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Abstract— The unfortunate rise of a pandemic calls for an
urgent deployment of medical virus testing and vaccination
centers at strategically selected locations. Inefficient deployment
causes a failure to optimally distribute resources within a
country or city, which might result in the loss of lives due to a
lack of medical availability in a certain region. In this paper, a
custom discretizing Monkey algorithm (MA) is proposed and
compared with an enhanced Genetic Algorithm (GA) to solve
the single objective of a Capacitated Maximal Covering
Location Problem (CMCLP) for COVID centers in the emirate
of Dubai, United Arab Emirates. Five sites and 256 existing
facilities will be selected. Based on the results, the MA has
proved to be more performant and consistent than the genetic
algorithm by achieving a 5.16% higher average fitness and a
21.03% run duration penalty compared to GA.

Keywords— monkey algorithm, genetic algorithm, capacitated
maximal covering location problem, ArcGIS, geoprocessing.

I. INTRODUCTION

Facility location-allocation is a decision-making strategy
used to select the most appropriate location(s) for a given
facility type and to allocate potential demand to that facility.
It is used to minimize costs and maximize facility utilization
when the size of the geospatial search domain is huge [1].
Location cost encompasses all the constraints the facility
must satisfy at a given coordinate set to be well localized.
Examples of location costs include population coverage,
facility startup capital, and travel timing constraints, to name
just a few. Zhong et al. [2] compute their system cost as the
total of the following: the setup cost to open a distribution
center, the fixed cost of the vehicles, the vehicle travel cost,
and penalties for both lack of supply and oversupply. Another
illustration of location costs is by Yu [3], who incorporates
every customer's demand, their attraction to each facility, the
distance between each customer and facility, and the opening
cost of a potentially new facility at a given location. Yu also
restricts the location costs to the budget set by the firm
looking into opening a new facility.

Facility Location Problems (FLPs) can be generally
categorized into covering-based and median-based problems
and other less common problems such as the p-dispersion and
maxisum dispersion [4]. One of the covering-based problem
models is the Set Covering (SC) location problem, where the
objective is to minimize the total location cost to cover all
demand points [5]. The p-median location problem is an
example of a median-based problem model, where the

objective is to minimize the demand-weighted total distance
or time between the facilities and the demand points [6]. The
capacity constraint can be added to an FLP, whereby every
facility can service a finite number of demand points [7]. A
problem can be formulated by combining multiple objectives
and criteria, as Farahani et al. explained[8]. Fuzzy logic,
which involves working with uncertainty in data, can also be
employed as a solution if it applies to the problem statement
at hand and the datasets within reach of the developers [9].
One example of using fuzzy logic in this context is how
Karasakal and Silav [10] combined the Non-Sorting Genetic
Algorithm (NSGA-II) with the fuzzy logic of partial
coverage.

In FLP, facility type limits the solution algorithm and
formulation of the problem model. For instance, emergency
facilities such as police stations, hospitals, and testing centers
have strict timing as police and ambulances must reach
destinations fast [11], modeled as a covering problem model
[12], with an evolutionary algorithm typically used[13].
Meanwhile, energy facilities have a greater focus on fixed
and variable costs [14]. This paper focuses on the COVID
center as a facility, aiming to maximize the collective
coverage for the city's population.

The rest of this paper is structured as follows: Section 2
analyzes the related literature and compares the design
decisions made in this paper's methodology with that of other
relevant papers in the literature. Section 3 presents the
mathematical formulation of the problem model data
preparation and objective function implementation. Section 4
presents and discusses the results of Genetic and Monkey
algorithms and compares their performance. Section 5
concludes the paper and introduces potential future work.

II. LITERATURE REVIEW

In this section, we compare and contrast all aspects of our
design and implementation with the literature and justify our
decisions for each aspect.

A. FLP in Healthcare

Based on our literature review, 12 papers have discussed
solving an FLP for a healthcare type of facility with an
Artificial Intelligence approach, nine of which used a discrete
search domain, similar to our case. Kamikawa and HASUIKE
[15] modeled their problem as a hybrid between a set of
regression equations and a Weber problem. Tavakkoli-



Moghaddama et al. [16] formulate the problem as a
combination p-median problem where the total transportation
costs are minimized and the social impact is maximized.
Zhang et al. [17] designed three objectives around population
coverage, whereas Zhang et al. [18] designed a bilevel
objective. The papers by Elkady and Abdelsalam [19],
ElKady and Abdelsalam [20], and Shariff et al. [21] each
discussed how they model their problem around the
capacitated maximal covering location problem. Similarly,
Fernandes et al. [22] worked on a Two-Stage Capacitated
Facility Location Problem. LU et al. [23] integrated fuzzy
logic into their problem model and formulated it as a fuzzy
queuing maximal covering problem. Berglund and Kwon [24]
formulate their problem as a set covering problem in which
they work at minimizing total cost. As the majority of the
modeling approaches agree with our collected demographics
dataset, we will model our problem as a capacitated maximal
covering location problem.

B. GA and MA Algorithms

Moreover, we found 19 papers utilizing the GA standalone,
two papers combining it in a hybrid solution approach, and
only one paper utilizing the MA. Hernandez et al. [25]
combined the GA with the Probabilistic Solution Discovery
Algorithm (PSDA) to hedge against facility failure and build
a more robust set of facilities. Mousavi et al. combine the GA
with vibration damping optimization (VDO) to solve a
capacitated multi-facility FLP [26]. Our hypothesis is that a
hybrid approach is more effective than using any single
algorithm on the search domain.

Four papers only were found to combine GIS and Al in one
proposal. Rahman et al. [27] was mentioned before and is one
of the latest papers to discuss the combination of GIS and Al
In addition, Shatnawi et al. [28] used particle swarm
optimization (PSO) and the GA with GIS in 2020, showing
that this paper is not the first to use the GA with GIS. Saeidian
et al. [29] used the PSO and ant colony optimization with
GIS. Lastly, Yeo and Yee [30] used an artificial neural
network with GIS. To the authors' knowledge, this paper is
the only paper that has implemented the MA with GIS. This
implementation will be done using ArcGIS Pro software,
with a Python-Django backend utilizing ArcPy — the library
through which we used the ArcGIS geoprocessing tools and
interacted with its geodatabase — and a React-based frontend.

C. GA Development

The foundation of our GA is based on the NSGA-II by Deb
et al. [31]. While most papers do not consider the duplication
of gene selection when creating a chromosome in the initial
population or while performing mutation, we consider this
our primary modification to our implementation of the GA.
The duplication is necessary since our proposal is a multi-
output application. Kora¢ et al. [32] remove duplicates from
the genetic operators, such as mutation, in each generation.
We find it important to replace these with non-duplicates
instead of simply eliminating them to ensure a predictable
number of output genes in any given chromosome. The
modification is done in the mating function, where if a gene
is randomly selected and is already found in the chromosome,
a new gene is selected. The implemented GA is discussed in
the next section.

D. Our Contribution

In this paper, we develop a novel MA to resolve CMCLP for
healthcare facilities within a geospatial environment. The
solution is developed using ArcGIS software with Python
backend and ArcPy for geoprocessing to model the problem
in real-world data from the emirate of Dubai, demonstrating
the feasibility of MA. A comparative analysis was performed
to validate reliable performance by comparing the GA and
MA with a custom-designed MA.

III. METHODOLOGY

A. Data Preparation

The primary dataset we needed was the population data for
the city of Dubai, which we obtained from Esri's ArcGIS Pro
software. It offers a polygon enrichment tool that calculates
the population demographics within a given polygon
according to 2020 data. Given the nature of our dataset, we
do not need to use machine learning to preprocess our data.
Given that the datasets we found from Open Street Maps
(OSM) for the healthcare and amenity facilities are discrete,
given that the application's objective is to locate the best-
existing amenity facilities to build a COVID center, our
search domain will also be discrete.

B. Mathematical Formulation

This paper focuses on capacitating FLP and the
maximizing covering location problem, named the capacitated
maximal covering location problem (CMCLP). It maximizes
the covered demand of each facility, which, in our case, is
represented by population demographics. The mathematical
formulation for our problem is as follows [21]:
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Where,
® iisa candidate facility in a set of candidate facilities I,
e jisademand point in a set of demand points J,

® ¢;j is a Boolean indicated whether customer j is within
the service area of facility i,

® g, is the demand volume at demand point j,

® y;; is a Boolean indicating whether demand point j is
allocated to facility i,

e x; is a Boolean indicating whether a facility is
established as candidate location i,

e p is the number of facilities to be established,

® d;jis the demand of customer j corresponding to the
facility 1,



e and s; is the demand capacity for facility 1.

The objective function (1) maximizes the demand
allocated to all facilities while respecting the service areas.
Equation (2) requires a predefined number of facilities to be
established. Equation (3) ensures that a demand point is only
allocated to a facility if it is established. Equation (4) defines
the binary values for the demand point allocation and the
facility establishment variables, respectively. Finally, we
have incorporated (5) into the list of constraints to consider
each facility's capacity [33].

C. CMCLP Implementation

The search domain is subdivided into 1000 equal
segments in the data preparation stage. Population

demographics are then calculated for each segment to enrich
the data, as shown in Fig. 1.

Fig. 1. Division of the Emirates of Dubai into 1,000 enriched segments.

The segmentation is run through two subsequent stages of
processing. The first is base processing, where demand for
570 healthcare facilities is applied to the segments' demand
values. The service areas of each healthcare facility are
calculated based on traffic coverage within a one-mile radius.
Traffic coverage refers to the area where traffic can flow and,
consequently, residential units can exist. The service areas
and demand segments are run through an intersection analysis
that fragments the service areas according to their
intersections with the segments. Fig. 2 shows the fragments
of the service area for one of the healthcare facilities.

Fig. 2. Base intersection of the service area of a healthcare facility.

Each healthcare facility's impact is applied to each of its
fragments. The facility impact is calculated by finding two
demand values: the demand available within the fragment and
the potential demand the facility can cover. Demand available
within the fragment can be calculated with (6) below:

Demand within Fragment =
Fragment Area

(6)

, * Demand within Segment
Associated Segment Area

The potential demand that the facility can cover within the
fragment can be calculated with (7) below:

Potential Demand Covered within Fragment =
Fragment Area

* Facility Capacity %

Service Area

The maximum capacity for each healthcare facility is set
at 5000 people/day, while the capacity for the candidate
facilities is set at 3000 people/day. Both of these values are
user-changeable. If there exists equal or more demand than
the facility can cover within the fragment, then the full
potential demand is deducted from the segment's demand,
otherwise, the demand of the fragment is deducted from that
of the segment.

The second stage of processing is candidate processing. It
is almost identical to base processing, except that the demand
from (6) is not calculated at this step, as the demand within
the segment will be different at each point of metaheuristic
algorithm execution. There are 256 candidate facilities. Fig.
3 shows the service areas in yellow for the candidate
facilities.

Fig. 3. Service areas for candidate facilities.

As discussed later, the metaheuristic algorithm is
implemented to select five available candidate facilities.
Since multiple outputs are expected, applying each
candidate's demand to the demand segments will affect the
following application. As such, every iteration of the
algorithm will create a deep copy of the demand segments to
simulate the effect of the candidates under consideration. The
demand within each associated fragment will be calculated
and deducted from the simulated segments. This process will
ensure that the impact of every candidate facility is reflected.
The steps used in implementing and using the CMCLP are:

*  Search Domain Segmentation

*  Base Service Areas Generation

*  Base Intersection Analysis

*  Base Fragments Processing

» Candidate Service Areas Generation

+  Candidate Intersection Analysis

» Candidate Fragments Initial Processing

*  Node Evaluation Per Algorithm Iteration

1) Genetic Algorithm Implementation



With a few minor improvements discussed in section II,
our GA implementation is fundamentally based on the
NSGA-II by Deb et al. [31]. The genetic algorithm is
presented with a list of candidate facilities and mimics the
behavior of genetic evolution to generate the expected output.
This input list is ready after the candidate processing phase,
as shown in Fig. 1. For this experiment, we set the desired
output at five ordered candidate facilities, although this
number is user-changeable. The order of the output solution
set must be accounted for in the calculation of its fitness
because applying demand implications on the segments
would affect the next candidate facility in case their service
areas overlap.

The first step in the algorithm is generating the initial
population, which will be a random selection from the list of
provided candidate facilities. This value is also user-
changeable.

Calculate the Highest

Chromosome Fitness
in the Population

Ve

Perform Mating

AN

Fig. 4. Genetic algorithm main loop

Check for Algorithm
Termination

Perform Elitism

The algorithm's main loop is then executed, as illustrated
in Fig. 4. The standalone fitness of each gene in each
chromosome is calculated in the initial population. The total
standalone fitness for each gene is calculated and combined
to become that of the parent chromosome. The chromosome
with the highest total standalone fitness is then passed on to
the CMCLP function. The returned fitness is considered the
generation's fitness and is passed on to be checked against the
algorithm termination mechanism. If the algorithm does not
terminate, the population will undergo Elitism, where the
fittest 10% of the population is passed on as is to the next
generation. The other 90% start the process of Mating, where
the remaining chromosomes will be split into two groups.
Chromosomes from each group will enter the mating process.
There is a 40% chance that the gene from the first
chromosome will be passed on to the resulting chromosome,
a40% chance that the gene from the second chromosome will
have its gene passed on, and a 20% chance for the resulting
chromosome to be mutated. Mutation is the exploration
mechanism for the genetic algorithm, where a new random
candidate facility is selected and passed on as a gene. The
mutation feature prevents the algorithm from resolving to a
local maximum. At every step of the algorithm, duplicates are
avoided. The main loop repeats until the termination
mechanism breaks it.

D. Custom Monkey (MA) Algorithm Implementation

The MA replicates the principles of the behavior of a
group of monkeys searching for food. Each monkey can
perform three movements. First is a climb, where the monkey
climbs to the nearest vantage point and looks for food near it.
Second is a watch and jump, where the monkey scouts for a
higher closest vantage point to move to and performs another
climb. Third, the monkey can perform a somersault, taking a
significant leap in a random direction before undergoing
another climb. The somersault marks the exploration
mechanism for the MA, just like mutation does in the genetic
algorithm. This function prevents the algorithm from getting
stuck at a local solution set. After all the monkeys have
performed their movements, they will undergo a coordination
phase, where they communicate their best solutions with each
other.

For comparison purposes, the expected output is identical
to that from the genetic algorithm: a solution set of five
ordered candidate facilities. Since the MA is highly
contextualized to its spatial search domain, it was
implemented from scratch based on the aforementioned
principles to suit the ArcGIS environment.

The algorithm begins by randomly spawning a preset
number of monkeys within the boundaries of Dubai, with a
minimum distance between each two monkeys of five miles,
which was experimentally determined. This value is user
changeable. Fig. 5 shows the spawned initial population from
an example run, symbolized as yellow X's within the blue
Dubai polygon.

Fig. 5. Monkey algorithm initial population

The algorithm's main loop is then executed, as shown in
Fig. 6. Each monkey will perform a climbing movement first.
Each point representing a monkey within the Dubai
boundaries will find the five closest candidate facilities and
evaluate them using the implemented CMCLP solver. It will
then nominate the best out of the five during the coordination
phase. The best five solutions out of all nominated candidate
solutions will move on to the next step. The five selected
solutions form an ordered solution set, the fitness of which is
then calculated. The result represents the fitness of that
generation. If applicable, the algorithm checks that fitness
against the termination mechanism and breaks the loop. If
not, each monkey will run through a random movement.
There is an 80% chance that the monkey will perform a
watch-jump and a 20% chance of performing a somersault.
The watch-jump movement will have the monkey analyze the
population of its surrounding segments and move the
monkey's representative point toward the highest population
segment. The somersault will select a random direction that
does not take the monkey outside the emirate boundaries and



move the monkey's point a large distance towards it. At every
step of the algorithm, duplicates are avoided. The main loop
repeats until the termination mechanism breaks it.

All Monkeys Climb
and then
Coordinate

Calculate the
Highest Solution
Set Fitness in the

Population

Each Monkey will

Watch-Jump or
Somersault

Check for
Algorithm
Termination

Fig. 6. Monkey algorithm main loop.

It is important to note that the code can be generalized to
work with fitness and standalone fitness instead of
incorporating population segments. The algorithm can then
be used for any problem with a spatial search domain. We
chose to use the population segments because it is
computationally faster to specialize the algorithm
programming to our application. It is also important to note
that the algorithm can be reprogrammed to work with a
continuous search domain by skipping the search for the
closest candidate service areas to each monkey.

E. Fitness Function

The fitness optimal value (OPT) for any given run is
calculated as per (7):

OPT = Canidate Facility Capacity
* Size of Output Solution Set

(7

Since the default candidate facility capacity is set to 3000
people and the default size of the output solution set is set to
5 candidate facilities, the default OPT is 15,000.
The fitness function is then used to calculate fitness as per
®):
Generation Fitness
= (Total Demand from the CMCLP function (®)
* OPT) * 100
The fitness function is identical in both the Genetic and
Monkey algorithms.

F. Termination Mechanism

The termination mechanism is identical for both implemented
algorithms. The algorithm is terminated when fitness reaches
100 or no better solution set has been found within a given
number of grace generations. The number of grace
generations for each algorithm is tuned and determined in the
next section to achieve the best fitness-to-run duration
performance. This number is a user-changeable value.

G. Tuning the Parameters

In order to tune the two algorithm parameters for each
algorithm (i.e., initial population size and grace generations
limit), we will use the Taguchi method. In the Taguchi
method, we test for all combinations of values within a wide

range of parameter values and determine the best values using
the best fitness yield.

We set the healthcare and candidate capacities to a constant
10,000 persons/day. This value is a realistically large number
for a COVID center that would challenge both algorithms and
ensure that neither would reach a 100 fitness value. It would
also ensure enough headroom for both algorithms to prove
their performance. A fitness value of 100 indicates a fitness
value equal to the optimal value. We chose parameters for the
test based on run duration feasibility. We tested the GA with
ranges of [200, 1000] and [20, 100] for the initial population
size and grace generations limit, respectively. We then tested
the MA with ranges [100, 500] and [2, 10] for the initial
population size and grace generations limit, respectively.

IV. RESULTS AND DISCUSSION

Fig. 7 shows the surf plots of the IPS, GGL, and fitness
values for the GA and MA, respectively. The peak is selected
in each plot, and the X (GGL) and Y (IPS) values are
displayed. For the GA, it was determined that 200 units and
100 generations were the optimal parameter values for the
IPS and GGL, respectively. For the MA, it was determined
that 100 units and 10 generations were the optimal parameter
values for the IPS and GGL, respectively.

Taguchi Results for the GA

(a) (b)
Fig. 7. Taguchi results for (a) GA and (b) MA

A. Statistical Analysis

Twenty runs were performed on each algorithm for
statistical analysis. Table 1 shows the experimental results.

TABLE L EXPERIMENTAL ALGORITHM RESULTS
Trial GA Fitness GA MA Fitness MA
Duration Duration

1 85.86 83.00 85.44 165.00
2 80.54 87.00 85.40 151.00
3 78.67 83.00 85.82 120.00
4 85.79 81.00 85.64 71.00
5 81.88 83.00 85.64 102.00
6 80.88 83.00 87.67 102.00
7 87.26 80.00 87.55 65.00
8 80.28 82.00 87.67 108.00
9 70.64 81.00 85.64 70.00
10 81.83 81.00 88.09 65.00
11 86.20 82.00 85.93 83.00
12 83.95 84.00 85.64 71.00
13 82.89 84.00 85.64 107.00
14 79.44 80.00 87.80 199.00




Trial GA Fitness GA MA Fitness MA
Duration Duration

15 84.54 81.00 87.13 65.00
16 81.94 82.00 85.64 71.00
17 83.47 82.00 87.67 152.00
18 83.90 81.00 87.80 71.00
19 83.13 80.00 87.44 83.00
20 83.02 85.00 85.88 70.00

Statistical analysis was performed on the data in Table 2
using Minitab. We first performed a Mann-Whitney test to
confirm statistical differences before proceeding with the
consistency analysis. Table 2 shows the test results for the
fitness values. Both P-values are below the significance level
of 0.05, indicating that the fitness values are statistically
different. This significance allows us to differentiate the
fitness performance of the two algorithms. Table 2 also shows
the test results for the duration values. Both P-values this time
are above the significance level, indicating that the run
duration times are statistically indifferent. It concludes that
the algorithms take a comparable amount of time to execute
many runs.

TABLE IL MANN-WHITNEY TEST RESULTS.
Condition Method W-Value P-
Value
Not adjusted for ties 250.00 0.000
For fitness values - -
Adjusted for ties 250.00 0.000
. Not adjusted for ties 402.00 0.839
For run duration values 2 2
Adjusted for ties 402.00 0.839

Table 3 shows the results of the descriptive analysis. The
parameters for consistency are range, variance, and standard
deviation. The GA has a fitness range of 16.620, while the
MA has a fitness range of 2.682, which proves the greater
consistency of the MA in comparison with the GA. The
variance and standard deviation for fitness recorded by GA
are 12.892 and 3.591, respectively, while the same values for
fitness recorded by the MA are 1.067 and 1.033, reaffirming
the statistical consistency of the fitness performance metric
for the MA. Finally, after comparing fitness averages, we can
conclude that the MA is more performant, with a 5.16%
higher average fitness, a variant that is 11 times lower
(indicating a more consistent fitness output), and a 21.03%
run duration penalty.

TABLE IIL DESCRIPTIVE STATISTICS FOR THE DATA

Varia Me StD Varia Minim Q1 Medi Q3 Maxi Ran

ble an ev nce um an mum ge
GA 823 3.5 12.89 70.636 80.6 82.9 843 87.256 16.6
Fitnes 06 91 2 28 57 92 20
s
GA 822 1.8 3.250 80.000 81.0 82.0 83.0 87.000 7.00
Durat 50 03 00 00 00 0
ion
MA 86.5 1.0 1.067 85.404 85.6 85.9 87.6 88.086 2.68
Fitnes 56 33 38 08 68 2
s
MA 99.5 39. 1540. 65.00 70.2 83.0 117. 199.00 134.
Durat 5 25 26 5 0 00 00

ion

Fig. 8 shows the fitness values of the genetic and the monkey
algorithms. It demonstrates that the MA values are more
stable than the GA.

Time Series Plot of GA Fitness, MA Fitness

90
pey . L) . T -
. o [ o L]
ss‘i - L B - -
\ / r
/ . [ N .
"‘ / ¢ 1%
] v I
% 8 h 1
o \ ’
1 I
1 J
\ J
1 9
75 |
\
|
1)
\
{
\f
i
70|
2 4 6 8 0 12 14 6 18 20
Index
Fig. 8. Fitness values plot.

V. CONCLUSION

The effort to minimize the spread of COVID is of
predominant importance. Increasing the availability of
COVID vaccination and/or testing centers is part of that
effort. This paper aims to develop an application with which
a user can leverage evolutionary algorithms to locate optimal
facilities where a COVID center can be built and to allocate
demand to those potential facilities. The Genetic and Monkey
algorithms were implemented and compared with each other
in light of their optimal values. Both algorithms were tested
using the same fitness function and termination mechanism
for comparison. The MA proved more performant and was
the better choice for this application.

For further research, the healthcare and candidate
facilities can be updated to a timeframe well after the start of
the COVID-19 pandemic, resulting in a more up-to-date
solution. The problem formulation can also be expanded to
include fixed location costs if the required datasets can be
found. Moreover, the objective function can be solved with
other choices of algorithms so long as they include an
exploration mechanism. Subsequently, the application can be
expanded to other emirates within the United Arab Emirates
or other countries or cities worldwide.
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