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Abstract—This study compares the performance of a tradi-
tional relational database with a financial knowledge graph in
retrieval-augmented generation (RAG) settings. The knowledge
graph contains stock closing prices and financial statement data
from companies in the SET50 index, focusing on key financial
metrics and market performance indicators. The study examines
two main aspects: response time and the accuracy of large
language models (LLMs) in query generation. To evaluate the
efficiency of both databases, complex queries—such as cross-
industry financial ratio comparisons and trend analysis over
time—are utilized. The experimental results indicate that the
graph database requires less time to retrieve results. Further-
more, the LLM can translate natural language into queries for
both the graph and relational databases with a similar level of
accuracy.

I. INTRODUCTION

In recent years, the growing complexity of investment
decisions has driven the need for advanced tools that can
handle sophisticated financial queries. Investors often seek to
compare financial ratios across companies within the same
industry or analyze trends over different periods. Traditional
relational databases such as MySQL, which utilize a tabular
structure, often struggle with these complex queries due to
the need for extensive joins across multiple tables, resulting
in inefficiencies and slower response times. Recent studies
compared the performance of querying relational databases
with NoSQL databases, especially graph databases [1]-[5].
The studies found that graph databases, such as Neo4j,
outperformed relational databases, such as Oracle, MySQL,
MariaDB, and PostgreSQL when the queries require complex
joins between many tables.

With their graph-based structure, knowledge graphs offer
a more efficient alternative for managing multidimensional,
interconnected data. Knowledge graphs can significantly re-
duce the complexity of querying interconnected data points
by directly linking nodes and edges, allowing faster insight
and decision-making [6]-[8].

The construction of financial knowledge graphs has shown
significant promise in enhancing data integration and query
performance across financial datasets [9]. One of the chal-
lenges of querying a knowledge graph lies in the query
languages, such as SPARQL and Cypher, which interact with
the database and typically require writing expertise. This
complexity restricts the ability of the general audience to take

advantage of graph databases. However, recent advancements
in large language models (LLMs) have made it possible to
translate human intent or questions expressed in natural lan-
guage into code [10]-[12]. This integration has been applied
to chatbot-based query systems, where LLMs help translate
natural language questions into database queries, allowing for
intuitive user interactions. Combining KGs and LLMs in fi-
nancial applications provides a robust framework for managing
complex queries and delivering insights more efficiently.
This research aims to assess the performance of knowledge
graphs in Retrieval-Augmented Generation (RAG) settings.
We will compare the accuracy of a large language model
(LLM) in translating natural language text into both SQL and
Cypher queries. Additionally, we will measure the elapsed
time of an end-to-end chatbot system to evaluate the usability
of financial graph RAG in addressing investors’ inquiries.
The structure of this paper is organized as follows: In §1I, we
discuss relevant research. Next, in §1II, we outline our database
construction, query design, and evaluation metrics. We present
the experimental results and discuss notable findings in §IV
and §V, respectively. Finally, in §VI, we summarize our
contributions and suggest directions for future research.

II. RELATED RESEARCH

In the financial domain, a knowledge graph can be con-
structed from both unstructured text—such as financial re-
search papers and reports—and structured data, like tabular
financial statements and daily market prices [9], [13]-[15].
Two widely used data models for knowledge graphs are
the RDF model, which uses predicates to represent relation-
ships, and the property graph model, such as Neo4j, which
allows nodes to possess an arbitrary number of properties
and relationships among them [16]. Additionally, Zehra et
al. [6] highlighted the effectiveness of knowledge graphs in
improving query performance and accuracy, showcasing their
potential in financial reporting systems where quick retrieval
of relevant data is critical.

The performance characteristics of graph and relational
databases have been thoroughly studied to assess their suit-
ability for various types of queries. Sholichah et al. [17]
highlighted that while relational databases excel with simple
queries, graph databases are superior in handling complex,
multi-dimensional queries, such as those requiring real-time



analysis or cross-dimensional comparisons. Do et al. [3] con-
ducted a comparison of four query types on Neo4j and MySQL
databases and found that querying the graph database is gen-
erally faster than the relational database, especially for tasks
involving multiple joins, recursion, aggregation, and pattern
matching. However, Kotiranta et al. [4] provided contrasting
results, indicating that although a graph database may surpass
a relational database in join scenarios, this is not necessarily
the case for aggregation queries. One possible explanation for
this difference is that the data size tested in Kotiranta et al.’s
study was significantly larger than that used in the study by
Do et al. [3].

Large Language Models (LLMs) are increasingly being used
as tools for financial question-and-answer systems. However,
the training data for these LLMs often lacks adequate financial
information, which can hinder their ability to address questions
effectively in the financial domain. One potential solution
is to fine-tune the LLMs using relevant financial data [18],
[19]. Another approach is Retrieval-Augmented Generation
(RAG), which retrieves related documents and enables the
LLM to generate answers based on that information [20], [21].
Rather than merely retrieving candidate answers, RAG can
also integrate additional knowledge to enhance the generation
of responses [22]. This knowledge can come in various forms,
including unstructured text and knowledge graphs [23], [24].

Integrating Large Language Models (LLMs) with knowl-
edge graphs has shown promise in enhancing natural language
processing (NLP) capabilities in financial applications. Pan et
al. [25] conducted a survey on the utilization of LLMs and
knowledge graphs. Knowledge graphs can improve both the
training and application of LLMs. Conversely, LLMs can also
be utilized to construct knowledge graphs. Furthermore, when
LLMs are used as reasoning agents on knowledge graphs, they
are closely related to Retrieval-Augmented Generation (RAG)
techniques. Since LLMs are also employed to generate code
in various programming languages [10], [26], they can also
be used to create query languages for databases [11], [12].
Utilizing LLMs can enhance user experience with knowledge
graphs by converting natural language queries into database
queries.

III. METHODOLOGY

A. Database Construction

We obtained data from SET’s API via SET Smart Market-
place. The dataset includes daily end-of-day data and quarterly
financial statements data from Year 2019-2023. Both data are
in JSON format.

Two database systems were constructed to store and query
the financial data of SET50 companies: a traditional MySQL
relational database and a Neo4j Knowledge Graph. Each
system was designed to handle the same dataset, enabling per-
formance comparisons in terms of query speed and accuracy.

The MySQL database is composed of two tables: the finan-
cial statement table and the end-of-day table. Notably, neither
table has a primary key. The database schema is illustrated in

] financial_statements v
symbol VARCHAR(50)

1 filteredeoddata v
date DATE
year INT symbol VARCHAR(255)
quarter INT securityType VARCHAR(10)
financialStatementType VARCHAR(10) adjustedPriceFlag CHAR(1)
dateAsof DATE prior DECIMAL(10,2)
‘accountPeriod VARCHAR(10) open DECIMAL(10,2)
totalAssets DECIMAL(20,2) high DECIMAL(10,2)
totalLiabilities DECIMAL(20,2) low DECIMAL(10,2)
paidupShareCapital DECIMAL(20,2) close DECIMAL(10,2)
shareholderEquity DECIMAL(20,2)

totalEquity DECIMAL(20,2)

average DECIMAL(15,10)

aomVolume DECIMAL(15,2)
totalRevenueQuarter DECIMAL(20,2) aomValue DECIMAL(15,2)
totalRevenueAccum DECIMAL(20,2) trVolume DECIMAL(15,2)
totalExpensesQuarter DECIMAL(20,2) trValue DECIMAL(15,2)
totalExpensesAccum DECIMAL(20,2) totalVolume DECIMAL(15,2)
ebitQuarter DECIMAL(20,2)

ebitAccum DECIMAL(20,2)

totalValue DECIMAL(15,2)
pe DECIMAL(10,2)

netProfitQuarter DECIMAL(20,2) pbv DECIMAL(10,2)
netProfitAccum DECIMAL(20,2) byps DECIMAL(10,2)
epsQuarter DECIMAL(10,2) dividendYield DECIMAL(10,2)

‘epsAccum DECIMAL(10,2) marketCap DECIMAL(20,2)

operatingCashFlow DECIMAL(20,2) volumeTurnover DECIMAL(10,
investingCashFlow DECIMAL(20,2)
financingCashFlow DECIMAL(20,2)

roe DECIMAL(10,2)

r0a DECIMAL(10,2)
netProfitMarginQuarter DECIMAL(10,...
netProfitMarginAccum DECIMAL(10,2)
de DECIMAL(10,2)
fixedAssetTumover DECIMAL(10,2)

totalAssetTurnover DECIMAL(10,2)

Fig. 1. MySQL database schema for SET50 financial data.
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Fig. 2. Neo4j Knowledge Graph schema for SET50 financial data.

Fig. 1. The financial statement table contains 882 rows, while
the end-of-day table has 5,850 rows.

In contrast, we have designed the graph database in Neo4j,
adapting from the schema described in [9]. This schema
includes 14 types of nodes (entities), 13 types of relationships,
and 32 property keys. The end-of-day market data is divided
into four nodes: date, price, volume, and market ratio. The
financial statement data is organized into seven nodes: assets,
liabilities, equity, revenue, expenses, cash flow, and financial
ratios. Additionally, there is a period table that indicates the
quarter of the year. The schema is depicted in Fig. 2. In
total, the graph database contains 58,702 nodes and 59,394
relationships.



Listing 1
EXAMPLE OF HUMAN-WRITTEN QUERIES

# Original question, type 1
What was BJC's total revenue in Q1 201972

# SQL query

SELECT totalRevenueQuarter FROM financial_statements WHERE symbol = 'BJC' AND year = 2019 AND quarter = 1 LIMIT 1;
# Cyper query

MATCH (c:Company {symbol: 'BJC'})-[:HAS_FINANCIAL_STATEMENT]->(fs:FinancialStatement {year: '2019', quarter: 'l'})
MATCH (fs)-[:HAS_REVENUE]-> (r:Revenue)

RETURN r.totalRevenueQuarter AS TotalRevenue

FHERS A AR R A A R R A R R R R

# Original question type 2

What was PTTEP's Price-to-Earnings (P/E) ratio on September 1, 202372

# SQL query

SELECT pe FROM filteredEODData WHERE symbol = 'PTTEP' AND date = '2023-09-01' LIMIT 1;

# Cypher query

MATCH (mr:MarketRatio{symbol: "PTTEP", type: "PE", date: "2023-09-01"})

RETURN mr.value AS PERatio

AR R R R R

# Original question type 3

Compare ADVANC's Return on Equity (ROE) in 2019 with 2022.

# SQL query

SELECT year,Quarter, roe FROM financial_statements WHERE symbol = 'ADVANC' AND year IN (2019, 2022);

# Cypher query

MATCH (fs_2019:FinancialStatement {year: '2019', symbol: 'ADVANC'}) -[:HAS_RATIO]
—>(roe_2019:FinancialRatio {type: 'ROE'}),
(fs_2022:FinancialStatement {year: '2022', symbol: 'ADVANC'}) -[:HAS_RATIO]-> (roe_2022:FinancialRatio {type: 'ROE'})

WHERE fs_2019.quarter = fs_2022.quarter
RETURN DISTINCT fs_2019.quarter AS Quarter,

roe_2019.value AS ROE_2019,

roe_2022.value AS ROE_2022 ORDER BY Quarter

FHEFFH R AR R R R R

# Original question type 4
How did BDMS's ROE affect its profitability?

# SQL query
SELECT year, Quarter,

# Cypher query

MATCH (fs:FinancialStatement {symbol: 'BDMS'})
WHERE fs.year = "2019" OR fs.year = "2020" OR fs.year =
RETURN fs.year AS Year, fs.quarter AS Quarter,

—[:HAS_RATIO]
"2021"

B. Query Design

We developed four types of financial questions manually:

1) Financial statement figures

2) Market prices and information

3) Comparisons

4) Analysis questions
We then translated these questions into SQL and Cypher
queries. Examples of the questions and their corresponding
queries can be found in Listing 1. The query for analysis
questions will search the database to help answer the question.
However, the answer will be generated by the LLM.

A chatbot interface was created using Streamlit and the
llama3-70b—-8192 model to translate user inputs into database
queries.

C. Performance Evaluation

We evaluate the process from two perspectives: accuracy
and elapsed time. Specifically, we report two accuracy mea-

roe FROM financial_statements WHERE symbol

—>(roe{type:

roe.value AS ROE ORDER BY Year,

= 'BDMS' AND year BETWEEN 2019 AND 2021;

'ROE'})

Quarter

surements in the following areas:

1) Query generation by the LLM
2) Response generation by the LLM

Human judges evaluated the accuracy of the query results
and the semantic alignment of the responses with user in-
tent, without focusing on the specific query structure. Query
generation was evaluated on the basis of time and accuracy,
with correctness determined by whether the generated query
produced the expected result, regardless of its structure.

We applied BLEU, SacreBLEU, and BERTScore to eval-
uate chatbot-generated responses, focusing on both syntactic
and semantic aspects across languages and database systems.
BLEU and SacreBLEU measure syntactic accuracy by com-
paring the phrasing and structure of generated responses with
expected answers. BERTScore, in contrast, evaluates seman-
tic similarity by assessing how well the generated response
captures the intended meaning, which is crucial for complex



TABLE I
DATABASE FETCH USING GENERATED QUERIES

Database | Language [ Time (s)

Thai 0.0024

MySQL | Epatish 0.0015

) Thai 0.0031

Neodj English 0.0251
TABLE TI

QUERY GENERATION

Database | Language | Time (s) [ Accuracy (%)
Thai 36.98 83
MySQL | g atish 26.17 80
Neodi Thai 23.70 88
J English 21.98 88

financial queries where meaning takes precedence over exact
wording.

We measured the time required for query generation (LLM
processing), data retrieval (database execution), and response
generation (LLM output). By focusing on these metrics,
we provided a comprehensive assessment of the chatbot’s
performance in generating accurate and linguistically aligned
responses.

IV. RESULTS
A. Direct Query Performance

The direct query performance test measured the data re-
trieval speed using manually written SQL for MySQL and
Cypher for Neo4;j, averaging query execution times over ten it-
erations. MySQL demonstrated faster query response times for
this dataset (0.001489 seconds vs. Neo4j’s 0.009887 seconds).
However, this result reflects the relatively small dataset used.
As datasets grow larger and queries become more complex,
Neo4j’s performance may surpass MySQL due to its ability
to efficiently handle relationships and interconnected data.

The time it takes to fetch data from the database is presented
in Table I. The data indicate that MySQL outperforms Neo4;j
in translating Thai and English questions.

B. LLM Performance

The performance of chatbot-assisted queries was evaluated
by examining response times and semantic accuracy for finan-
cial queries in Thai and English.

We evaluated the translation time from question to query
and the accuracy of the LLM, as summarized in Table II
Neo4j outperformed MySQL in translation times for both Thai
and English, with shorter generation times observed across
both languages.In terms of accuracy, the LLM achieved higher
success rates when generating Cypher queries for Neo4j (88%)
compared to SQL queries for MySQL (83% in Thai and 80%
in English). This can be attributed to the LLM’s compatibility
with Neodj’s graph-based syntax, which better aligns with
the structured relationships in the dataset. Interestingly, the
accuracy remained consistent across languages. Overall, Neo4j

TABLE III
RESPONSE GENERATION USING GENERATED QUERIES

Database | Language | Time (s) [ Accuracy (%)
Thai 52.45 70
MySQL | Epolish 52.11 63
Neodi Thai 38.36 75
J English 44.72 68

demonstrated superior performance in accuracy compared to
MySQL.

We utilize the generated queries to retrieve knowledge from
the database, allowing the LLM to create the response. The
results are displayed in Table III. Compared to query trans-
lation, generating natural language responses from MySQL
takes significantly more time than from Neo4j. Furthermore,
the natural language responses generated in Thai exhibit higher
accuracy compared to those produced in English.

Table IV shows that Thai responses consistently achieved
higher BLEU and SacreBLEU values than English responses,
reflecting the chatbot’s stronger performance in Thai. How-
ever, English responses achieved higher BERTScore value,
indicating better semantic alignment in English. This may
be attributed to the chatbot’s familiarity with structured and
formalized financial expressions commonly found in Thai
datasets.

TABLE IV
EVALUATION METRICS FOR GENERATED RESPONSES

Database | Language [ BLEU | SacreBLEU [ BERTScore
Thai 0.3745 39.5054 0.8260
MySQL | Erglish | 00682 | 12,1697 0.8779
Neod: Thai 0.3650 | 39.4870 0.8460
g English 0.0840 14.1990 0.8780

In terms of syntactic alignment, there was little differ-
ence between the two databases for Thai responses, with
MySQL scoring 0.3745 in BLEU and 39.5054 in SacreBLEU,
compared to Neo4j’s 0.3650 and 39.4870. However, Neo4;j
performed better for English responses with a SacreBLEU
score of 14.1990, surpassing MySQL’s 12.1697. For seman-
tic preservation, there was little difference between the two
databases for both Thai and English responses. MySQL had a
BERTScore of 0.8269 for Thai and 0.8779 for English, while
Neo4j scored 0.8460 for Thai and 0.8780 for English.

These findings underscore the trade-offs between syntactic
fidelity and semantic accuracy. MySQL appears well-suited for
straightforward, syntax-focused tasks, while Neo4j excels in
scenarios requiring deeper semantic understanding, especially
in multilingual and context-rich environments.

V. DISUCSSION

While we expected Neo4j’s relationship model to outper-
form MySQL in retrieving results, the MySQL database’s
simplicity, with only two tables and no complex joins, gave
it an edge in this scenario. In addition, the database was
constructed using data from SET50 companies, which re-
sulted in a relatively small data set. The faster query time



Comparing Translated Query Proportions Across Databases and Languages.

MySQL Tha

MySQL English

Neod) Thai

Neod) English
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mMatchwithhuman query  m Correct but different from human query ~ Wincorectquery W Syntactically incorrect query

Fig. 3. Comparing Translated Query Proportions Across Databases and
Languages.

of MySQL (0.001489 seconds) reflects the small data set
and the simple schema, while the query time of Neo4j of
0.009887 seconds, although slower, may perform better with
larger, interconnected data sets. However, as the size of the
database scales, Neo4j’s performance is expected to improve
relative to MySQL due to differences in algorithmic complex-
ity. MySQL’s query performance typically scales with O(n),
where n is the total number of rows in the database. In
contrast, Neo4j scales with O(n), where n is the size of the
relevant labels, which remains smaller than the total number
of rows. This suggests that Neo4j may exhibit better efficiency
in handling large, interconnected datasets.

The time required to translate text to query format for
English queries is generally faster than for Thai queries. This
difference is due to the fact that LLMs are more effective in
English, a widely supported language, than in less-resourced
languages like Thai. However, by fine-tuning the LLM, we can
reduce the time it takes to generate queries. Another possible
explanation for the delay is that the LLM might rephrase the
question in English, which requires additional processing time.

In Table II, we evaluate the accuracy of the queries based
on the results obtained. Furthermore, we analyze the queries
generated from LLM in Fig. 3 to determine whether they
differ from human-written queries. Although the generated
SQL queries generally align well with the human-written
ones, the generated Cypher queries rarely match. Despite
this, the results remain accurate. This is because the LLM
prioritizes the logic of the query to ensure that it retrieves the
intended data, even if the structure of the query varies. How-
ever, the LLM may sometimes select unnecessary columns,
change column names, or employ different query constructs to
achieve the same result. We provide an example of an LLM-
generated Cypher query in Listing 2, including the Response
Answer and the Expected Answer for comparison. The LLM-
generated Cypher query retrieves the same result as the human-
written query, highlighting its ability to interpret user intent
accurately. However, the LLM version may include minor
syntactic differences, reflecting its flexibility in constructing
queries. In contrast, the human-written query is typically more

concise and standardized, designed for optimal readability and
performance.

Regarding the Response Answer and Expected Answer,
although their phrasing differs slightly, the semantic content
is identical. This demonstrates the LLM’s ability to generate
accurate and semantically aligned responses, even when the
exact phrasing does not match.

Overall, both the query and response comparison showcase
the LLM’s effectiveness in ensuring logical correctness and
semantic alignment, making it a valuable tool for financial
question answering.

VI. CONCLUSION AND FUTURE WORK

This study evaluated the performance of MySQL and Neo4j
in a financial question-answering system integrated with LLM.
Both databases demonstrated satisfactory query generation
accuracy (80-88%), with similar performance in many areas.
Neo4j, however, was better suited for handling complex, in-
terconnected financial data, thanks to its graph-based architec-
ture, which enabled superior semantic alignment and efficient
execution of multi-dimensional analyses, such as trend eval-
uations and cross-company comparisons. MySQL excelled in
faster response times for simpler queries but faced challenges
with more intricate tasks due to its reliance on complex
joins and tabular structure. These findings underscore Neo4j’s
scalability and its capability to manage complex relationships,
making it the better choice for advanced financial applications
requiring semantic richness and data interconnectivity.

Future work will focus on expanding the knowledge graph
by incorporating a wider range of financial data and improving
the database structure to better accommodate the types of
questions investors frequently ask. This will involve gathering
additional real-world questions from investors to refine the
data model and ensure that the database is tailored to the most
relevant financial queries. Additionally, efforts will be made to
enhance the chatbot’s performance, including improving query
generation accuracy and minimizing mistakes in selecting the
correct data values. Addressing these areas will enhance the
efficiency and accuracy of the system, making it more practical
for financial decision-making.
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