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Abstract—Accurate traffic prediction is crucial for enhancing
the performance of intelligent cellular networks, as it directly
impacts the effective allocation of network resources and user
satisfaction. The instability and dynamics of traffic data pose
challenges to centralized prediction methods. These methods are
limited in prediction accuracy and may lead to issues concern-
ing data privacy breaches and response delays. Furthermore,
traditional Federated Learning (FL) typically employs a simple
averaging strategy during model aggregation, which does not
consider the heterogeneity of client data, thereby affecting the
generalization performance of the global model. Therefore, this
study proposes a wireless traffic prediction model that combines
FL, Long Short-Term Memory (LSTM), and Kolmogorov-Arnold
Networks (KAN). The aim is to enhance prediction accuracy
while ensuring data privacy. The model leverages edge com-
puting and FL techniques, enabling multiple edge devices to
train LSTM models locally. By integrating KAN to explore
the inherent complexity of traffic data, it enhances the model’s
adaptability. Furthermore, the FedNova model is introduced,
which thoroughly considers the heterogeneity of data among
devices and optimizes the process of updating model parameters.
The extensive experimental results conducted on the Milano
real dataset demonstrate that the FedNova-LSTM-KAN model
exhibits significant advantages compared to existing centralized
and FL methods when dealing with uneven client traffic data.

Index Terms—Traffic Prediction, Federated Learning (FL),
Kolmogorov-Arnold Networks (KAN), Data Privacy

I. INTRODUCTION

In the current transition to 6G networks, mobile traffic
prediction is crucial for enhancing the efficiency of mobile net-
work management. Currently, traffic prediction primarily relies
on centralized learning methods, which necessitate transferring
a large amount of raw data to data centers to train a unified
prediction model [1]. During this process, data transmission
and signal overhead may rapidly consume network resources
and affect data transmission efficiency. At the same time, the
complex spatiotemporal correlations caused by user mobility
pose higher requirements for model capture and modeling
techniques. Accurately predicting data transmission at the
network level is a challenge that needs to be addressed.
The main contributions of the model proposed in this article
include the following three aspects.

e Introducing the FedNova framework fully utilizes its
advantages in distributed learning environments. Through

its unique standardized averaging strategy, it effectively
solves the heterogeneity problem of different devices
in the optimization objective, improving the model’s
generalization ability and convergence speed.

e By combining LSTM with KAN techniques, a traffic
prediction model tailored for heterogeneous base sta-
tion data has been designed. The application of KAN
techniques enhances the model’s ability to identify and
predict network traffic fluctuation patterns, particularly
demonstrating significant advantages in analyzing and
fitting traffic characteristics among different base stations.

e Extensive experimental validations of the FedNova-
LSTM-KAN model were conducted on three real-world
datasets. The experiments were conducted from three
different perspectives, and the results confirmed that our
framework exhibits higher accuracy and generalization
ability in traffic prediction tasks.

II. RELATED WORK

Traffic prediction is currently a hot research topic. With the
development of technology, deep learning, especially RNN and
LSTM, has shown great potential in mobile traffic prediction.
A neural network capable of identifying cyclic patterns in
various indicators was designed and implemented in reference
[2]. Experimental results showed that the neural network can
process prediction tasks faster and more accurately in a custom
architecture. In practical applications, transferring a large
amount of data to a single data center may raise concerns about
data confidentiality, privacy protection, and data transmission
requirements. FL technology provides an effective solution
to protect data privacy across multiple devices by avoiding
sharing raw data.

In practical applications, parallel modeling of community
traffic reaching tens of millions of orders of magnitude faces
enormous challenges. FL technology [3], [4] provides an ef-
fective solution to protect data privacy across multiple devices
by avoiding sharing raw data. For example, the FedProx
algorithm [5] limits the distance between local model updates
and global models by introducing adjustable regularization
terms. This method helps to maintain consistency in model
updates in heterogeneous networks, prevent local models from



deviating too far from the global optimal solution, and thus
improve the convergence of FL. The FedAtt algorithm [6]
introduces an attention mechanism to consider the contribution
of different clients to the global model. This mechanism
can assign different weights to clients, allowing clients who
contribute more to the global model’s generalization ability
to have a higher influence in model updates. Although these
methods address heterogeneity issues in the FL framework,
there is still room for improvement. Our method utilizes the
FedNova algorithm to consider client personalized features
during model aggregation, and responds to client personalized
needs through adaptive local updates, weight adjustments, and
asynchronous update support. In addition, integrating LSTM
enables the model to capture time series features and improve
prediction accuracy. Finally, by using KAN to model nonlinear
relationships, the adaptability and generalization ability of
the model to heterogeneous data were enhanced, making it
perform better in complex problems such as mobile traffic
prediction.

III. PROPOSED FRAMEWORK FOR TRAFFIC FORECASTING

The steps for constructing the FL-based traffic prediction
framework proposed in this paper are as follows: Initially, on
each mobile edge computing node, the LSTM-KAN model is
used to train local traffic data. Subsequently, with the support
of the cloud server, leveraging the FedNova strategy, the
independently trained LSTM-KAN models are aggregated into
a unified and more powerful traffic prediction model, namely
FedNova-LSTM-KAN. This section will comprehensively de-
scribe the training process of the LSTM-KAN model deployed
on the mobile edge computing nodes, as well as how the
cloud server utilizes the FedNova algorithm to construct the
FedNova-LSTM-KAN model.

A. Overall Framework

This section provides a detailed introduction to the proposed
traffic prediction framework that combines the FedNova and
LSTM-KAN models. The framework consists of a central
server and multiple edge clients, as illustrated in Fig. 1.
Firstly, the data from each client is preprocessed to ensure its
suitability. Subsequently, the server initializes a global model
and sends the initial parameters to all clients. Each client
independently trains the LSTM-KAN model based on local
data and adjusts parameters through optimization algorithms to
enhance model performance. During the training process, after
completing model updates, the clients upload their parameters
to the server. The server utilizes the FedNova algorithm to
weight and integrate the uploaded model parameters based
on each client’s data characteristics and quality, forming new
parameters for the global model. These updated parameters are
then distributed back to the clients for further optimization of
their local models. Through multiple rounds of iterative train-
ing, the model undergoes continuous optimization between the
clients and the server until it meets the specified performance
standards. Finally, the clients evaluate the trained global model
using their local test datasets to assess its prediction accuracy.
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Fig. 1. Federated Learning Traffic Prediction Framework based on
LSTM-KAN Model.

B. Client Model

LSTM is able to identify long-term dependencies in time
series data, mainly due to its unique internal mechanisms,
including the gate system of forgetting mechanism, input
mechanism, and output mechanism, which work together to
maintain or update cellular states. Such architecture endows
LSTM with strong performance in tasks involving sequential
data processing, language modeling, and time series predic-
tion.

KAN is a technique that integrates the principles of Kol-
mogorov complexity and Arnold transformation into neural
network architectures. Integrating the Arnold transformation
into neural networks can enhance the ability of the KAN
technique to simulate temporal dynamics and internal relation-
ships within sequential data. As a revolutionary neural network
structure, KAN differs from conventional multilayer percep-
trons by applying activation functions to the weights of the
network. This makes each weight a trainable one-dimensional
function, typically represented using spline functions, replac-
ing traditional linear weights. In the KAN network, nodes
only perform summation operations on input signals without
involving nonlinear processing. This simplified design not only
makes the model more concise but also enhances its accuracy
and parameter utilization in tasks such as data modeling and
solving partial differential equations.

Combining LSTM with KAN can build a powerful predic-
tive model that not only inherits the advantages of LSTM in
handling sequential data but also integrates the ability of KAN
to enhance the network in capturing complex patterns and
regularities in the data. Fig. 2 illustrates the basic framework
structure of the LSTM-KAN model.

The equations involved in the LSTM-KAN model are as
follows:

Forget gate:

ft =0 Wy [he—1, 2] + by) (1)

Input gate:
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The forget gate determines which information to retain or
discard from the cell state. This decision is based on the
current time step’s input x; and the previous time step’s
hidden state h,_;, implemented through a sigmoid function
with weights W, and biases b¢. The input gate is responsible
for determining which information in the current time step is
important and should be added to the cell state. This includes
the input gate ¢; calculated by the sigmoid function and the
candidate values g; generated by the tanh function, where the
weights are denoted by W; and W, and the biases are denoted
by b; and b,.

The update of the cell state C; combines the outputs of
the forget gate and the input gate, as well as the cell state
from the previous time step C;_1. The output gate determines
the value of the next hidden state, which involves the current
time step’s input x; and the previous time step’s hidden state
h¢—1, implemented through a sigmoid function with weights
W, and bias b,,, along with a tanh function. ® is the functional
matrix, ®; is the functional matrix of the [-th layer of KAN,
q is the input dimension, p is the output dimension, and
>, ¢iBi(ht) represents the linear combination parameterized
by B-splines, where b(h;) represents the activation function.
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Fig. 3. Workflow of Federated Learning.

Through these computational steps, the client model is capable
of effectively handling long sequence data and demonstrating
superior performance in various time series analysis tasks.

C. Server-side ModelClient Model

In conventional approaches, centralized machine learning
algorithms or centralized computing methods typically require
data to be sent from various nodes to a central server for model
training and processing. This approach is not only inefficient
but also poses risks of data leakage. The core advantage of
FL lies in its ability to overcome the limitations of traditional
centralized algorithms, especially when dealing with large-
scale distributed data. The workflow of FL is depicted in Fig.
3, detailing the entire process from local model training to
server-side model aggregation.

The clients are responsible for preprocessing and segment-
ing local data, while the server oversees the configuration
and initialization of the global model. The server sends the
initial parameters of the global model to the clients, based
on which the clients train and optimize their local models.
After optimization, the clients send back the updated model
parameters to the server, which integrates these parameters



to update the global model. The updated global model is
then distributed to the clients for the next round of training.
This process will be repeatedly iterated through multiple
rounds until the model training achieves satisfactory results.
Ultimately, the clients will evaluate the performance of the
model using their local test datasets.

In most FL algorithms, this process iterates continuously
until the model training converges or the number of itera-
tions reaches a predetermined limit. The FedNova algorithm
employed in this paper adopts the core idea of normalizing
the local gradients of each client by averaging them based on
the number of local updates performed by the client, rather
than simply averaging the unnormalized local gradients. This
approach helps address data heterogeneity issues, enhances
model performance, and reduces communication overhead.
The detailed procedures of FedNova and other related algo-
rithms used in this study are outlined in explicit algorithmic
forms, such as Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

The experimental section conducts comparative analysis
from three dimensions. 1) Comparing the proposed FedNova-
LSTM-KAN model with traditional traffic prediction mod-
els validates that FL, represented by FedNova, outperforms
traditional centralized learning. 2) Contrasting the proposed
FedNova-LSTM-KAN with FedNova-LSTM and LSTM vali-
dates that FL based on LSTM-KAN outperforms conventional
methods. 3) Comparing the FL method based on LSTM-KAN
with five FL strategies: FedAvg, FedAdagrad, FedYogi, Fe-
dAvgM, and FedAdam, the FedNova algorithm demonstrates
its advantage in solving the problem of “target inconsistency”
caused by differences in client data distribution and computing
speed.

A. Dataset

The dataset used in this study is sourced from the Tele-
com Italia Big Data Challenge [7]. This dataset encompasses
detailed communication traffic records from two regions in
Italy: Milan and Trentino. The focus of the study was on the
traffic data of Milan, which was divided into 10,000 regions.
Each region has widely recorded the traffic usage of users
in three different communication activities: SMS, voice call
and Internet service. The data covers a two-month period
from November 1, 2013 to January 1, 2014 with the raw
data recorded at 10-minute intervals. To enhance the efficiency
and accuracy of model training, this study resampled the data
to record once per hour, reducing the potential impact of
inadequate data volume within individual time intervals.

B. Experimental Environment and Parameter Settings

During the model training process, the dataset is initially
split with 20% set aside for validation and the remaining 80%
used for training. The LSTM network model parameters are
set with a hidden size of 128 and the number of layers set to
1. Gradually adjusting parameters during the training process
to achieve an optimal model. The learning rate is set to 0.001,

Algorithm 1 Federated Learning Algorithms

Input: local datasets D%, number of clients N, number of
federated rounds 7', number of local epochs FE, learning
rate 7, beta, 81,02 € [0,1) for FedAvgM, FedYogi, A
degree of adaptivity
Output: Final global model parameters vector w
1: Server executes:
2: Initialize w°
3fort=0to7 —1 do

T

4: Sample a set of parties S;

> T“_ZieSJDi‘

6: for all i € S; in parallel do

7: Send the global model w! to client C;
8 Aw!, 7; + LocalTraining(i, w")

9: end for ;

100 AW Y, %sz

11 if FedAvg/FedProx then

12: wit «— wt — nAW

13: else if FedNova then . .
14: wit! «— wt — 77721'65;1']3 |7 Y ies, %sz
15: else if FedAvgM then '
16: Ut < ﬂut_l + AW

17: witl — wt — uy

18: else if FedAdagrad then

19: Ut — Up—1 + AW?
20: wtt — wt + n%
21: else if FedYogi then
22: mg <— ﬁlmt,1 + (1 — ﬁl)AW

23: up < up—1 — (1 — Bo) AW 2sign(us_1 — AW?)
24: wit — wt + 77\/%er
25: else if FedAdam then
26: myg <— ﬂlmt,1 + (1 — ﬁl)AW
27: U < Bgut71 + (1 — BQ)AW2

28: wit — wh + Uhyoremy
29: end if

30: end for

T

31: return w
32: Client executes:

33: For every algorithm: L(w;b) = >, e, w;z;y)
34: For FedProx: L(w;b) = 3_, ,yep lwi a5 y)+5 Jw — wt\Q

with a Batch size of 32 and Epoch size of 300. The optimizer
selected is Adam, with FL rounds set to 100.

The hardware setup for the experiment includes a device
running the Windows 11 operating system, equipped with an
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz processor, 8
GB of memory, an Intel(R) UHD Graphics 620 GPU, and two
additional GPUs. In terms of software environment, Python
version 3.10.14 and Torch version 2.3.0 are used.

C. Evaluation Metrics

This study employed two evaluation metrics, Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE), to



measure the accuracy of the model’s predictive performance.
Specifically, the considered metrics are defined as follows:

1’!1
MAE = — i — 11
nE lyi — il (1)

i=1

12)

where y; represents the actual value of the i-th traffic, y; rep-
resents the predicted value of the i-th traffic, and n represents
the number of data points included in the test set.

D. Comparison of Federated Learning and Centralized Learn-
ing Algorithms

In this section, the proposed FL algorithm is compared
with other popular centralized learning algorithms in terms of
performance. On the same dataset, we evaluated the predictive
performance of CNN, RNN, GRU, Transformer, Bi-LSTM,
LSTM-KAN, Bi-LSTM-KAN, and Encoder-Decoder models,
comparing their predictive errors with the FedNova-LSTM-
KAN model proposed in this study. During this process,
centralized learning algorithms aggregate the traffic data from
the three areas, utilizing a global model for overall traffic
prediction. The RMSE and MAE of all these customized
models are averaged to form a single metric, "Avg.”, to
measure the predictive accuracy of the FedNova-LSTM-KAN
model. Specific data can be found in Table I.

On the selected three traffic datasets, compared to the
best-performing traditional centralized method, the Bi-LSTM
model, the FedNova-LSTM-KAN model achieved a reduction
of 12.2% in RMSE and 13.2% in MAE. Compared with
existing models, the FedNova LSTM-KAN model proposed
in this study exhibits superior performance. This achievement
is attributed to the successful integration of LSTM’s expertise
in processing sequential data and KAN’s advantage in function
approximation, effectively capturing the temporal and spatial
features of traffic data. In addition, the model also possesses
interpretability and interactivity that MLP lacks, and can
achieve higher prediction accuracy with fewer parameters,
demonstrating its excellent parameter efficiency.

E. Ablation Study

To evaluate the stability and robustness of the proposed
model in this study, we conducted ablation experiments to
identify the key components that influence the model’s per-
formance. In the ablation experiments, we specifically focused
on centralized learning methods conducted within the same re-
gion, conventional FL strategies, and the FL strategy proposed
in this study that integrates KAN.

As shown in Table II, we conducted an analysis of the
contributions of FedNova and KAN. FedNova-LSTM-KAN
performed the best in terms of predictive accuracy, followed
by FedNova-LSTM, with LSTM showing relatively poorer
performance. From Table 3, it is evident that our method
outperforms centralized learning and standard FL methods

in traffic prediction performance across the three datasets.
Compared to centralized LSTM learning, after training with
our method, the RMSE values for the three datasets all show
a decreasing trend. The RMSE performance for datal, data2,
and data3 decreased by approximately 27.7%, 52.3%, and
14.8% respectively. The MAE performance for datal, data2,
and data3 decreased by approximately 32.2%, 72.2%, and
17.4% respectively.

F. Comparison of Different Federated Learning Strategies

To further validate the effectiveness of the proposed research
method, especially in examining the performance of different
FL strategies when dealing with heterogeneous data, this
section conducts a comparative analysis between five FL
strategies (FedAvg, FedAdgrad, FedYogi, FedAdam, and Fe-
dAvgM) in traffic data prediction and the predictive results of
the model proposed in this paper. Through this comparison, we
can more accurately assess the performance of the proposed
model in real-world applications.

Table III presents a comparative analysis of six FL al-
gorithms, namely FedAvg, FedAdagrad, FedYogi, FedAvgM,
FedAdam, and FedNova, in terms of their performance on
traffic prediction tasks, as measured by RMSE and MAE
metrics. The experimental results indicate that compared to
FedAvg, FedAdagrad, FedYogi, FedAvgM, and FedAdam,
FedNova achieved a decrease in RMSE of 3.0%, 9.2%, 8.0%,
22.8%, 12.9% respectively, and a decrease in MAE of 6.2%,
13.8%, 15.6%, 28.1%, 22.5% respectively. The improvement
in model performance can be attributed to the FedNova algo-
rithm, which, after initial training at the server end, allows fine-
tuning on individual client devices using local data, thereby
enabling the model to better adapt to their respective data
characteristics.

V. CONCLUSION

In response to the limitations of traditional centralized traffic
prediction methods in terms of data throughput and prediction
accuracy, this study proposes a traffic prediction method based
on FedNova-LSTM-KAN. Through a series of simulation
experiments, we have derived several key conclusions:

e Compared to centralized models, our model achieves
lower prediction errors while reducing data exchanges.
This indicates that FedNova can enhance prediction ac-
curacy while reducing data transmission requirements.

o Through ablation experiments, we validated the key con-
tributions of KAN technology and the FedNova algorithm
in enhancing model performance. In the experiments, in-
crementally integrating FedNova with KAN significantly
and consistently improved the efficiency of the model,
highlighting the superiority of the proposed model in
traffic data prediction and time series modeling.

e Among numerous comparisons of FL algorithms, the
combination of LSTM-KAN and FedNova demonstrates
significant performance advantages. The FedNova algo-
rithm effectively integrates individual differences and
improves the adaptability and generalization ability of the



TABLE 1. Comparison between this method and traditional deep learning methods.

Model RMSE MAE
datal data2 data3 Avg datal data2 data3 Avg
CNN 13.5073  15.5959 49.85 263177 129927 12.6491 31.6009  19.0809
RNN 6.068 14.7363  47.9939  22.9327 3.9935 10.6626  28.6122  14.4228
GRU 5.5909 10.7789  49.3275  21.8991 3.5843 6.2459 29.6809  13.1704
Transformer 24.599 18.7123  49.0107  30.7740 24.1948 16.1726  29.7974  23.3883
Bi-LSTM 4.4755 10.801 48.1306  21.1357  2.9493 8.2449 25.3446  12.1796
LSTM-KAN 4.6393 9.3991 47.3947  20.4777 2.9966 6.1 27.584 12.2269
Bi-LSTM-KAN 16.4564  15.8133 46.2226  26.1641  16.1308  14.3116  26.7727  19.0717
Encoder-Decoder 15.6929 163037  57.5878  29.8615 5.8126 7.3247 33.8788  15.6720
FedNova-LSTM-KAN 5.2439 7.9341 42.464 18.5473 4.2337 4.1061 23.3855 10.5751
TABLE II. Comparison of Ablation Experiment Data.
Model RMSE MAE
datal data2 data3 Avg datal data2 data3 Avg
LSTM 7.2533  16.6293  49.8247 245691 6.2455 14.7814  28.3003  16.4424
FedNova-LSTM 5.3853 9.6705 44.878 19.9779  4.3652 6.9931 25.7207  12.3597
FedNova-LSTM-KAN  5.2439  7.9341 42.464 18.5473  4.2337  4.1061 23.3855  10.5751
TABLE IIIl. RMSE and MAE of Different Federated Learning Methods.
Model RMSE MAE
datal data2 data3 Avg datal data2 data3 Avg
FedAvg-LSTM-KAN 5.4026 8.0526 43.9209  19.1254 44308 4.692 24.6922  11.2717
FedAdagrad-LSTM-KAN  5.3704 8.4594 474269 20.4189 43033 4.5283 27.9576  12.2631
FedYogi-LSTM-KAN 6.9765 8.7394 447925 20.1695 6.2806 5.5071  25.8135  12.5337
FedAvgM-LSTM-KAN 12,9249  13.5322  45.6592 24.0388  8.2225 9.4794 26.4097 14.7039
FedAdam-LSTM-KAN 5.5404 13.0488  45.2734 212875 41597 9.8154 269731 13.6494
FedNova-LSTM-KAN 5.2439 7.9341 42.464 18.5473  4.2337 4.1061  23.3855  10.5751
model through personalized fine-tuning and normalized REFERENCES

averaging techniques.

Overall, the traffic prediction method proposed in this study
has demonstrated outstanding performance across multiple
base station traffic prediction tasks. Future research plans to
expand the range of traffic data, incorporating factors such as
weather and base station density to improve prediction accu-
racy, and optimize federated learning algorithms to enhance
accuracy.
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