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Abstract—Deep learning has enabled applications in medical
diagnosis, education, and research. However, obtaining large-
scale, high-quality data remains challenging due to privacy
regulations and the scarcity of rare disease data.

Recent approaches focus on deep learning-based image gener-
ation models to create synthetic data, increasing its diversity and
quality for medical applications. This study proposes an improved
diffusion-based model for high-quality image generation across
diverse domains. Inspired by the 8-channel VAE from Mefusion,
we modified the VAE structure in Stable Diffusion to reduce
artifacts. To address the loss of detailed representations in the
Latent Diffusion model’s compression process, we introduced
multi-level embeddings and adapter layers. These additions
improved synthetic data quality in the dermatology domain.

Using the HAM10000 dataset, we generated synthetic data
for seven skin disease conditions and conducted classification
experiments to evaluate its utility. The classification accuracy
using synthetic data alone was comparable to using original data.
Training with both synthetic and original data improved accuracy
from 87% to 90%.

Our results confirm that synthetic data from our diffusion
model is effective for dermatological training. Visual and quan-
titative evaluations further highlight its potential for medical
applications.

Index Terms—Diffusion, Data augmentation, Skin disease clas-
sification, Medical imaging

I. INTRODUCTION

With the rapid advancement of deep learning technology in
recent years, there has been an active movement to adopt it
in the medical field [1]-[3]. Deep learning is being applied
in various medical areas such as diagnosis [4]-[7], lesion
detection [8], [9], and image segmentation [10], [11], and high-
quality data that accurately reflects disease characteristics is
essential for effective training of these models.

However, obtaining data in the medical field is extremely
challenging due to various constraints, including privacy pro-
tection issues, lack of data for rare diseases, and strict reg-
ulations in clinical data collection processes. To overcome
these limitations, recent studies [12] focusing on generating
synthetic data using deep learning-based generative models
to supplement insufficient medical data has been gaining
attention.

In recent years, within the field of deep learning image gen-
eration, Diffusion-based models [13] have gained significant
attention by demonstrating higher training stability, diversity,
and High quality image synthesis capabilities compared to
previous generative methods such as Variational Autoencoder
(VAE) [14] and Generative Adversarial Networks (GAN) [15].
Diffusion models not only offer easier training and high-
quality image generation but have also shown exceptional
performance in various tasks including image editing [16],
super-resolution [17], and style transfer [18]. In the medi-
cal field, research utilizing these Diffusion-based generative
models to create high-quality synthetic data has been actively
progressing, with studies effectively generating synthetic data
for various diseases using models such as Imagen [19] and
Stable Diffusion [20]. Notably, the study in [21] improved
upon Stable Diffusion’s VAE architecture to generate synthetic
images of chest X-rays, iris lesions, and histopathological
images, demonstrating superior generation quality when com-
pared to GAN-based models.

Diffusion-based models are capable of generating realistic
images by effectively capturing overall image information.
however, they still face challenges in retaining fine-grained
details. To address this issue, methods for maintaining detailed



representations in image generation have been actively studied.

ELITE [22] preserves fine details during personalized image
generation in the general image domain by employing atten-
tion operations between text prompts and local features ex-
tracted through a multi-layer network. Similarly, Instantbooth
[23] improves fine-grained representations during personalized
image generation by adding an adapter layer to the diffusion
denoising network to incorporate rich patch information from
the input image.

In the medical field, subtle differences in fine details can
lead to critical consequences, making the preservation of
detailed representations even more crucial. Therefore, it is
essential that synthetic medical images reflect patterns, tex-
tures, and shapes of the lesion area accurately to ensure that
disease-specific details are not lost. In medical applications,
not only is the fast generation of realistic images important,
but generating images with the precision necessary for clinical
use is also critical. Otherwise, the generated images may not
be suitable for real-world applications, limiting their clinical
contribution.

In this paper, we propose an improved diffusion-based
method for the skin disease domain by modifying the VAE
structure of the Latent Diffusion Model and incorporating
lesion masks and multi-level embeddings. We utilized the
HAM10000 [24] dataset, which contains data for seven types
of skin tumors, to enhance the ability of the Stable Diffusion
model to preserve detailed representations.

First, inspired by the artifact improvement approach sug-
gested by Medfusion [21], we adopted the VAE channel expan-
sion technique of Stable Diffusion. In addition, we introduced
multi-level embeddings extracted from lesion images to the
diffusion training process to effectively learn detailed repre-
sentations from the original data. These learned representations
were incorporated into the adaptive layer during the diffusion
denoising process to be utilized in synthetic data generation.
We also applied lesion masks to extract only the lesion area
from the input image, enabling focused learning on the lesion
region.

To verify the effectiveness of the generated data, we visually
inspected the results and used the synthetic data obtained with
the proposed method to train five representative classification
models, including VGG [25] and ResNet [26]. We compared
their classification accuracy with models trained using only
the original data. When using the same amount of data,
the models trained with synthetic data showed performance
comparable to those trained with original data. Furthermore,
when augmenting the original dataset with a larger amount of
synthetic data, accuracy increased from 87% to 90%, achieving
the highest accuracy. This demonstrates that synthetic data can
play an important role when data is limited, such as in cases
of rare diseases or when privacy issues make data collection
challenging.

The proposed method is similar to ELITE in terms of
preserving detailed representations using multi-level embed-
dings but differs in several aspects. While ELITE focuses on
personalized image generation, our study emphasizes data aug-

mentation, aiming to generate diverse sample outputs rather
than fixed targets. Additionally, whereas ELITE uses a local
mapping network to focus on relationships within the text
space, we added an adapter layer to the diffusion U-Net struc-
ture to focus on the utilization of visual tokens. Finally, while
ELITE was applied to general image domains, we focused on
the medical domain, specifically generating synthetic data for
skin disease images and conducting downstream tasks with
this data.
We make the following contributions:

o We introduce a novel enhancement to diffusion networks
through a dedicated Multi Level embeddings, specifically
designed for preserving fine-grained characteristics of
skin lesions. This architecture, combined with lesion-
specific masks, significantly improves the preservation of
critical disease features including structural patterns, tex-
tures, and subtle pathological indicators. The integration
of these components enables more accurate representation
of disease-specific details that are crucial for medical
diagnosis.

o We demonstrate the practical effectiveness of our ap-
proach through comprehensive evaluation using four
widely-adopted classification models including VGG and
ResNet architectures. Our experimental results demon-
strate that when we secured a larger amount of data
through synthetic data compared to using original data
alone, the classification accuracy significantly improved
from 87% to 90%. This improvement validates both the
quality of our synthetic data and its utility in addressing
data scarcity issues in medical imaging applications.

II. RELATED WORK
A. Medical Data Augmentation

Data augmentation is a technique that secures additional
data needed to improve model performance by utilizing
original data to address issues such as overfitting and data
imbalance that can occur when training data is insufficient.
Traditional data augmentation techniques include rotation,
resizing, translation, flipping, and affine transformations.

However, medical data has specialized and complex charac-
teristics, making it difficult to generate new essential features
through simple geometric transformations alone. Moreover,
medical data collection is more challenging compared to other
fields due to privacy protection issues and data availability
constraints.

To overcome these limitations, recent advances in gener-
ative deep learning technology have led to the development
of data augmentation methods through deep learning-based
synthetic data generation. After GANs [12] gained attention
for their high-quality synthesis capabilities, various GAN-
based synthetic data augmentation methods [27]-[29] have
been studied in the medical data field. In [30], skin cancer
data synthesis was conducted using STGAN, which combines
universal knowledge with class-specific knowledge.



Recently, Diffusion [13] has gained attention for producing
high-quality realistic data through stable training that avoids
the unstable learning issues of GANSs, and research utilizing
this for medical synthetic data augmentation [31], [32] is also
increasing. In [21], the VAE structure of the Latent Diffusion
Model(LDM) [20] was expanded to 8 channels to improve
artifacts in generated medical images, and demonstrated better
performance than GAN-based models in quantitative metrics
such as FID across various medical imaging fields including
retinal images, colorectal cancer histology images, and chest
X-rays.

B. Diffusion Models

Diffusion Probability Models (DPM) [33] introduced the
principle of learning data distribution using Markov chains,
specifically transforming a simple known probability distribu-
tion into a target distribution. Denoising Diffusion Probabilis-
tic Models (DDPM) [13] expanded this concept to specialize in
image generation. DDPM has been receiving prominent atten-
tion in computer vision, particularly in the field of image gen-
eration. Unlike GAN-based models that suffered from learning
stability issues such as mode collapse, DDPM demonstrated
advantages by showing excellent realism and diversity while
maintaining stable training. DDPM enabled high-quality image
generation by optimizing the denoising process. To address
DDPM’s limitation of requiring long progressive sampling
time, Denoising Diffusion Implicit Models (DDIM) [34] en-
abled high-quality image generation with fewer diffusion steps
through deterministic sampling of noisy latent variables. In
[35], the diffusion model was reinterpreted from a Stochastic
Differential Equation (SDE) perspective, extending DDPM’s
discrete-time diffusion process to a continuous domain, al-
lowing for more flexible sampling and various noise sched-
ules. The study in [36] surpassed GANs in terms of image
diversity and quality, introducing Classifier Guidance to enable
conditional generation. Latent Diffusion Models (LDM) [20]
increased computational efficiency by performing the diffusion
process in compressed latent space rather than pixel space,
bringing innovation to high-resolution image generation. It
also enabled flexible conditional image generation through
text prompts. Diffusion-based models are being utilized in
various studies for medical data augmentation, as shown in
[21], [31], leveraging these advantages. In this paper, inspired
by previous research that demonstrated excellent potential in
diffusion-based medical data synthesis, we conducted research
using the LDM model Stable-Diffusion.

III. METHOD & MATERIAL
A. Overview

The goal of our model is to reduce the loss of detail
representations and improve artifacts in Diffusion-based image
synthesis to generate high-quality medical synthetic data. Our
model’s workflow is shown in Fig.1. The process consists of
the following steps: First, to improve artifacts in generated
images, we expand and pre-train stable diffusion’s existing
4-channel VAE to 8 channels. Next, for higher focus on the
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Fig. 1. Workflow for proposed method. A pre-trained 8-channel VAE
enhances image quality, while lesion masks isolate the lesion area to produce
cropped images. These cropped images are transformed into multi-level
embeddings using a CLIP Visual Encoder, which are then integrated into
the diffusion process through adapter layers in the Denoising U-Net. This
enables the model to effectively learn and preserve detailed features such as
lesion patterns, textures, and structures.

disease itself, we use mask images corresponding to the lesion
area as a preprocessing step to remove unnecessary back-
ground and extract lesion images that contain only the skin
lesion region. To obtain multi-level detailed expressions from
the extracted lesion images, we extract multi-level embeddings
through the CLIP [37] image encoder composed of various
levels. To incorporate these detailed expressions into Diffusion
training, we add separate adapter layers to the Transformer
blocks within the Diffusion U-net, through which the detailed
features of the lesions are transmitted to the Diffusion Model.
Each component is explained in the following sections.

B. Pre-train 8ch-VAE

The Variational Autoencoder (VAE) [14] is a crucial com-
ponent in the Stable Diffusion model, playing a vital role
in image input and output. Since the VAE directly affects
the model’s performance during the compression and recon-
struction of image representations, improving it is essential
for enhancing image quality. In medical imaging, improving
artifacts and inaccuracies is particularly important, as these
can interfere with accurate diagnosis. Inspired by Medfusion’s
demonstration that expanding the VAE embedding channels in
the Stable Diffusion model from 4 to 8 channels significantly
improved reconstruction quality despite a slight decrease in
compression ratio, we adopted an 8-channel VAE for the skin
disease domain. Expanding the VAE embedding channels from
4 to 8 enables the model to capture more information, allowing
for richer feature representation. Specifically, through a higher-
dimensional latent space, the model can preserve detailed
image characteristics and effectively reduce distortions such
as artifacts.

To pre-train the 8-channel VAE, we used a combination of
KL, L1, L2, and SSIM loss functions, each serving a specific
purpose in optimizing the VAE’s performance. The KL diver-
gence ensures that the latent space follows a standard Gaussian
distribution, which enhances the stability and efficiency of the



sampling process. The L1 loss reduces the absolute differences
between the reconstructed and original images, thereby pre-
serving the overall structural integrity. The L2 loss minimizes
squared differences, making the model sensitive to small errors
and improving reconstruction accuracy. Finally, the SSIM loss
preserves the structural similarity between the reconstructed
and original images, which is critical for maintaining fine-
grained medical details, such as lesion textures and patterns.

This combination of loss functions was chosen to maintain
the original Stable Diffusion model’s configuration, ensuring
a balance between latent space regularization (via KL diver-
gence) and high-fidelity reconstruction quality (via L1, L2, and
SSIM losses). As this study focuses on the direct comparison
between the original 4-channel VAE and the expanded 8-
channel VAE, we retained the same loss configuration to
isolate the impact of channel expansion.

In this research, we pre-trained the 8-channel VAE using the
HAMI10000 [24], which contains 7 classes, and incorporated
it as the first stage of our model pipeline. This approach
enhances the model’s ability to represent skin disease images
more accurately and mitigates the quality degradation that
can occur during the image generation process through the
expanded channel configuration. The pre-trained 8-channel
VAE plays a critical role in generating more precise and
detailed skin disease images.

Figure 2 compares the reconstruction results of the original
4-channel VAE and the 8-channel VAE on the HAM10000
dataset. By using 8 embedding channels, we observed im-
provements in reconstruction quality, particularly in reducing
artifacts and preserving finer details in the lesion areas, com-
pared to the 4-channel configuration.

Although the expansion to 8 channels resulted in a slight
decrease in compression ratio, it also led to an approximate
1.5x increase in training and inference time. However, this
trade-off is considered acceptable in the medical domain,
where accurate and detailed image generation is of paramount
importance. The improved image quality, including reduced
artifacts and better preservation of lesion details, justifies the
additional computational cost. Future work could focus on
optimizing the computational efficiency of the expanded model
without compromising the quality of the generated images.

4ch VAE

8ch VAE

Fig. 2. Comparison of reconstructed images: input image (left), reconstruction
through 4-channel VAE (middle), and 8-channel VAE (right). The 8-channel
VAE demonstrates clearer and more accurate reconstruction of lesion patterns
and textures.

C. Multi-Level Embeddings for Detailed Feature Representa-
tion
Existing Diffusion generative models sometimes struggle
to maintain detailed features. In this study, we introduced a
method to incorporate additional information about detailed
features into the Diffusion learning process to address this
limitation. First, to focus on disease characteristics by isolating
the lesion area from the background, we extract lesion images
using mask images. This ensures a clear focus on regions
requiring analysis.
Ty =T - My, (D

where z; is the input image, m; is the lesion mask image of the
corresponding image, and x; is the extracted lesion image. To
extract detailed feature information from these lesion images,
we generate multi-level embeddings consisting of 5 levels
using a pre-trained CLIP image encoder [37]. Each layer
captures different levels of features: lower layers extract fine
details such as texture and color patterns, middle layers capture
local structures, and upper layers capture overall shapes and
structures of lesions. The transformed embeddings capture
diverse characteristics of lesions, from detailed features to
overall structure, playing a crucial role in preserving impor-
tant details during the subsequent image generation process.
Inspired by GLIGEN [38], to integrate the extracted detailed
feature information into the Diffusion model, we added learn-
able adaptive layers to the transformer blocks of the Diffusion
U-net. These adaptive layers are placed between self-attention
and cross-attention, allowing detailed feature information to
be effectively utilized during the learning process. The adapter
layer is defined as follows:

v=uv+f-tanh(y) - Sel f Attn([v, em]), ?2)

where v represents visual tokens, 3 is a constant controlling
the importance of the adapter layer, v is a learnable scalar
value (initialized to 0), and e,, is the average of multi-level
embeddings. Through this, the Diffusion model can learn more
accurate and detailed lesion representations.

D. Datasets

The HAM10000 dataset [24] is a comprehensive dermo-
scopic dataset created to advance automatic classification of
skin tumors, featuring data for seven types of skin tumors. This
dataset includes 10,015 dermoscopic images from seven skin
disease classes, including both benign and malignant tumors.
The classes are:

¢ Melanocytic nevi(NV)

e Melanoma(MEL)

o Benign keratosis-like lesions(BKL)

o Basal cell carcinoma(BCC)

« Actinic keratoses and intraepidermal carcinoma(AKIEC)

e Vascular lesions(VASC)

o Dermatofibroma(DF)

This dataset is publicly available and widely used for training
and evaluating machine learning models for skin disease
classification tasks.



In this study, we utilized the HAM10000 dataset to train
and evaluate our diffusion-based data augmentation model.
Following standard procedures, we split the dataset into train-
ing, validation, and test sets to ensure unbiased evaluation.
Additionally, to address the class imbalance issue in the
dataset, we applied data augmentation techniques to generate
synthetic samples, enhancing the diversity of the training data.

All images were preprocessed to standardize their size and
quality. Specifically, each image was resized to 256 x 256
pixels, and normalization was applied to ensure consistent
pixel intensity across the dataset. Furthermore, we utilized
the lesion masks provided within the dataset for multi-level
embedding, enabling the model to focus on relevant regions
and preserving details crucial for accurate classification.

Fig. 3. The HAM10000 dataset: consisting of 10,015 images of seven types
of skin tumors.

E. Implementation Details

While using Stable Diffusion as our base model, we modi-
fied its components to suit our objectives. The VAE was pre-
trained using the Adam optimizer to encode 224224 images
into a 32x32 latent space, combining KL, L1, L2, and SSIM
losses with a batch size of 16. The diffusion process consisted
of forward (encoding to Gaussian noise over 1000 steps) and
backward (denoising) stages, trained with AdamW optimizer
and L1 loss to supervise the difference between actual and
estimated noise distributions. During the sampling stage, we
used 150 steps with a batch size of 8, setting 5 = 1 and initial
v = 0 for adapter training. Implementation used Python 3.9.19
with PyTorch 1.12 and CUDA 11.4 on two NVIDIA RTX 3090
GPUs with a learning rate of le-5.

IV. EXPERIMENT & RESULT
A. Visual Result

As shown in Figure 4, we generated images of 7 classes
of skin diseases from the HAM10000 dataset and compared
them visually with the original images. With the introduction
of multi-level embedding, it is evident that detailed lesion
characteristics are generally well preserved. However, in the
case of 'DF’ (Dermatofibroma), the method failed to perfectly
capture subtle textures such as small wounds around the lesion.
This suggests a limitation in capturing fibroma-like indented
or raised textures in detail, compared to characteristics like
color or patterns. Nevertheless, it was confirmed that important
features such as the lesion’s color and shape were well
maintained through multi-level embedding.

) &

Fig. 4. Comparison of real images (upper row) and synthetic images generated
by our model (lower row) for 7 skin diseases. Detailed features such as colors
and patterns are well preserved across 6 classes, except for DF.

B. Downstream task

To validate the effectiveness of synthetic data, we created
four types of classification datasets with 250 original images,
500 original images, 500 synthetic images, and 1000 hybrid
images combining synthetic and original data. We trained
five common classification models, including VGG [25]and
ResNet [26], and compared the classification performance. The
dataset configurations were as follows:

 Original250: 250 original images
 Original500: 500 original images

o Synthetic500: 500 synthetic images

o Hybrid1000: original500 + synthetic 500

As shown in Table I, using synthetic data alone showed
similar or slightly decreased classification accuracy compared
to using only original data. This is due to the fact that synthetic
data cannot perfectly reproduce real-world characteristics.
However, the main purpose of this study was to validate the
utility of synthetic data to address data scarcity. To this end,
we trained models using a hybrid dataset (Hybrid1000) that
combined 500 original images with 500 synthetic images. The
hybrid data achieved the highest classification accuracy. We
quantitatively confirmed the effectiveness of synthetic data
as it demonstrated that the average classification accuracy
increased from about 87% to 90% when using sufficient
training data supplemented with synthetic data compared to
using original data alone. These results suggest that synthetic
data can help mitigate data scarcity in the medical domain.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACY USING FIVE COMMON
CLASSIFICATION MODELS ACROSS FOUR DATASETS COMPOSED OF
REAL AND SYNTHETIC DATA.

Dataset VGG13 | VGG16 | VGG19 | ResNet18 | ResNet34 | Avg
Origin 250 83.24 | 83.79 86.55 83.51 83.95 |84.08
Origin 500 84.63 85.23 87.55 88.43 89.32 | 86.91

Synthetic 500 | 82.75 83.98 86.21 88.21 89.14 | 87.01
Hybrid 1000 | 89.64 | 90.03 | 90.31 89.85 90.54 | 90.07
CONCLUSION

In this study, we proposed an enhanced diffusion-based
model to address medical image data scarcity, particularly for



skin diseases. By expanding Stable Diffusion’s VAE struc-
ture to 8 channels and introducing multi-level embeddings,
our model effectively preserves detailed lesion characteris-
tics including patterns, textures, and structures. Using the
HAMI10000 dataset, we generated synthetic images for 7
skin diseases and compared them with real medical data,
confirming successful preservation of key features like color
and shape. Experiments with various classification models
demonstrated that synthetic data achieved comparable accu-
racy to real data, and when combined, improved classifica-
tion accuracy from 87% to 90%. This shows our model’s
effectiveness in addressing medical data scarcity through high-
quality synthetic data generation. Future research will focus on
expanding to diverse medical imaging domains and improving
the reproduction of fine details. This study demonstrates the
potential for supporting Al model training in situations where
medical data acquisition is challenging.
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