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Abstract— The unfortunate rise of a pandemic calls for an 

urgent deployment of medical virus testing and vaccination 

centers at strategically selected locations. Inefficient deployment 

causes a failure to optimally distribute resources within a 

country or city, which might result in the loss of lives due to a 

lack of medical availability in a certain region. In this paper, a 

custom discretizing Monkey algorithm (MA) is proposed and 

compared with an enhanced Genetic Algorithm (GA) to solve 

the single objective of a Capacitated Maximal Covering 

Location Problem (CMCLP) for COVID centers in the emirate 

of Dubai, United Arab Emirates. Five sites and 256 existing 

facilities will be selected. Based on the results, the MA has 

proved to be more performant and consistent than the genetic 

algorithm by achieving a 5.16% higher average fitness and a 

21.03% run duration penalty compared to GA. 

Keywords— monkey algorithm, genetic algorithm, capacitated 

maximal covering location problem, ArcGIS, geoprocessing. 

I. INTRODUCTION 

Facility location-allocation is a decision-making strategy 
used to select the most appropriate location(s) for a given 
facility type and to allocate potential demand to that facility. 
It is used to minimize costs and maximize facility utilization 
when the size of the geospatial search domain is huge [1]. 
Location cost encompasses all the constraints the facility 
must satisfy at a given coordinate set to be well localized. 
Examples of location costs include population coverage, 
facility startup capital, and travel timing constraints, to name 
just a few. Zhong et al. [2] compute their system cost as the 
total of the following: the setup cost to open a distribution 
center, the fixed cost of the vehicles, the vehicle travel cost, 
and penalties for both lack of supply and oversupply. Another 
illustration of location costs is by Yu [3], who incorporates 
every customer's demand, their attraction to each facility, the 
distance between each customer and facility, and the opening 
cost of a potentially new facility at a given location. Yu also 
restricts the location costs to the budget set by the firm 
looking into opening a new facility. 

Facility Location Problems (FLPs) can be generally 
categorized into covering-based and median-based problems 
and other less common problems such as the p-dispersion and 
maxisum dispersion [4]. One of the covering-based problem 
models is the Set Covering (SC) location problem, where the 
objective is to minimize the total location cost to cover all 
demand points [5]. The p-median location problem is an 
example of a median-based problem model, where the 

objective is to minimize the demand-weighted total distance 
or time between the facilities and the demand points [6]. The 
capacity constraint can be added to an FLP, whereby every 
facility can service a finite number of demand points [7]. A 
problem can be formulated by combining multiple objectives 
and criteria, as Farahani et al. explained[8]. Fuzzy logic, 
which involves working with uncertainty in data, can also be 
employed as a solution if it applies to the problem statement 
at hand and the datasets within reach of the developers [9]. 
One example of using fuzzy logic in this context is how 
Karasakal and Silav [10] combined the Non-Sorting Genetic 
Algorithm (NSGA-II) with the fuzzy logic of partial 
coverage. 

In FLP, facility type limits the solution algorithm and 
formulation of the problem model. For instance, emergency 
facilities such as police stations, hospitals, and testing centers 
have strict timing as police and ambulances must reach 
destinations fast [11], modeled as a covering problem model 
[12], with an evolutionary algorithm typically used[13]. 
Meanwhile, energy facilities have a greater focus on fixed 
and variable costs [14]. This paper focuses on the COVID 
center as a facility, aiming to maximize the collective 
coverage for the city's population. 

The rest of this paper is structured as follows: Section 2 
analyzes the related literature and compares the design 
decisions made in this paper's methodology with that of other 
relevant papers in the literature. Section 3 presents the 
mathematical formulation of the problem model data 
preparation and objective function implementation. Section 4 
presents and discusses the results of Genetic and Monkey 
algorithms and compares their performance. Section 5 
concludes the paper and introduces potential future work. 

II. LITERATURE REVIEW 

In this section, we compare and contrast all aspects of our 
design and implementation with the literature and justify our 
decisions for each aspect.  

A. FLP in Healthcare 

Based on our literature review, 12 papers have discussed 
solving an FLP for a healthcare type of facility with an 
Artificial Intelligence approach, nine of which used a discrete 
search domain, similar to our case. Kamikawa and HASUIKE 
[15] modeled their problem as a hybrid between a set of 
regression equations and a Weber problem. Tavakkoli-



 

 

Moghaddama et al. [16] formulate the problem as a 
combination p-median problem where the total transportation 
costs are minimized and the social impact is maximized. 
Zhang et al. [17] designed three objectives around population 
coverage, whereas Zhang et al. [18] designed a bilevel 
objective. The papers by Elkady and Abdelsalam [19],  
ElKady and Abdelsalam [20], and Shariff et al. [21] each 
discussed how they model their problem around the 
capacitated maximal covering location problem. Similarly, 
Fernandes et al. [22] worked on a Two-Stage Capacitated 
Facility Location Problem. LU et al. [23] integrated fuzzy 
logic into their problem model and formulated it as a fuzzy 
queuing maximal covering problem. Berglund and Kwon [24] 
formulate their problem as a set covering problem in which 
they work at minimizing total cost. As the majority of the 
modeling approaches agree with our collected demographics 
dataset, we will model our problem as a capacitated maximal 
covering location problem. 

B. GA and MA Algorithms 

Moreover, we found 19 papers utilizing the GA standalone, 

two papers combining it in a hybrid solution approach, and 

only one paper utilizing the MA. Hernandez et al. [25] 

combined the GA with the Probabilistic Solution Discovery 

Algorithm (PSDA) to hedge against facility failure and build 

a more robust set of facilities. Mousavi et al. combine the GA 

with vibration damping optimization (VDO) to solve a 

capacitated multi-facility FLP [26]. Our hypothesis is that a 

hybrid approach is more effective than using any single 

algorithm on the search domain. 

Four papers only were found to combine GIS and AI in one 

proposal. Rahman et al. [27] was mentioned before and is one 

of the latest papers to discuss the combination of GIS and AI. 

In addition, Shatnawi et al. [28] used particle swarm 

optimization (PSO) and the GA with GIS in 2020, showing 

that this paper is not the first to use the GA with GIS. Saeidian 

et al. [29] used the PSO and ant colony optimization with 

GIS. Lastly, Yeo and Yee [30] used an artificial neural 

network with GIS. To the authors' knowledge, this paper is 

the only paper that has implemented the MA with GIS. This 

implementation will be done using ArcGIS Pro software, 

with a Python-Django backend utilizing ArcPy – the library 

through which we used the ArcGIS geoprocessing tools and 

interacted with its geodatabase – and a React-based frontend. 

C. GA Development 

The foundation of our GA is based on the NSGA-II by Deb 

et al. [31]. While most papers do not consider the duplication 

of gene selection when creating a chromosome in the initial 

population or while performing mutation, we consider this 

our primary modification to our implementation of the GA. 

The duplication is necessary since our proposal is a multi-

output application. Korać et al. [32] remove duplicates from 

the genetic operators, such as mutation, in each generation. 

We find it important to replace these with non-duplicates 

instead of simply eliminating them to ensure a predictable 

number of output genes in any given chromosome. The 

modification is done in the mating function, where if a gene 

is randomly selected and is already found in the chromosome, 

a new gene is selected. The implemented GA is discussed in 

the next section. 

D. Our Contribution 

In this paper, we develop a novel MA to resolve CMCLP for 

healthcare facilities within a geospatial environment. The 

solution is developed using ArcGIS software with Python 

backend and ArcPy for geoprocessing to model the problem 

in real-world data from the emirate of Dubai, demonstrating 

the feasibility of MA. A comparative analysis was performed 

to validate reliable performance by comparing the GA and 

MA with a custom-designed MA. 

III. METHODOLOGY 

A. Data Preparation 

The primary dataset we needed was the population data for 

the city of Dubai, which we obtained from Esri's ArcGIS Pro 

software. It offers a polygon enrichment tool that calculates 

the population demographics within a given polygon 

according to 2020 data. Given the nature of our dataset, we 

do not need to use machine learning to preprocess our data. 

Given that the datasets we found from Open Street Maps 

(OSM) for the healthcare and amenity facilities are discrete, 

given that the application's objective is to locate the best-

existing amenity facilities to build a COVID center, our 

search domain will also be discrete. 

B. Mathematical Formulation 

This paper focuses on capacitating FLP and the 
maximizing covering location problem, named the capacitated 
maximal covering location problem (CMCLP). It maximizes 
the covered demand of each facility, which, in our case, is 
represented by population demographics. The mathematical 
formulation for our problem is as follows [21]: 
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Where,  

• i is a candidate facility in a set of candidate facilities I, 

• j is a demand point in a set of demand points J,  

• 
�
  is a Boolean indicated whether customer j is within 

the service area of facility i,  

• �
 is the demand volume at demand point j, 

•  ��
  is a Boolean indicating whether demand point j is 

allocated to facility i,  

• ��  is a Boolean indicating whether a facility is 
established as candidate location i,  

• � is the number of facilities to be established,  

• ��
is the demand of customer j corresponding to the 

facility i,  



 

 

• and �� is the demand capacity for facility I. 

The objective function (1) maximizes the demand 
allocated to all facilities while respecting the service areas. 
Equation (2) requires a predefined number of facilities to be 
established. Equation (3) ensures that a demand point is only 
allocated to a facility if it is established. Equation (4) defines 
the binary values for the demand point allocation and the 
facility establishment variables, respectively. Finally, we 
have incorporated (5) into the list of constraints to consider 
each facility's capacity [33]. 

C. CMCLP Implementation 

The search domain is subdivided into 1000 equal 
segments in the data preparation stage. Population 
demographics are then calculated for each segment to enrich 
the data, as shown in Fig. 1. 

 

 
Fig. 1. Division of the Emirates of Dubai into 1,000 enriched segments. 

The segmentation is run through two subsequent stages of 
processing. The first is base processing, where demand for 
570 healthcare facilities is applied to the segments' demand 
values. The service areas of each healthcare facility are 
calculated based on traffic coverage within a one-mile radius. 
Traffic coverage refers to the area where traffic can flow and, 
consequently, residential units can exist. The service areas 
and demand segments are run through an intersection analysis 
that fragments the service areas according to their 
intersections with the segments. Fig. 2 shows the fragments 
of the service area for one of the healthcare facilities. 

 
Fig. 2. Base intersection of the service area of a healthcare facility. 

Each healthcare facility's impact is applied to each of its 
fragments. The facility impact is calculated by finding two 
demand values: the demand available within the fragment and 
the potential demand the facility can cover. Demand available 
within the fragment can be calculated with (6) below: 

"���#� $�%ℎ�# '(�)��#% =
*+,-./01 2+/,

233456,1/7 8/-./01 2+/, ∗ Demand within Segment  
(6) 

 

The potential demand that the facility can cover within the 

fragment can be calculated with (7) below: 

FG%�#%��H "���#� IGJ�(�� $�%ℎ�# '(�)��#% =
KLMNOPQR SLPM

TPLU�VP SLPM  ∗ '�
�H�%� I���
�%�  
(7) 

The maximum capacity for each healthcare facility is set 
at 5000 people/day, while the capacity for the candidate 
facilities is set at 3000 people/day. Both of these values are 
user-changeable. If there exists equal or more demand than 
the facility can cover within the fragment, then the full 
potential demand is deducted from the segment's demand; 
otherwise, the demand of the fragment is deducted from that 
of the segment. 

The second stage of processing is candidate processing. It 
is almost identical to base processing, except that the demand 
from (6) is not calculated at this step, as the demand within 
the segment will be different at each point of metaheuristic 
algorithm execution. There are 256 candidate facilities. Fig. 
3 shows the service areas in yellow for the candidate 
facilities. 

 
Fig. 3. Service areas for candidate facilities. 

As discussed later, the metaheuristic algorithm is 
implemented to select five available candidate facilities. 
Since multiple outputs are expected, applying each 
candidate's demand to the demand segments will affect the 
following application. As such, every iteration of the 
algorithm will create a deep copy of the demand segments to 
simulate the effect of the candidates under consideration. The 
demand within each associated fragment will be calculated 
and deducted from the simulated segments. This process will 
ensure that the impact of every candidate facility is reflected. 
The steps used in implementing and using the CMCLP are:  

• Search Domain Segmentation 

• Base Service Areas Generation 

• Base Intersection Analysis 

• Base Fragments Processing 

• Candidate Service Areas Generation 

• Candidate Intersection Analysis 

• Candidate Fragments Initial Processing 

• Node Evaluation Per Algorithm Iteration 

1) Genetic Algorithm Implementation 



 

 

With a few minor improvements discussed in section II, 
our GA implementation is fundamentally based on the 
NSGA-II by Deb et al. [31]. The genetic algorithm is 
presented with a list of candidate facilities and mimics the 
behavior of genetic evolution to generate the expected output. 
This input list is ready after the candidate processing phase, 
as shown in Fig. 1. For this experiment, we set the desired 
output at five ordered candidate facilities, although this 
number is user-changeable. The order of the output solution 
set must be accounted for in the calculation of its fitness 
because applying demand implications on the segments 
would affect the next candidate facility in case their service 
areas overlap. 

The first step in the algorithm is generating the initial 
population, which will be a random selection from the list of 
provided candidate facilities. This value is also user-
changeable. 

 
Fig. 4. Genetic algorithm main loop 

 
The algorithm's main loop is then executed, as illustrated 

in Fig. 4. The standalone fitness of each gene in each 
chromosome is calculated in the initial population. The total 
standalone fitness for each gene is calculated and combined 
to become that of the parent chromosome. The chromosome 
with the highest total standalone fitness is then passed on to 
the CMCLP function. The returned fitness is considered the 
generation's fitness and is passed on to be checked against the 
algorithm termination mechanism. If the algorithm does not 
terminate, the population will undergo Elitism, where the 
fittest 10% of the population is passed on as is to the next 
generation. The other 90% start the process of Mating, where 
the remaining chromosomes will be split into two groups. 
Chromosomes from each group will enter the mating process. 
There is a 40% chance that the gene from the first 
chromosome will be passed on to the resulting chromosome, 
a 40% chance that the gene from the second chromosome will 
have its gene passed on, and a 20% chance for the resulting 
chromosome to be mutated. Mutation is the exploration 
mechanism for the genetic algorithm, where a new random 
candidate facility is selected and passed on as a gene. The 
mutation feature prevents the algorithm from resolving to a 
local maximum. At every step of the algorithm, duplicates are 
avoided. The main loop repeats until the termination 
mechanism breaks it. 

D. Custom Monkey (MA) Algorithm Implementation 

The MA replicates the principles of the behavior of a 
group of monkeys searching for food. Each monkey can 
perform three movements. First is a climb, where the monkey 
climbs to the nearest vantage point and looks for food near it. 
Second is a watch and jump, where the monkey scouts for a 
higher closest vantage point to move to and performs another 
climb. Third, the monkey can perform a somersault, taking a 
significant leap in a random direction before undergoing 
another climb. The somersault marks the exploration 
mechanism for the MA, just like mutation does in the genetic 
algorithm. This function prevents the algorithm from getting 
stuck at a local solution set. After all the monkeys have 
performed their movements, they will undergo a coordination 
phase, where they communicate their best solutions with each 
other. 

For comparison purposes, the expected output is identical 
to that from the genetic algorithm: a solution set of five 
ordered candidate facilities. Since the MA is highly 
contextualized to its spatial search domain, it was 
implemented from scratch based on the aforementioned 
principles to suit the ArcGIS environment. 

The algorithm begins by randomly spawning a preset 
number of monkeys within the boundaries of Dubai, with a 
minimum distance between each two monkeys of five miles, 
which was experimentally determined. This value is user 
changeable. Fig. 5 shows the spawned initial population from 
an example run, symbolized as yellow X's within the blue 
Dubai polygon. 

 
Fig. 5. Monkey algorithm initial population 

The algorithm's main loop is then executed, as shown in 
Fig. 6. Each monkey will perform a climbing movement first. 
Each point representing a monkey within the Dubai 
boundaries will find the five closest candidate facilities and 
evaluate them using the implemented CMCLP solver. It will 
then nominate the best out of the five during the coordination 
phase. The best five solutions out of all nominated candidate 
solutions will move on to the next step. The five selected 
solutions form an ordered solution set, the fitness of which is 
then calculated. The result represents the fitness of that 
generation. If applicable, the algorithm checks that fitness 
against the termination mechanism and breaks the loop. If 
not, each monkey will run through a random movement. 
There is an 80% chance that the monkey will perform a 
watch-jump and a 20% chance of performing a somersault. 
The watch-jump movement will have the monkey analyze the 
population of its surrounding segments and move the 
monkey's representative point toward the highest population 
segment. The somersault will select a random direction that 
does not take the monkey outside the emirate boundaries and 

Calculate the Highest 

Chromosome Fitness 
in the Population

Check for Algorithm 

Termination

Perform Elitism

Perform Mating



 

 

move the monkey's point a large distance towards it. At every 
step of the algorithm, duplicates are avoided. The main loop 
repeats until the termination mechanism breaks it. 

 

Fig. 6. Monkey algorithm main loop. 

It is important to note that the code can be generalized to 
work with fitness and standalone fitness instead of 
incorporating population segments. The algorithm can then 
be used for any problem with a spatial search domain. We 
chose to use the population segments because it is 
computationally faster to specialize the algorithm 
programming to our application. It is also important to note 
that the algorithm can be reprogrammed to work with a 
continuous search domain by skipping the search for the 
closest candidate service areas to each monkey. 

E. Fitness Function 

The fitness optimal value (OPT) for any given run is 

calculated as per (7): 

WFX = Canidate Facility Capacity
∗ Size of Output Solution Set (7) 

Since the default candidate facility capacity is set to 3000 

people and the default size of the output solution set is set to 

5 candidate facilities, the default OPT is 15,000. 

The fitness function is then used to calculate fitness as per 

(8): 

d�#�(�%�G# '�%#���
=  Total Demand from the CMCLP function
∗ OPT! ∗ 100 

(8) 

The fitness function is identical in both the Genetic and 

Monkey algorithms. 

F. Termination Mechanism 

The termination mechanism is identical for both implemented 

algorithms. The algorithm is terminated when fitness reaches 

100 or no better solution set has been found within a given 

number of grace generations. The number of grace 

generations for each algorithm is tuned and determined in the 

next section to achieve the best fitness-to-run duration 

performance. This number is a user-changeable value. 

G. Tuning the Parameters 

In order to tune the two algorithm parameters for each 

algorithm (i.e., initial population size and grace generations 

limit), we will use the Taguchi method. In the Taguchi 

method, we test for all combinations of values within a wide 

range of parameter values and determine the best values using 

the best fitness yield. 

We set the healthcare and candidate capacities to a constant 

10,000 persons/day. This value is a realistically large number 

for a COVID center that would challenge both algorithms and 

ensure that neither would reach a 100 fitness value. It would 

also ensure enough headroom for both algorithms to prove 

their performance. A fitness value of 100 indicates a fitness 

value equal to the optimal value. We chose parameters for the 

test based on run duration feasibility. We tested the GA with 

ranges of [200, 1000] and [20, 100] for the initial population 

size and grace generations limit, respectively. We then tested 

the MA with ranges [100, 500] and [2, 10] for the initial 

population size and grace generations limit, respectively. 

IV. RESULTS AND DISCUSSION 

Fig. 7 shows the surf plots of the IPS, GGL, and fitness 
values for the GA and MA, respectively. The peak is selected 
in each plot, and the X (GGL) and Y (IPS) values are 
displayed. For the GA, it was determined that 200 units and 
100 generations were the optimal parameter values for the 
IPS and GGL, respectively. For the MA, it was determined 
that 100 units and 10 generations were the optimal parameter 
values for the IPS and GGL, respectively. 

(a) (b) 

Fig. 7. Taguchi results for (a) GA and (b) MA 

A. Statistical Analysis 

Twenty runs were performed on each algorithm for 
statistical analysis. Table 1 shows the experimental results.  

TABLE I.  EXPERIMENTAL ALGORITHM RESULTS 

Trial GA Fitness GA 

Duration 

MA Fitness MA 

Duration 

1 85.86 83.00 85.44 165.00 

2 80.54 87.00 85.40 151.00 

3 78.67 83.00 85.82 120.00 

4 85.79 81.00 85.64 71.00 

5 81.88 83.00 85.64 102.00 

6 80.88 83.00 87.67 102.00 

7 87.26 80.00 87.55 65.00 

8 80.28 82.00 87.67 108.00 

9 70.64 81.00 85.64 70.00 

10 81.83 81.00 88.09 65.00 

11 86.20 82.00 85.93 83.00 

12 83.95 84.00 85.64 71.00 

13 82.89 84.00 85.64 107.00 

14 79.44 80.00 87.80 199.00 
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Trial GA Fitness GA 

Duration 

MA Fitness MA 

Duration 

15 84.54 81.00 87.13 65.00 

16 81.94 82.00 85.64 71.00 

17 83.47 82.00 87.67 152.00 

18 83.90 81.00 87.80 71.00 

19 83.13 80.00 87.44 83.00 

20 83.02 85.00 85.88 70.00 

 
Statistical analysis was performed on the data in Table 2 

using Minitab. We first performed a Mann-Whitney test to 
confirm statistical differences before proceeding with the 
consistency analysis. Table 2 shows the test results for the 
fitness values. Both P-values are below the significance level 
of 0.05, indicating that the fitness values are statistically 
different. This significance allows us to differentiate the 
fitness performance of the two algorithms. Table 2 also shows 
the test results for the duration values. Both P-values this time 
are above the significance level, indicating that the run 
duration times are statistically indifferent. It concludes that 
the algorithms take a comparable amount of time to execute 
many runs. 

TABLE II.  MANN-WHITNEY TEST RESULTS. 

Condition Method W-Value P-

Value 

For fitness values 
Not adjusted for ties 250.00 0.000 

Adjusted for ties 250.00 0.000 

For run duration values 
Not adjusted for ties 402.00 0.839 

Adjusted for ties 402.00 0.839 

 

Table 3 shows the results of the descriptive analysis. The 
parameters for consistency are range, variance, and standard 
deviation. The GA has a fitness range of 16.620, while the 
MA has a fitness range of 2.682, which proves the greater 
consistency of the MA in comparison with the GA. The 
variance and standard deviation for fitness recorded by GA 
are 12.892 and 3.591, respectively, while the same values for 
fitness recorded by the MA are 1.067 and 1.033, reaffirming 
the statistical consistency of the fitness performance metric 
for the MA. Finally, after comparing fitness averages, we can 
conclude that the MA is more performant, with a 5.16% 
higher average fitness, a variant that is 11 times lower 
(indicating a more consistent fitness output), and a 21.03% 
run duration penalty. 

TABLE III.  DESCRIPTIVE STATISTICS FOR THE DATA 
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Fig. 8 shows the fitness values of the genetic and the monkey 

algorithms. It demonstrates that the MA values are more 

stable than the GA. 

 

 
Fig. 8. Fitness values plot. 

V. CONCLUSION 

The effort to minimize the spread of COVID is of 
predominant importance. Increasing the availability of 
COVID vaccination and/or testing centers is part of that 
effort. This paper aims to develop an application with which 
a user can leverage evolutionary algorithms to locate optimal 
facilities where a COVID center can be built and to allocate 
demand to those potential facilities. The Genetic and Monkey 
algorithms were implemented and compared with each other 
in light of their optimal values. Both algorithms were tested 
using the same fitness function and termination mechanism 
for comparison. The MA proved more performant and was 
the better choice for this application. 

For further research, the healthcare and candidate 
facilities can be updated to a timeframe well after the start of 
the COVID-19 pandemic, resulting in a more up-to-date 
solution. The problem formulation can also be expanded to 
include fixed location costs if the required datasets can be 
found. Moreover, the objective function can be solved with 
other choices of algorithms so long as they include an 
exploration mechanism. Subsequently, the application can be 
expanded to other emirates within the United Arab Emirates 
or other countries or cities worldwide. 
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