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Abstract—Reservoir computing (RC) has emerged as a pow-
erful framework for time series prediction, offering versatile
implementations. However, its application to modeling a broad
spectrum of dynamical systems remains limited due to inflex-
ibility of the training scheme. In this work, we introduce an
attention-enhanced reservoir computing model that incorporates
an attention mechanism at the output stage, enabling dynamic
prioritization of important features. Experimental evaluations
show that this approach achieves high prediction accuracy across
multiple dynamical systems, underscoring its potential as a
universal simulator for chaotic and complex systems.

Index Terms—Reservoir computing, attention mechanism, dy-
namical systems, time-series prediction, machine learning.

I. INTRODUCTION

Accurately predicting chaotic time series is a challenging
problem due to their sensitivity to initial conditions and non-
linearity. Reservoir computing (RC) has shown promise in
capturing complex temporal dependencies [1]-[3]. However,
traditional RC frameworks are often limited by their inability
to dynamically adjust to varying system behaviors.

Recent advancements in machine learning, such as attention
mechanisms [4], offer the ability to focus selectively on rele-
vant features within input sequences, significantly enhancing
prediction accuracy [5]. Attention mechanisms have trans-
formed sequence modeling in fields such as natural language
processing and machine translation. Inspired by these develop-
ments, this study integrates an attention mechanism with the
reservoir output layer to improve its predictive capabilities for
a variety of chaotic systems [6].

We evaluated the proposed attention-enhanced reservoir
computing (AERC) model on multiple well-known dynamical
systems, demonstrating its ability to simulate diverse systems
with high accuracy and stability. The results highlight the
model’s potential to serve as a universal simulator for complex
time series data.

II. METHODOLOGY

A. Echo State Networks (ESNs)

Echo State Networks (ESNs) are a type of recurrent neu-
ral network (RNN) designed to efficiently handle sequential
data using a fixed, randomly connected reservoir of neurons.
This reservoir transforms input data into a higher-dimensional
space, enabling the ESN to capture complex temporal depen-
dencies without extensive training of recurrent connections.

The reservoir states, x;, are updated as:
x; = tanh(W,¢sx;1 + Wyu; + b), (1

where W,.. is the reservoir weight matrix, W,,, is the input
weight matrix, and b is a bias vector. The output of the ESN,
Y1, is computed as:

yi = WouwXy, )

where W ,,,; is trained using ridge regression, which ensures
computational efficiency and robustness by regularizing the
output weights.

B. Attention Mechanism

An attention mechanism is integrated at the output layer to
dynamically assign importance to the reservoir states based
on their relevance to the current input sequence. This enables
the model to focus on the most critical features of the reser-
voir’s representation, enhancing its adaptability and predictive
accuracy for complex temporal patterns.

The attention weights, wg4 ;, are computed using a neural
network:

Watt,l = F(Wneta rl)a 3)

where F' is a neural network with parameters W,,.; and input
r; (the reservoir states at time [). These attention weights
dynamically adjust to emphasize features that are most in-
formative for the prediction task.
The final output is computed as a weighted sum of the
reservoir states:
dl = W;rtt’ll‘l. (4)

This mechanism allows the model to change its focus dy-
namically for each time step, making it highly effective at
handling systems with varying time-dependencies. By utilizing
attention, the ESN can adaptively prioritize reservoir nodes,
improving robustness and accuracy in modeling diverse dy-
namical systems. A flow chart diagram of the approach is
shown in Fig. 1.

C. Dual-Objective Training of Attention-Enhanced Reservoir
Computer

The AERC is trained with two simultaneous objectives:
predicting the next time step of the dynamical system and
classifying the attractor the system resides on. The input is the
time series x; which is processed by the AERC to produce
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Fig. 1. Float chart diagram of the AERC layout. Reservoir states are collected. A gradient descent approach to optimize the attention layer is used. The

dashed arrows show the training process, which are deactivated after training.

two output vectors, y;; for prediction and y;o for attractor
classification.

The prediction vector y;; is trained to minimize the Mean
Squared Error (MSE) between the predicted and true next time
step:

L
1 = 2
Lvsg = I 15—1(yl1 —-yu),

where y;; is the true next step, y;; is the predicted value, and
L is the total number of data points.

Simultaneously, the classification vector y;s is trained using
cross-entropy loss:

L

1 _
Lcg = -1 ; yi2log(yiz),

where y;o represents the true class probabilities, and y;s is the

predicted class distribution.
The total loss combines these objectives:

Liotat = Lmse + Lcg.

The classification output is used only for performance
evaluation and not revealed during training or prediction to
ensure the model relies solely on the input dynamics. The
network parameters W, are updated via gradient descent
to minimize L. After training, the AERC is evaluated in
a closed-loop configuration, predicting system dynamics and
identifying attractor classes autonomously.

III. EXPERIMENTAL SETUP

A. Dynamical Systems Evaluated

The AERC model was tested on five well-known dynamical
systems, each exhibiting unique characteristics and providing
diverse challenges for time-series prediction:

1) Lorenz System:

dx

o =ow-w), 5)
dy N

dz

where o = 10, p = 28, and 5 = 8/3 [7].

2) Rossler Attractor:

dx

_— = =Yy — 8
7t Y=z (8)
dy

i T + ay, 9
dz

—_—= — 1
7 b+ z(z —c), (10)

with parameters ¢ = 0.2, b = 0.2, and ¢ = 5.7 [8].
3) Henon Map:

Tng1 =1 — azl + y, (11)
Ynt1 = bz, (12)
with a = 1.4 and b = 0.3 [9].
4) Duffing Oscillator:
dx
& 13
Y (13)
dv 3
pri —ov — ax — fa° + 7y cos(wt), (14)
where 6 = 0.5, « = —1.0, 8 = 1.0, v = 0.3, and
w = 1.2 [10].

5) Mackey-Glass Equation:

dx zt—7)

=B ),

14+x(t—T1)" (15)

with 6 =0.2, vy =0.1, 7 =17, and n = 10 [11].

These systems were selected to cover a range of behaviors,
from continuous-time chaotic attractors (Lorenz, Rossler) to
discrete-time maps (Henon) and driven systems (Duffing),
as well as delay differential equations (Mackey-Glass). This
diversity enables a wide evaluation of the AERC model’s
ability to generalize across varying dynamical properties.

B. Performance Metrics

To evaluate the prediction quality of the AERC model, two
key performance metrics were employed: the Valid Prediction
Time (VPT) and the spectral and histogram similarity. These
metrics provide a comprehensive assessment of the model’s
accuracy and stability in both open-loop and closed-loop
configurations.
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Fig. 2. (a) Time series of predictions for all five dynamical systems in a closed-loop configuration. The plots show the true and predicted values. (b) Output

layer weight values for 100 example nodes over the same time period.

1) Valid Prediction Time (VPT): The VPT measures the
duration over which the model’s predictions remain within an
acceptable error threshold in a closed-loop configuration. It
is particularly relevant for assessing short-term stability and
accuracy in chaotic systems. VPT is defined as the time 7' for
which the normalized error du; satisfies:

—d;?
5Ul: |yl l| <,

(e = ) l?)
where, (-) denotes the time average and € is the error threshold,
typically set to 0.4. The VPT metric is expressed in terms of
the system’s characteristic timescale, the Lyapunov time.

2) Power Spectra and Histogram Similarity: To compare
two power spectra or histograms, we employ the Pearson
correlation coefficient, which quantifies the linear relationship
between them. The correlation coefficient is defined as:

(16)

correlation = M,
Os,0s,
where cov(si,sq) represents the covariance, and os, and oy,
are the standard deviations of s; and so, respectively. A value
near 1 indicates a strong linear correlation, suggesting a high
degree of similarity between the spectra or histograms.

IV. RESULTS
A. Prediction Accuracy

Figure 2 illustrates the AERC model’s predictions for all
five dynamical systems, demonstrating its ability to reconstruct
complex trajectories with high accuracy all with one set of
weights. The attention mechanism enables dynamic weighting
of the reservoir states, allowing the model to focus on the
most relevant features of the input data at each time step. This
adaptability ensures robust performance even when simulating
systems with significantly different dynamics.

For example, in the Lorenz system, the model captures the
continuous chaotic patterns over extended time intervals, while
in the Henon map, the discrete steps are reproduced. This is
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Fig. 3. Valid Prediction Time (VPT) measured in the characteristic timescale
of the systems (Lyapunov time) across varying reservoir sizes for the five
dynamical systems. The attention-enhanced ESN demonstrates on par VPT
for all systems except the Mackey-Glass equation. Subfigures: (a) Lorenz
System, (b) Rossler Attractor, (c) Duffing Oscillator, (d) Henon Map, and (e)
Mackey-Glass Delay Differential Equation.

all done with one set of weights. These results highlight the
model’s versatility and its capacity to handle both continuous
and discrete systems.

B. Valid Prediction Time

As shown in Figure 3, the AERC model is on par with
traditional ESNs in Valid Prediction Time (VPT) for most
dynamical systems, and even surpass it in the Rossler system.
The attention mechanism’s ability to dynamically adjust output
weights is a key factor in extending VPT, as it allows the
model to adapt to changing temporal dependencies. This is
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Fig. 4. Histogram similarity between the true and closed-loop time series
measured by the correlation coefficient. (a) shows the AERC and (b) the
classic RC.

especially interesting, as the classic RC is only trained on one
of the tasks at once.

In the Lorenz system and Henon map, the AERC model
demonstrates particularly long VPT, maintaining accurate pre-
dictions. For the Rossler system, which poses challenges to
the classic reservoir approach, the AERC model achieves a
VPT that is way higher.

The exception to this trend is the Mackey-Glass system,
where the AERC model’s VPT does not significantly surpass
that of the traditional ESN and even falls behind a little bit.
This could be attributed to the general bad performance of
the reservoir for the Mackey-Glass system. It seems that the
chosen base reservoir is not well suited for this particual
prediction task.

C. Histogram and Power Spectra Similarity

Figure 4 presents a detailed comparison of the power spectra
and histogram similarity between the true and predicted time
series for all systems, using correlation coefficients. The
AERC model achieves high correlation coefficients values
across the board, indicating a strong alignment between the
predicted and actual state distributions.

If the reservoir is big enough for most systems the cor-
relation coefficient approaches 1.0, reflecting near-perfect re-
construction of the chaotic attractor’s underlying structure.
The classic RC approach on the other hand tends to fail to
reconstruct specific attractors, especially the Roessler system.

V. CONCLUSION

This study demonstrates the significant advantages of incor-
porating an attention mechanism into the reservoir computing
framework. The proposed AERC model improves in predicting
chaotic systems, achieving improvements in both short-term
accuracy and long-term stability. By dynamically prioritizing

the most relevant reservoir states, the attention mechanism
enhances the model’s adaptability across a diverse range of
dynamical systems.

The analysis of prediction accuracy, Valid Prediction Time,
and histogram similarity underscores the AERC model’s po-
tential as a universal simulator for chaotic and complex
systems. While the model performs exceptionally well for
most systems, future work could explore further optimizations
to reduce the number of weights and the chosen reservoir basis.
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