JRMOT, JMODT, and BcMOT, our
approach ACMODT demonstrated improved accuracy and
precision in terms of multiple-object tracking and detection by
surpassing all of these methods across all evaluated indicators

in the vehicle-tracking benchmark tests on the KITTI dataset
as shown in the table I. The evaluation results, presented in
table I, are based on the MOTA metric [20]. The quantitative

TABLE I: The car tracking performance comparison on the
KITTI dataset is based on results reported in respective
research papers and data obtained from the KITTI public
leaderboards.

Method AB3DMOT mmMOT JRMOT JMODT BcMOT Ours

TBD ✓ ✓ ✓ ✗ ✗ ✗

JDT ✗ ✗ ✗ ✓ ✓ ✓

MOTA ↑ 83.92% 84.77% 85.70% 86.27% 86.53% 88.56%
MOTP ↑ 85.30% 85.21% 85.48% 85.41% 85.37% 89.61%
MODA ↑ 83.95% 85.60% 85.98% 86.40% 86.66% 88.73%
MODP ↑ 88.21% 88.28% 88.42% 88.32% 88.29% 90.18%

FP ↓ 978 711 772 772 1,248 589
FN ↓ 4,542 4,243 4,049 3,433 3,341 962
MT ↑ 66.77% 73.23% 71.85% 77.38% 78.31% 86.57%
ML ↓ 9.08% 2.77% 4.00% 2.92% 2.62% 1.38%

IDSW ↓ 10 284 98 45 45 2
Frag ↓ 199 753 372 585 626 130
Runtime ↓ 0.05 s 0.02 s 0.07 s 0.01 s 0.01 s 0.01 s

results compare the performance of various MOT methods.
MOTA represents the overall tracking accuracy, considering
false positives, false negatives, and identity switches. Our
method achieves the highest value of 88.56%, outperforming
the second-best method (BcMOT) at 86.53%, indicating su-
perior tracking accuracy. Besides, our approach achieves the
highest score (89.61%), showcasing improved object localiza-
tion precision compared to other methods, such as 85.48%
by JRMOT. Similarly to MODA, our method achieves the
best result (88.73%), indicating the method’s high detection
accuracy, closely followed by BcMOT (86.66%). In MODP, it
leads with a score of 90.18%, reflecting excellent precision in
detecting and bounding objects. Our method also minimizes
false positives (589), significantly lower than the baseline
BcMOT (1,248), showing better detection reliability. Our
ACMODT method also minimizes errors, with the lowest FN
(962), IDSW (2), and Frag (130), highlighting its reliability
and tracking consistency. It achieves the highest percentage of
MT by 86.57% and the lowest percentage of ML by 1.38%,
demonstrating its robust ability to maintain accurate trajec-
tories. Furthermore, the runtime per frame is 0.01 seconds,
comparable to efficient methods like JMODT and BcMOT,
ensuring real-time applicability. These results emphasize the
proposed method’s state-of-the-art performance, enabled by
effective multimodal fusion and robust optimization, making
it highly suitable for 3D object tracking applications in au-
tonomous driving.

In the field of MODT, challenges such as occlusion make
both detection and tracking highly complex. Objects can be
partially or fully occluded for a period, whether in 2D image
data or 3D point clouds. First, we select random frames within
a sequence of 0001 from the KITTI car tracking dataset.
Our multi-object tracking algorithm is designed to handle



complex urban traffic conditions, especially in fully occluded
objects, which can be visualized in figure 2. The algorithm
effectively identifies and tracks vehicles, assigning distinct
IDs (e.g., IDs 15, 2, 6, and 17) and maintaining continuity
despite challenges like multiple occlusions and overlapping
object trajectories. The bounding boxes highlight the spatial
positioning, motion, and orientation of the detected objects
within the scene. For instance, ID 6, representing a vehicle
on the right, is tracked continuously, showcasing the method’s
capability to handle steady movement over time. Color-coded
bounding boxes (e.g., red, green, yellow, and cyan) distinguish
between objects, improving visual clarity. Additionally, the
algorithm prioritizes motion prediction and re-identification
mechanisms, ensuring that objects temporarily occluded or
entering the field of view are seamlessly incorporated into the
tracking process.

Next, we choose the frames from the RADIATE dataset to
showcase multi-object tracking results under various weather
conditions such as foggy, rainy, and dark scenarios as shown in
the figure 3. It underscores the robustness and adaptability of
the tracking algorithm across diverse environmental scenarios.
In (a) foggy condition 1 and (b) foggy condition 2, the
tracking system demonstrates resilience to significant visibility
constraints by accurately detecting and tracking vehicles (blue
bounding boxes), leveraging LiDAR for depth information,
and maintaining stable object IDs such as ID 4 and ID 3.
Under (c) rainy condition 1 and (d) rainy condition 2, the
tracker effectively handles moderate visibility reduction and
reflections, consistently generating precise 3D bounding boxes
and maintaining smooth object trajectories across frames. In
(e) dark condition 1 and (f) dark condition 2, the algorithm
compensates for poor illumination using LiDAR data, ensuring
accurate object detection (red and blue bounding boxes) and
maintaining stable IDs like ID 9 and ID 13, highlighting its
ability to handle motion prediction and affinity calculations.

VI. CONCLUSION

In conclusion, the proposed tracking method demonstrates
robust and accurate multi-object tracking capabilities, focusing
specifically on vehicles in diverse and challenging real-world
scenarios. The multimodal data utilization (combining 2D and
3D data) ensures reliable performance in adverse conditions,
while its ability to manage occlusions and process real-time
updates enhances its adaptability to dynamic environments.
Experimental results highlight the method’s superior detection
accuracy, consistent ID assignment, and trajectory continuity,
proving its suitability for autonomous driving applications in
unpredictable weather conditions.

VII. LIMITATIONS AND FUTURE WORKS

This study has some limitations. First, it focuses only
on tracking vehicles, which means it doesn’t include other
important road users such as pedestrians, cyclists, bikes, etc.
This could affect how accurate the tracking is in real-world
situations where these other road users are also present. Sec-
ond, although the system works well in real time, it requires a

lot of computing power. This might make it difficult to use on
devices with limited resources, like low-cost sensors or older
hardware.

Future work can address these limitations by expanding
object detection to include diverse road users, improving
robustness under extreme conditions, optimizing the frame-
work for low-power hardware, and validating the method on
broader datasets to ensure adaptability and scalability. The
RPN can also be enhanced to better represent pedestrians and
cyclists by adapting the anchor box sizes and aspect ratios to
align with the typical shapes and dimensions of these road
users. Additionally, incorporating multi-scale feature fusion
can improve the detection of smaller or more dynamic objects,
such as pedestrians, ensuring greater accuracy and robustness
for real-world autonomous driving applications.
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