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Abstract— Diabetes mellitus (DM) is a metabolic disorder marked
by elevated blood sugar levels, posing serious health risks if
unmanaged. Advancements in artificial intelligence (AI) have
revolutionized healthcare, particularly in clinical decision support
systems (CDSS). This study utilized AutoGluon, an automated
machine learning technique, to develop a CDSS aimed at
improving DM diagnosis and predicting complications such as
Coronary Heart Disease and Neuropathy. The system,
implemented at Taipei Medical University Hospital, features a
user-friendly Graphical User Interface (GUI). Machine learning
models were trained on a dataset combining Iraqi and Chinese
populations, incorporating 13 critical features, including HbAlc,
age, urea, and triglyceride. Five classification models—
AutoGluon, Random Forest, LightGBM, CatBoost, and
XGBoost—were evaluated using metrics such as AUROC,
accuracy, Fl-score, recall, and precision. AutoGluon
outperformed other models, achieving F1-scores of 0.9648, 0.8642,
and 0.8619; recall values of 0.9552, 0.7609, and 0.8547; precision
scores of 0.9745, 0.9844, and 0.7692; accuracy rates of 0.9604,
0.9609, and 0.9110; and AUROC values of 0.9853, 0.9814, and
0.9838 across the outputs. SHAP analysis identified HbAlc as the
most significant predictor, confirming its critical role in DM
diagnosis and complication prediction. These findings support
AutoGluon as the optimal CDSS model, offering improved
accuracy and utility in clinical practice.
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I. INTRODUCTION

Diabetes mellitus, commonly known as diabetes, is a chronic
condition characterized by elevated blood sugar levels [1]. This
occurs when the body either fails to produce sufficient insulin,
cannot produce insulin at all, or is unable to use the insulin it
produces effectively.

When diabetes progresses unfavorably, whether due to
negligence or simply as part of its natural course, various
complications tend to unfold [2]. Complications of diabetes can
be classified into “acute” and “chronic”. Acute complications of
diabetes, such as hyperglycemia, hypoglycemia, and
ketoacidosis, are direct outcomes of the disruption of the body’s
metabolism. Chronic diabetes complications result from
elevated blood glucose levels, which deal accumulated damage
over long periods of time. This, in turn, leads to microvascular
and macrovascular complications, foot ailments, and other
diseases including nephropathy, retinopathy, and neuropathy.
Given the above, it is readily apparent that diabetes mellitus is
not a disorder to be treated lightly. Since there is currently no
known cure for diabetes, it is best to take preventive measures to



detect and prevent the onset of the disease, eliminating even the
slightest chance of its progression.

The global prevalence of diabetes among individuals aged
20-79 in 2021 was estimated at 10.5% (536.6 million people),
and this is projected to rise to 12.2% (783.2 million) by 2045 [3].
According to the latest Diabetes Atlas of Taiwan, the prevalence
rate has reached a new high of 10.6%, surpassing neighboring
countries such as Japan, South Korea, and Hong Kong. The total
number of patients is expected to exceed 3 million, with the
disease becoming more common among younger populations.
The prevalence among the labor force under 40 has increased
from 0.77% to 0.98%. Experts warn that diabetes is being
diagnosed earlier, and its complications are appearing sooner,
which could significantly impact Taiwan’s workforce. The
healthcare burden related to diabetes has been rising year by year,
posing a substantial challenge to Taiwan's competitiveness.

Artificial intelligence (Al) is increasingly used in diabetes
management, improving patient care and medical workflows.
For instance, Al models can predict diabetes risk [4], allowing
early intervention to delay or prevent disease progression. Al is
also applied to blood sugar prediction [5], using deep learning to
forecast next-day levels based on diet, exercise, and sleep
patterns, helping patients maintain stable glucose levels through
lifestyle and medication adjustments.

In recent years, some approaches for diabetes and its
complications prediction have been proposed and documented.
The first article [6] contributes to developing ML models
specifically tailored to predict the risk of transitioning from
prediabetes to type 2 diabetes. It analyzed data from 13,943
individuals with prediabetes and integrated various predictors,
such as age, body mass index (BMI), blood glucose, and HbAlc,
to create a simplified prediction model suitable for clinical
practice. The model achieved an AUROC of 0.753,
demonstrating good predictive performance and highlighting its
potential for early identification and intervention in clinical
settings. The second article [7] employed the XGBoost
algorithm to construct predictive models for different diabetes
complications, including nephropathy, retinopathy,
cardiovascular disease, and others. The study utilized big data
from electronic medical records to make stratified predictions in
the short term (within 2 years) and medium-term (3 to 5 years).
The predictive accuracy and AUROC values for all
complications exceeded 0.80, with nephropathy achieving an
AUC of 0.97, demonstrating the powerful capabilities of
XGBoost in analyzing complex, multidimensional data.

In this paper, we present an automated learning approach
using AutoGluon [8] to train models efficiently and accurately.
We propose an Al-based Clinical Decision Support System
(CDSS) with a user-friendly graphical user interface (GUI)
designed to assist doctors in classifying diabetes conditions and
predicting diabetic complications, thereby reducing the
likelihood of misdiagnosis. The main contributions of this paper
include:

e Utilizing AutoGluon to train a multi-output
classification model. The model produces three outputs:
CLASS (multiclass: Diabetes, Pre-diabetes, and Non-
diabetes), Coronary Heart Disease (CHD) (binary: Yes
or No), and Neuropathy (NEUR) (binary: Yes or No).

Coronary Heart Disease and Neuropathy were chosen as
outputs because they are common complications
associated with diabetes and have a high prevalence in
Taiwan [9].

e Conducting a comparative analysis of AutoGluon
against other popular machine learning models [10] to
identify the best-performing model for integration into
the GUL.

e Designing a user-friendly GUI to enhance accessibility
and usability.

II. DATA AND METHODOLOGY

The proposed methodology consists of four stages. The first
stage focuses on exploratory data analysis (EDA) to understand
and summarize the dataset. In the second stage, data
preprocessing is performed, where raw data is cleaned and
transformed into a format suitable for analysis. The third stage
involves experimentation to identify the best-performing model.
Finally, in the fourth stage, the selected model is integrated into
a graphical user interface (GUI). Fig. 1 illustrates the block
diagram summarizing the entire process.
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Figure 1. Block diagram for the proposed methodology.

A. Data Collection, , Description, and Exploratory data
analysis

The data were collected from societies in Iraq and China,
specifically from the Specialized Center for Endocrinology and
Diabetes at Al-Kindy Teaching Hospital [11], as well as
Shanghai East Hospital and Shanghai Fourth People’s Hospital
[12]. In this research, we combined these data and ensured that



no identifiable private information was included. The combined
dataset consists of 13 features, comprising 281 observations
after duplicate entries were removed and missing values were
addressed using mean imputation, as shown in TABLE I. HbAlc
is measured as a percentage (%), while age is measured in years.
Gender and alcohol-drinker are categorical variables. Cr is
measured in pumol/L, and BMI is measured in kg/m?. All other
features, except age, gender, alcohol-drinker, Cr, BMI, and
HbAIc, are measured in mmol/L. The dataset is imbalanced: out
of the 281 labels, 125 are diabetic, 103 are non-diabetic, and 53
are pre-diabetic. Coronary heart disease is observed in 32
diabetic cases, and neuropathy occurs in 31 diabetic cases.

TABLE L THE FEATURES IN THE DATASET AND THEIR DESCRIPTION
A Statistics
Feature Description
Mean + Std Variance
Age Measured in years 51.10 £ 13.80 190.00
Urea Urea measured in mmol/L 520+2.18 4.75
Cr Creatinine ratio in pmol/L 64.00 + 28.40 805.00
HbAlc Glycated Hemoglobin (%) 6.80£2.68 7.19
Chol Cholesterol in mmol/L 4.37+0.90 0.81
TG Triglyceride in mmol/L 1.75+1.02 1.04
HDL High density lipoprotein 1184042 0.18
(mmol/L)
LDL Low density lipoprotein 280+ 0.95 091
(mmol/L)
VLDL Very low density lipoprotein 1.00+£092 084
(mmol/L)
Body mass index (weight in
BMI ke/height in m"2) 23.30+2.81 7.89
Smoking | Smoking History (pack year) 2.00£9.06 82.00

B. Data Preprocessing

The preprocessing of the dataset involved several steps.
First, the target variable, consisting of three classes — "Non-
Diabetes", "Pre-Diabetes", and "Diabetes" — was encoded into
numerical labels 0, 1, and 2, respectively. Coronary heart disease
was encoded as 0 for "No" and 1 for "Yes," and neuropathy was
encoded similarly. Next, all numerical features were
standardized to ensure they were on the same scale.
Additionally, the categorical feature "Gender" was encoded,
with females labeled as 0 and males as 1, while "Alcohol-
drinker" was encoded as 0 for "No" and 1 for "Yes".

When splitting the dataset into training and testing sets (7:3
ratio), we used a stratified sampling method based on multiple
fields to ensure that the proportions of these fields remain
consistent across both datasets. Specifically, we first divided the
data based on the "diabetes classification" (CLASS). Then, we
combined the fields that required stratification (e.g., the presence
of complications) into a new "stratification key" (e.g., 1-0-1).
Using this stratification key, we applied SMOTE (Synthetic
Minority Oversampling Technique) [13] to generate additional
samples and selected the required number of samples from the
augmented data. This approach helps to prevent imbalances in
data distribution, ensuring that the model is trained on a more
representative dataset. In simpler terms, it ensures that the

training and testing datasets maintain consistent proportions,
improving the model's accuracy and robustness.

C. Experiment

In our study, we utilized AutoGluon, an AutoML framework
created by Amazon Web Services, to train our model.
AutoGluon simplifies the workflow of model selection, training,
and deployment, making the machine learning process more
efficient and accessible. Its primary goal is to make advanced
machine learning techniques accessible to a broad range of
developers without requiring deep expertise in underlying
technical details. Key features of AutoGluon include:

e Automated Feature Handling: Simplifies data
preparation by automating feature generation, selection,
and transformation, enhancing model performance.

e Model Integration with Stacking and Bagging:
Combines multiple models effectively using stacking
(meta-models for optimal prediction integration) and
bagging (aggregating predictions from diverse data
subsets), improving accuracy, robustness, and
generalization.

e Optimized Efficiency: Designed to work within limited
computational resources, it efficiently produces high-
quality models, adapting to predefined time and
resource constraints while maintaining performance.

By leveraging both stacking and bagging for robust
ensemble learning, it enhances predictive performance while
maintaining computational efficiency. Additionally, we trained
four individual machine learning models outside of AutoGluon.
For the multi-output classification task, we selected CatBoost,
XGBoost, LightGBM, and Random Forest as the individual
models. A comparison of model performance will be discussed
in the next section.

D. Integration Best Model to GUI

The GUI was developed using the Python open-source
package PyQt5. Fig. 2 and Fig. 3 illustrate the functionality of
the GUI. Figure 2 displays the input section, where the doctor
inputs the relevant feature values and presses the "Evaluate"
button to obtain the results. Fig. 3 shows the output in two
windows: one visualizes the input data and displays the diabetes
classification result along with its probability, while the other
provides information about complications. If complications are
detected, they are highlighted in the red area. Additionally, the
doctor can save the patient’s data for further training to enhance
the model's performance.
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Figure 2. GUI designed for Al-Based CDSS. Input page.
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Figure 3. GUI designed for AI-Based CDSS. Execution Result page and
Save Data Function.

III. RESULT AND DISCUSSION

TABLE 1II, TABLE III, and TABLE IV present the
comparative performance of nine different parameter
combinations of the AutoGluon model across five key metrics:
Fl-score, Recall, Precision, Accuracy, and Area Under the
Receiver Operating Characteristic Curve (AUROC). Notably,
the AutoGluon model demonstrates superior performance across
all outputs (CLASS, CHD, and NEUR) at a stack level of 3 and
a bag fold of 3, achieving the highest F1-scores (0.9648, 0.8642,
and 0.8619), Recall (0.9552, 0.7609, and 0.8547), Precision
(0.9745, 0.9844, and 0.7692), Accuracy (0.9604, 0.9609, and
0.9110), and AUROC (0.9853, 0.9814, and 0.9838). While the
accuracy metric is slightly lower compared to the model
configuration with a stack level of 1 and a bag fold of 3, this
parameter combination showcases exceptional performance,
particularly in NEUR prediction. Overall, all twelve different
parameter combinations of the AutoGluon model demonstrate
consistently high scores across the five evaluation metrics. This
highlights the robust performance of the AutoGluon model and
confirms its reliability in automating the prediction tasks for
CLASS, CHD, and NEUR. The consistently strong results
across various metrics indicate that AutoGluon is highly
effective in these complex classification scenarios, providing
confidence in its use for automating such assessments.

TABLE IL CLASS PERFORMANCE OF THE PREDICTION MODELS
GENERATED BY AUTOGLUON WITH TWELVE PARAMETER COMBINATIONS

1 3 0.9604 0.9648 0.9745 0.9552 0.9803
1 4 0.9322 0.9425 0.9531 0.9322 0.9512
1 5 0.9557 0.9528 0.9611 0.9447 0.9722
1 10 0.9557 0.9534 0.9622 0.9447 0.9710
2 3 0.9604 0.9648 0.9745 0.9552 0.9823
2 4 0.9322 0.9425 0.9531 0.9322 0.9536
2 5 0.9568 0.9549 0.9622 0.9477 0.9699
2 10 0.9557 0.9534 0.9622 0.9447 0.9730
3 3 0.9604 0.9648 0.9745 0.9552 0.9853
3 4 0.9348 0.9425 0.9531 0.9322 0.9548
3 5 0.9422 0.9528 0.9611 0.9447 0.9620
3 10 0.9557 0.9534 0.9622 0.9447 0.9712
TABLE III. CORONARY HEART DISEASE PERFORMANCE OF THE
PREDICTION MODELS GENERATED BY AUTOGLUON WITH TWELVE PARAMETER
COMBINATIONS
1 3 0.9430 0.7895 0.9801 0.6521 0.9668
1 4 0.9288 0.7222 0.9801 0.5652 0.9790
1 5 0.9217 0.6857 0.9801 0.5217 0.9722
1 10 0.9323 0.7532 0.9355 0.6304 0.9782
2 3 0.9110 0.6268 0.9802 0.4565 0.9552
2 4 0.8968 0.5797 0.8696 0.4348 0.9711
2 5 0.8968 0.6329 0.7576 0.5435 0.9152
2 10 0.9075 0.6286 0.9167 0.4783 0.9627
3 3 0.9609 0.8642 0.9844 0.7609 0.9814
3 4 0.8968 0.5915 0.8400 0.4565 0.7546
3 5 0.9395 0.8000 0.8718 0.7391 0.9736
3 10 0.9253 0.7470 0.8378 0.6739 0.9005
TABLE 1IV. NEUROPATHY PERFORMANCE OF THE PREDICTION MODELS
GENERATED BY AUTOGLUON WITH TWELVE PARAMETER COMBINATIONS
1 3 0.9271 0.8036 0.7627 0.8491 0.9801
1 4 0.8968 0.7521 0.6875 0.8302 0.9242
1 5 0.8292 0.4419 0.5756 0.3585 0.9097
1 10 0.8861 0.6800 0.7234 0.6415 0.9243
2 3 0.8861 0.6734 0.7333 0.6226 0.9435
2 4 0.8790 0.6667 0.6939 0.6415 0.9211




2 5 0.9075 0.7451 0.7755 0.7170 0.9520
2 10 0.8932 0.7170 0.7170 0.7170 0.9336
3 3 0.9110 0.8619 0.7692 0.8547 0.9838
3 4 0.9074 | 0.7451 0.7755 0.7170 0.9469
3 5 0.8683 0.6021 0.7000 0.5283 0.9522
3 10 0.8968 0.7129 | 0.7500 | 0.6792 0.9265

Fig. 4 presents a comparative analysis of five key metrics
across different machine learning models for the three outputs.
In the CLASS chart (Fig. 4 (a)), AutoGluon demonstrates the
highest performance across all metrics, underscoring its
superiority in handling general classification tasks. While other
models perform reasonably well, their performance varies across
metrics. For CHD (Fig. 4 (b)), the metrics reveal a sharper
distinction between the models. AutoGluon excels, particularly
in Precision and AUROC, highlighting its strong ability to
minimize false positives and deliver robust classification for this
specific condition. Models like CatBoost and Random Forest
show competitive performance but do not match AutoGluon's
overall effectiveness. In the NEUR chart (Fig. 4 (c)), AutoGluon
maintains its lead, particularly in AUROC and Recall—critical
metrics for identifying true positives. However, there is a
noticeable performance gap among the other models. Random
Forest and LightGBM, in particular, show lower scores in
Precision and Fl-score, indicating challenges in effectively
handling this condition. Overall, AutoGluon consistently
demonstrates superior performance, outperforming all other
models across the three outputs.
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Figure 4. Output Performance of AutoGluon and baseline models.

Despite the high performance of the AutoGluon model, its
lack of interpretability remains a challenge. Often called "black
boxes," such models make predictions based on complex data
relationships that are difficult for humans to understand. This
opacity can limit trust and acceptance, particularly in healthcare,
where understanding the reasoning behind predictions is critical.
Shapley Additive Explanations (SHAP) [14], based on
cooperative game theory, addresses this issue by fairly
attributing the contribution of each feature to the model's
predictions. Using SHAP, we can interpret how features
influence diabetes predictions, making the decision-making
process transparent and aligning with healthcare professionals'
need to validate predictions against their expertise.

SHAP analysis showed that, for diabetes prediction, HbAlc
is the most influential feature. Higher HbA ¢ leads to a greater
likelihood of having diabetes [15], while other factors such as
age, cholesterol, urea, VLDL, smoking, and alcohol
consumption have minimal overall impact. As for complications,
HbA 1c exhibits the same pattern as in the previous classification
[16]. Regarding other features, there appears to be a difference
in their relative importance. In the case of CHD classification,
larger HDL values correspond to a lower risk [17], whereas TGL
[18] and Age follow the opposite trend. For neuropathy, alcohol
consumption [19] and smoking levels strongly affect the
likelihood of developing the condition—higher alcohol intake
and greater smoking exposure increase the risk.
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In conclusion, the SHAP summary plots underscore the
significance and relationships of the features used in training the
AutoGluon models. These findings align with existing research
on the associations between the features and diabetes and its
complications, reinforcing the robustness of the model
predictions.

IV. CONCLUSION

In our research, AutoGluon proved to be the most suitable
machine learning model for our CDSS with a GUIL By
leveraging SHAP values to explain the model's decision-making
process, we ensure that the system is not only accurate but also
interpretable and trustworthy—key factors for gaining clinician
confidence and facilitating its adoption. Moving forward, we
aim to enhance the robustness of our model by incorporating
additional clinical data through Institutional Review Board
approval, enabling better training and external validation.
Implementing a CDSS in real-world clinical settings is not
without its challenges. One major hurdle is the training required
for healthcare providers, who must adapt to new workflows and
decision-making processes introduced by the system. Tailored
training programs and intuitive user interfaces are essential to
reduce the learning curve and support effective adoption.
Another critical challenge lies in the integration of CDSS with
existing EHR systems. Achieving seamless interoperability
requires standardized data formats, robust IT infrastructure, and
compliance with data privacy regulations such as GDPR and
HIPAA. Addressing these issues calls for close collaboration
among healthcare institutions, EHR vendors, and regulatory
bodies to create scalable and secure solutions. Despite these
challenges, our findings highlight the immense potential of

combining automated machine learning models with
interpretable tools like SHAP values. This approach offers a
promising pathway to building a robust, trustworthy, and
efficient CDSS. With strategic planning, ongoing refinements,
and continued collaboration with clinical stakeholders, we are
confident that this system can significantly enhance clinical
workflows, support data-driven decision-making, and ultimately
improve patient outcomes.
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