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Abstract— Diabetes mellitus (DM) is a metabolic disorder marked 

by elevated blood sugar levels, posing serious health risks if 

unmanaged. Advancements in artificial intelligence (AI) have 

revolutionized healthcare, particularly in clinical decision support 

systems (CDSS). This study utilized AutoGluon, an automated 

machine learning technique, to develop a CDSS aimed at 

improving DM diagnosis and predicting complications such as 

Coronary Heart Disease and Neuropathy. The system, 

implemented at Taipei Medical University Hospital, features a 

user-friendly Graphical User Interface (GUI). Machine learning 

models were trained on a dataset combining Iraqi and Chinese 

populations, incorporating 13 critical features, including HbA1c, 

age, urea, and triglyceride. Five classification models—

AutoGluon, Random Forest, LightGBM, CatBoost, and 

XGBoost—were evaluated using metrics such as AUROC, 

accuracy, F1-score, recall, and precision. AutoGluon 

outperformed other models, achieving F1-scores of 0.9648, 0.8642, 

and 0.8619; recall values of 0.9552, 0.7609, and 0.8547; precision 

scores of 0.9745, 0.9844, and 0.7692; accuracy rates of 0.9604, 

0.9609, and 0.9110; and AUROC values of 0.9853, 0.9814, and 

0.9838 across the outputs. SHAP analysis identified HbA1c as the 

most significant predictor, confirming its critical role in DM 

diagnosis and complication prediction. These findings support 

AutoGluon as the optimal CDSS model, offering improved 

accuracy and utility in clinical practice. 
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I.  INTRODUCTION 

Diabetes mellitus, commonly known as diabetes, is a chronic 
condition characterized by elevated blood sugar levels [1]. This 
occurs when the body either fails to produce sufficient insulin, 
cannot produce insulin at all, or is unable to use the insulin it 
produces effectively. 

When diabetes progresses unfavorably, whether due to 
negligence or simply as part of its natural course, various 
complications tend to unfold [2]. Complications of diabetes can 
be classified into “acute” and “chronic”. Acute complications of 
diabetes, such as hyperglycemia, hypoglycemia, and 
ketoacidosis, are direct outcomes of the disruption of the body’s 
metabolism. Chronic diabetes complications result from 
elevated blood glucose levels, which deal accumulated damage 
over long periods of time. This, in turn, leads to microvascular 
and macrovascular complications, foot ailments, and other 
diseases including nephropathy, retinopathy, and neuropathy. 
Given the above, it is readily apparent that diabetes mellitus is 
not a disorder to be treated lightly. Since there is currently no 
known cure for diabetes, it is best to take preventive measures to 



detect and prevent the onset of the disease, eliminating even the 
slightest chance of its progression. 

The global prevalence of diabetes among individuals aged 
20–79 in 2021 was estimated at 10.5% (536.6 million people), 
and this is projected to rise to 12.2% (783.2 million) by 2045 [3]. 
According to the latest Diabetes Atlas of Taiwan, the prevalence 
rate has reached a new high of 10.6%, surpassing neighboring 
countries such as Japan, South Korea, and Hong Kong. The total 
number of patients is expected to exceed 3 million, with the 
disease becoming more common among younger populations. 
The prevalence among the labor force under 40 has increased 
from 0.77% to 0.98%. Experts warn that diabetes is being 
diagnosed earlier, and its complications are appearing sooner, 
which could significantly impact Taiwan’s workforce. The 
healthcare burden related to diabetes has been rising year by year, 
posing a substantial challenge to Taiwan's competitiveness. 

Artificial intelligence (AI) is increasingly used in diabetes 
management, improving patient care and medical workflows. 
For instance, AI models can predict diabetes risk [4], allowing 
early intervention to delay or prevent disease progression. AI is 
also applied to blood sugar prediction [5], using deep learning to 
forecast next-day levels based on diet, exercise, and sleep 
patterns, helping patients maintain stable glucose levels through 
lifestyle and medication adjustments. 

In recent years, some approaches for diabetes and its 
complications prediction have been proposed and documented. 
The first article [6] contributes to developing ML models 
specifically tailored to predict the risk of transitioning from 
prediabetes to type 2 diabetes. It analyzed data from 13,943 
individuals with prediabetes and integrated various predictors, 
such as age, body mass index (BMI), blood glucose, and HbA1c, 
to create a simplified prediction model suitable for clinical 
practice. The model achieved an AUROC of 0.753, 
demonstrating good predictive performance and highlighting its 
potential for early identification and intervention in clinical 
settings. The second article [7] employed the XGBoost 
algorithm to construct predictive models for different diabetes 
complications, including nephropathy, retinopathy, 
cardiovascular disease, and others. The study utilized big data 
from electronic medical records to make stratified predictions in 
the short term (within 2 years) and medium-term (3 to 5 years). 
The predictive accuracy and AUROC values for all 
complications exceeded 0.80, with nephropathy achieving an 
AUC of 0.97, demonstrating the powerful capabilities of 
XGBoost in analyzing complex, multidimensional data. 

In this paper, we present an automated learning approach 
using AutoGluon [8] to train models efficiently and accurately. 
We propose an AI-based Clinical Decision Support System 
(CDSS) with a user-friendly graphical user interface (GUI) 
designed to assist doctors in classifying diabetes conditions and 
predicting diabetic complications, thereby reducing the 
likelihood of misdiagnosis. The main contributions of this paper 
include: 

• Utilizing AutoGluon to train a multi-output 
classification model. The model produces three outputs: 
CLASS (multiclass: Diabetes, Pre-diabetes, and Non-
diabetes), Coronary Heart Disease (CHD) (binary: Yes 
or No), and Neuropathy (NEUR) (binary: Yes or No). 

Coronary Heart Disease and Neuropathy were chosen as 
outputs because they are common complications 
associated with diabetes and have a high prevalence in 
Taiwan [9]. 

• Conducting a comparative analysis of AutoGluon 
against other popular machine learning models [10] to 
identify the best-performing model for integration into 
the GUI. 

• Designing a user-friendly GUI to enhance accessibility 
and usability. 

II. DATA AND METHODOLOGY 

The proposed methodology consists of four stages. The first 
stage focuses on exploratory data analysis (EDA) to understand 
and summarize the dataset. In the second stage, data 
preprocessing is performed, where raw data is cleaned and 
transformed into a format suitable for analysis. The third stage 
involves experimentation to identify the best-performing model. 
Finally, in the fourth stage, the selected model is integrated into 
a graphical user interface (GUI). Fig. 1 illustrates the block 
diagram summarizing the entire process. 

 

Figure 1.  Block diagram for the proposed methodology. 

A. Data Collection, , Description, and Exploratory data 

analysis 

The data were collected from societies in Iraq and China, 
specifically from the Specialized Center for Endocrinology and 
Diabetes at Al-Kindy Teaching Hospital [11], as well as 
Shanghai East Hospital and Shanghai Fourth People’s Hospital 
[12]. In this research, we combined these data and ensured that 



no identifiable private information was included. The combined 
dataset consists of 13 features, comprising 281 observations 
after duplicate entries were removed and missing values were 
addressed using mean imputation, as shown in TABLE I. HbA1c 
is measured as a percentage (%), while age is measured in years. 
Gender and alcohol-drinker are categorical variables. Cr is 
measured in µmol/L, and BMI is measured in kg/m². All other 
features, except age, gender, alcohol-drinker, Cr, BMI, and 
HbA1c, are measured in mmol/L. The dataset is imbalanced: out 
of the 281 labels, 125 are diabetic, 103 are non-diabetic, and 53 
are pre-diabetic. Coronary heart disease is observed in 32 
diabetic cases, and neuropathy occurs in 31 diabetic cases. 

TABLE I.  THE FEATURES IN THE DATASET AND THEIR DESCRIPTION 

Feature Description 
Statistics 

Mean ± Std Variance 

Age Measured in years 51.10 ± 13.80 190.00 

Urea Urea measured in mmol/L 5.20 ± 2.18 4.75 

Cr Creatinine ratio in µmol/L 64.00 ± 28.40 805.00 

HbA1c Glycated Hemoglobin (%) 6.80 ± 2.68 7.19 

Chol Cholesterol in mmol/L 4.37 ± 0.90 0.81 

TG Triglyceride in mmol/L 1.75 ± 1.02 1.04 

HDL 
High density lipoprotein 

(mmol/L) 
1.18 ± 0.42 0.18 

LDL 
Low density lipoprotein 

(mmol/L) 
2.80 ± 0.95 0.91 

VLDL 
Very low density lipoprotein 

(mmol/L) 
1.00 ± 0.92 0.84 

BMI 
Body mass index (weight in 

kg/height in m^2) 
23.30 ± 2.81 7.89 

Smoking Smoking History (pack year) 2.00 ± 9.06 82.00 

B. Data Preprocessing 

The preprocessing of the dataset involved several steps. 
First, the target variable, consisting of three classes — ''Non-
Diabetes'', ''Pre-Diabetes'', and ''Diabetes'' — was encoded into 
numerical labels 0, 1, and 2, respectively. Coronary heart disease 
was encoded as 0 for "No" and 1 for "Yes," and neuropathy was 
encoded similarly. Next, all numerical features were 
standardized to ensure they were on the same scale. 
Additionally, the categorical feature "Gender" was encoded, 
with females labeled as 0 and males as 1, while "Alcohol-
drinker" was encoded as 0 for "No" and 1 for "Yes". 

When splitting the dataset into training and testing sets (7:3 
ratio), we used a stratified sampling method based on multiple 
fields to ensure that the proportions of these fields remain 
consistent across both datasets. Specifically, we first divided the 
data based on the "diabetes classification" (CLASS). Then, we 
combined the fields that required stratification (e.g., the presence 
of complications) into a new "stratification key" (e.g., 1-0-1). 
Using this stratification key, we applied SMOTE (Synthetic 
Minority Oversampling Technique) [13] to generate additional 
samples and selected the required number of samples from the 
augmented data. This approach helps to prevent imbalances in 
data distribution, ensuring that the model is trained on a more 
representative dataset. In simpler terms, it ensures that the 

training and testing datasets maintain consistent proportions, 
improving the model's accuracy and robustness. 

C. Experiment 

In our study, we utilized AutoGluon, an AutoML framework 
created by Amazon Web Services, to train our model. 
AutoGluon simplifies the workflow of model selection, training, 
and deployment, making the machine learning process more 
efficient and accessible. Its primary goal is to make advanced 
machine learning techniques accessible to a broad range of 
developers without requiring deep expertise in underlying 
technical details. Key features of AutoGluon include: 

• Automated Feature Handling: Simplifies data 
preparation by automating feature generation, selection, 
and transformation, enhancing model performance. 

• Model Integration with Stacking and Bagging: 
Combines multiple models effectively using stacking 
(meta-models for optimal prediction integration) and 
bagging (aggregating predictions from diverse data 
subsets), improving accuracy, robustness, and 
generalization. 

• Optimized Efficiency: Designed to work within limited 
computational resources, it efficiently produces high-
quality models, adapting to predefined time and 
resource constraints while maintaining performance. 

By leveraging both stacking and bagging for robust 
ensemble learning, it enhances predictive performance while 
maintaining computational efficiency. Additionally, we trained 
four individual machine learning models outside of AutoGluon. 
For the multi-output classification task, we selected CatBoost, 
XGBoost, LightGBM, and Random Forest as the individual 
models. A comparison of model performance will be discussed 
in the next section. 

D. Integration Best Model to GUI 

The GUI was developed using the Python open-source 
package PyQt5. Fig. 2 and Fig. 3 illustrate the functionality of 
the GUI. Figure 2 displays the input section, where the doctor 
inputs the relevant feature values and presses the "Evaluate" 
button to obtain the results. Fig. 3 shows the output in two 
windows: one visualizes the input data and displays the diabetes 
classification result along with its probability, while the other 
provides information about complications. If complications are 
detected, they are highlighted in the red area. Additionally, the 
doctor can save the patient’s data for further training to enhance 
the model's performance. 

 

Figure 2.  GUI designed for AI-Based CDSS. Input page. 



 

 

Figure 3.  GUI designed for AI-Based CDSS. Execution Result page and 

Save Data Function. 

III. RESULT AND DISCUSSION 

TABLE II, TABLE III, and TABLE IV present the 
comparative performance of nine different parameter 
combinations of the AutoGluon model across five key metrics: 
F1-score, Recall, Precision, Accuracy, and Area Under the 
Receiver Operating Characteristic Curve (AUROC). Notably, 
the AutoGluon model demonstrates superior performance across 
all outputs (CLASS, CHD, and NEUR) at a stack level of 3 and 
a bag fold of 3, achieving the highest F1-scores (0.9648, 0.8642, 
and 0.8619), Recall (0.9552, 0.7609, and 0.8547), Precision 
(0.9745, 0.9844, and 0.7692), Accuracy (0.9604, 0.9609, and 
0.9110), and AUROC (0.9853, 0.9814, and 0.9838). While the 
accuracy metric is slightly lower compared to the model 
configuration with a stack level of 1 and a bag fold of 3, this 
parameter combination showcases exceptional performance, 
particularly in NEUR prediction. Overall, all twelve different 
parameter combinations of the AutoGluon model demonstrate 
consistently high scores across the five evaluation metrics. This 
highlights the robust performance of the AutoGluon model and 
confirms its reliability in automating the prediction tasks for 
CLASS, CHD, and NEUR. The consistently strong results 
across various metrics indicate that AutoGluon is highly 
effective in these complex classification scenarios, providing 
confidence in its use for automating such assessments. 

TABLE II.  CLASS PERFORMANCE OF THE PREDICTION MODELS 

GENERATED BY AUTOGLUON WITH TWELVE PARAMETER COMBINATIONS 

Stack-

level 

Bag-

fold 

Accur

acy 

F1-

score 

Precisi

on 
Recall AUROC 

1 3 0.9604 0.9648 0.9745 0.9552 0.9803 

1 4 0.9322 0.9425 0.9531 0.9322 0.9512 

1 5 0.9557 0.9528 0.9611 0.9447 0.9722 

1 10 0.9557 0.9534 0.9622 0.9447 0.9710 

2 3 0.9604 0.9648 0.9745 0.9552 0.9823 

2 4 0.9322 0.9425 0.9531 0.9322 0.9536 

2 5 0.9568 0.9549 0.9622 0.9477 0.9699 

2 10 0.9557 0.9534 0.9622 0.9447 0.9730 

3 3 0.9604 0.9648 0.9745 0.9552 0.9853 

3 4 0.9348 0.9425 0.9531 0.9322 0.9548 

3 5 0.9422 0.9528 0.9611 0.9447 0.9620 

3 10 0.9557 0.9534 0.9622 0.9447 0.9712 

TABLE III.  CORONARY HEART DISEASE PERFORMANCE OF THE 

PREDICTION MODELS GENERATED BY AUTOGLUON WITH TWELVE PARAMETER 

COMBINATIONS 

Stack-

level 

Bag-

fold 

Accur

acy 

F1-

score 

Precisi

on 
Recall AUROC 

1 3 0.9430 0.7895 0.9801 0.6521 0.9668 

1 4 0.9288 0.7222 0.9801 0.5652 0.9790 

1 5 0.9217 0.6857 0.9801 0.5217 0.9722 

1 10 0.9323 0.7532 0.9355 0.6304 0.9782 

2 3 0.9110 0.6268 0.9802 0.4565 0.9552 

2 4 0.8968 0.5797 0.8696 0.4348 0.9711 

2 5 0.8968 0.6329 0.7576 0.5435 0.9152 

2 10 0.9075 0.6286 0.9167 0.4783 0.9627 

3 3 0.9609 0.8642 0.9844 0.7609 0.9814 

3 4 0.8968 0.5915 0.8400 0.4565 0.7546 

3 5 0.9395 0.8000 0.8718 0.7391 0.9736 

3 10 0.9253 0.7470 0.8378 0.6739 0.9005 

TABLE IV.  NEUROPATHY PERFORMANCE OF THE PREDICTION MODELS 

GENERATED BY AUTOGLUON WITH TWELVE PARAMETER COMBINATIONS 

Stack-

level 

Bag-

fold 

Accur

acy 

F1-

score 

Precisi

on 
Recall AUROC 

1 3 0.9271 0.8036 0.7627 0.8491 0.9801 

1 4 0.8968 0.7521 0.6875 0.8302 0.9242 

1 5 0.8292 0.4419 0.5756 0.3585 0.9097 

1 10 0.8861 0.6800 0.7234 0.6415 0.9243 

2 3 0.8861 0.6734 0.7333 0.6226 0.9435 

2 4 0.8790 0.6667 0.6939 0.6415 0.9211 



Stack-

level 

Bag-

fold 

Accur

acy 

F1-

score 

Precisi

on 
Recall AUROC 

2 5 0.9075 0.7451 0.7755 0.7170 0.9520 

2 10 0.8932 0.7170 0.7170 0.7170 0.9336 

3 3 0.9110 0.8619 0.7692 0.8547 0.9838 

3 4 0.9074 0.7451 0.7755 0.7170 0.9469 

3 5 0.8683 0.6021 0.7000 0.5283 0.9522 

3 10 0.8968 0.7129 0.7500 0.6792 0.9265 

 

Fig. 4 presents a comparative analysis of five key metrics 
across different machine learning models for the three outputs. 
In the CLASS chart (Fig. 4 (a)), AutoGluon demonstrates the 
highest performance across all metrics, underscoring its 
superiority in handling general classification tasks. While other 
models perform reasonably well, their performance varies across 
metrics. For CHD (Fig. 4 (b)), the metrics reveal a sharper 
distinction between the models. AutoGluon excels, particularly 
in Precision and AUROC, highlighting its strong ability to 
minimize false positives and deliver robust classification for this 
specific condition. Models like CatBoost and Random Forest 
show competitive performance but do not match AutoGluon's 
overall effectiveness. In the NEUR chart (Fig. 4 (c)), AutoGluon 
maintains its lead, particularly in AUROC and Recall—critical 
metrics for identifying true positives. However, there is a 
noticeable performance gap among the other models. Random 
Forest and LightGBM, in particular, show lower scores in 
Precision and F1-score, indicating challenges in effectively 
handling this condition. Overall, AutoGluon consistently 
demonstrates superior performance, outperforming all other 
models across the three outputs. 

 

(a) CLASS Metrics Comparison 

 

(b) Coronary heart disease Metrics Comparison 

 

(c) Neuropathy Metrics Comparison 

Figure 4.  Output Performance of AutoGluon and baseline models. 

Despite the high performance of the AutoGluon model, its 
lack of interpretability remains a challenge. Often called "black 
boxes," such models make predictions based on complex data 
relationships that are difficult for humans to understand. This 
opacity can limit trust and acceptance, particularly in healthcare, 
where understanding the reasoning behind predictions is critical. 
Shapley Additive Explanations (SHAP) [14], based on 
cooperative game theory, addresses this issue by fairly 
attributing the contribution of each feature to the model's 
predictions. Using SHAP, we can interpret how features 
influence diabetes predictions, making the decision-making 
process transparent and aligning with healthcare professionals' 
need to validate predictions against their expertise. 

SHAP analysis showed that, for diabetes prediction, HbA1c 
is the most influential feature. Higher HbA1c leads to a greater 
likelihood of having diabetes [15], while other factors such as 
age, cholesterol, urea, VLDL, smoking, and alcohol 
consumption have minimal overall impact. As for complications, 
HbA1c exhibits the same pattern as in the previous classification 
[16]. Regarding other features, there appears to be a difference 
in their relative importance. In the case of CHD classification, 
larger HDL values correspond to a lower risk [17], whereas TGL 
[18] and Age follow the opposite trend. For neuropathy, alcohol 
consumption [19] and smoking levels strongly affect the 
likelihood of developing the condition—higher alcohol intake 
and greater smoking exposure increase the risk. 

 

(a) CLASS 



 

(b) Coronary heart disease 

 

(c) Neuropathy 

Figure 5.  SHAP summary plot. 

In conclusion, the SHAP summary plots underscore the 
significance and relationships of the features used in training the 
AutoGluon models. These findings align with existing research 
on the associations between the features and diabetes and its 
complications, reinforcing the robustness of the model 
predictions. 

IV. CONCLUSION 

In our research, AutoGluon proved to be the most suitable 
machine learning model for our CDSS with a GUI. By 
leveraging SHAP values to explain the model's decision-making 
process, we ensure that the system is not only accurate but also 
interpretable and trustworthy—key factors for gaining clinician 
confidence and facilitating its adoption. Moving forward, we 
aim to enhance the robustness of our model by incorporating 
additional clinical data through Institutional Review Board 
approval, enabling better training and external validation. 
Implementing a CDSS in real-world clinical settings is not 
without its challenges. One major hurdle is the training required 
for healthcare providers, who must adapt to new workflows and 
decision-making processes introduced by the system. Tailored 
training programs and intuitive user interfaces are essential to 
reduce the learning curve and support effective adoption. 
Another critical challenge lies in the integration of CDSS with 
existing EHR systems. Achieving seamless interoperability 
requires standardized data formats, robust IT infrastructure, and 
compliance with data privacy regulations such as GDPR and 
HIPAA. Addressing these issues calls for close collaboration 
among healthcare institutions, EHR vendors, and regulatory 
bodies to create scalable and secure solutions. Despite these 
challenges, our findings highlight the immense potential of 

combining automated machine learning models with 
interpretable tools like SHAP values. This approach offers a 
promising pathway to building a robust, trustworthy, and 
efficient CDSS. With strategic planning, ongoing refinements, 
and continued collaboration with clinical stakeholders, we are 
confident that this system can significantly enhance clinical 
workflows, support data-driven decision-making, and ultimately 
improve patient outcomes. 
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