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Abstract—Accurate traffic prediction is crucial for enhancing
the performance of intelligent cellular networks, as it directly
impacts the effective allocation of network resources and user
satisfaction. The instability and dynamics of traffic data pose
challenges to centralized prediction methods. These methods are
limited in prediction accuracy and may lead to issues concern-
ing data privacy breaches and response delays. Furthermore,
traditional Federated Learning (FL) typically employs a simple
averaging strategy during model aggregation, which does not
consider the heterogeneity of client data, thereby affecting the
generalization performance of the global model. Therefore, this
study proposes a wireless traffic prediction model that combines
FL, Long Short-Term Memory (LSTM), and Kolmogorov-Arnold
Networks (KAN). The aim is to enhance prediction accuracy
while ensuring data privacy. The model leverages edge com-
puting and FL techniques, enabling multiple edge devices to
train LSTM models locally. By integrating KAN to explore
the inherent complexity of traffic data, it enhances the model’s
adaptability. Furthermore, the FedNova model is introduced,
which thoroughly considers the heterogeneity of data among
devices and optimizes the process of updating model parameters.
The extensive experimental results conducted on the Milano
real dataset demonstrate that the FedNova-LSTM-KAN model
exhibits significant advantages compared to existing centralized
and FL methods when dealing with uneven client traffic data.

Index Terms—Traffic Prediction, Federated Learning (FL),
Kolmogorov-Arnold Networks (KAN), Data Privacy

I. INTRODUCTION

In the current transition to 6G networks, mobile traffic
prediction is crucial for enhancing the efficiency of mobile net-
work management. Currently, traffic prediction primarily relies
on centralized learning methods, which necessitate transferring
a large amount of raw data to data centers to train a unified
prediction model [1]. During this process, data transmission
and signal overhead may rapidly consume network resources
and affect data transmission efficiency. At the same time, the
complex spatiotemporal correlations caused by user mobility
pose higher requirements for model capture and modeling
techniques. Accurately predicting data transmission at the
network level is a challenge that needs to be addressed.
The main contributions of the model proposed in this article
include the following three aspects.
• Introducing the FedNova framework fully utilizes its

advantages in distributed learning environments. Through

its unique standardized averaging strategy, it effectively
solves the heterogeneity problem of different devices
in the optimization objective, improving the model’s
generalization ability and convergence speed.

• By combining LSTM with KAN techniques, a traffic
prediction model tailored for heterogeneous base sta-
tion data has been designed. The application of KAN
techniques enhances the model’s ability to identify and
predict network traffic fluctuation patterns, particularly
demonstrating significant advantages in analyzing and
fitting traffic characteristics among different base stations.

• Extensive experimental validations of the FedNova-
LSTM-KAN model were conducted on three real-world
datasets. The experiments were conducted from three
different perspectives, and the results confirmed that our
framework exhibits higher accuracy and generalization
ability in traffic prediction tasks.

II. RELATED WORK

Traffic prediction is currently a hot research topic. With the
development of technology, deep learning, especially RNN and
LSTM, has shown great potential in mobile traffic prediction.
A neural network capable of identifying cyclic patterns in
various indicators was designed and implemented in reference
[2]. Experimental results showed that the neural network can
process prediction tasks faster and more accurately in a custom
architecture. In practical applications, transferring a large
amount of data to a single data center may raise concerns about
data confidentiality, privacy protection, and data transmission
requirements. FL technology provides an effective solution
to protect data privacy across multiple devices by avoiding
sharing raw data.

In practical applications, parallel modeling of community
traffic reaching tens of millions of orders of magnitude faces
enormous challenges. FL technology [3], [4] provides an ef-
fective solution to protect data privacy across multiple devices
by avoiding sharing raw data. For example, the FedProx
algorithm [5] limits the distance between local model updates
and global models by introducing adjustable regularization
terms. This method helps to maintain consistency in model
updates in heterogeneous networks, prevent local models from



deviating too far from the global optimal solution, and thus
improve the convergence of FL. The FedAtt algorithm [6]
introduces an attention mechanism to consider the contribution
of different clients to the global model. This mechanism
can assign different weights to clients, allowing clients who
contribute more to the global model’s generalization ability
to have a higher influence in model updates. Although these
methods address heterogeneity issues in the FL framework,
there is still room for improvement. Our method utilizes the
FedNova algorithm to consider client personalized features
during model aggregation, and responds to client personalized
needs through adaptive local updates, weight adjustments, and
asynchronous update support. In addition, integrating LSTM
enables the model to capture time series features and improve
prediction accuracy. Finally, by using KAN to model nonlinear
relationships, the adaptability and generalization ability of
the model to heterogeneous data were enhanced, making it
perform better in complex problems such as mobile traffic
prediction.

III. PROPOSED FRAMEWORK FOR TRAFFIC FORECASTING

The steps for constructing the FL-based traffic prediction
framework proposed in this paper are as follows: Initially, on
each mobile edge computing node, the LSTM-KAN model is
used to train local traffic data. Subsequently, with the support
of the cloud server, leveraging the FedNova strategy, the
independently trained LSTM-KAN models are aggregated into
a unified and more powerful traffic prediction model, namely
FedNova-LSTM-KAN. This section will comprehensively de-
scribe the training process of the LSTM-KAN model deployed
on the mobile edge computing nodes, as well as how the
cloud server utilizes the FedNova algorithm to construct the
FedNova-LSTM-KAN model.

A. Overall Framework

This section provides a detailed introduction to the proposed
traffic prediction framework that combines the FedNova and
LSTM-KAN models. The framework consists of a central
server and multiple edge clients, as illustrated in Fig. 1.
Firstly, the data from each client is preprocessed to ensure its
suitability. Subsequently, the server initializes a global model
and sends the initial parameters to all clients. Each client
independently trains the LSTM-KAN model based on local
data and adjusts parameters through optimization algorithms to
enhance model performance. During the training process, after
completing model updates, the clients upload their parameters
to the server. The server utilizes the FedNova algorithm to
weight and integrate the uploaded model parameters based
on each client’s data characteristics and quality, forming new
parameters for the global model. These updated parameters are
then distributed back to the clients for further optimization of
their local models. Through multiple rounds of iterative train-
ing, the model undergoes continuous optimization between the
clients and the server until it meets the specified performance
standards. Finally, the clients evaluate the trained global model
using their local test datasets to assess its prediction accuracy.

Fig. 1. Federated Learning Traffic Prediction Framework based on
LSTM-KAN Model.

B. Client Model

LSTM is able to identify long-term dependencies in time
series data, mainly due to its unique internal mechanisms,
including the gate system of forgetting mechanism, input
mechanism, and output mechanism, which work together to
maintain or update cellular states. Such architecture endows
LSTM with strong performance in tasks involving sequential
data processing, language modeling, and time series predic-
tion.

KAN is a technique that integrates the principles of Kol-
mogorov complexity and Arnold transformation into neural
network architectures. Integrating the Arnold transformation
into neural networks can enhance the ability of the KAN
technique to simulate temporal dynamics and internal relation-
ships within sequential data. As a revolutionary neural network
structure, KAN differs from conventional multilayer percep-
trons by applying activation functions to the weights of the
network. This makes each weight a trainable one-dimensional
function, typically represented using spline functions, replac-
ing traditional linear weights. In the KAN network, nodes
only perform summation operations on input signals without
involving nonlinear processing. This simplified design not only
makes the model more concise but also enhances its accuracy
and parameter utilization in tasks such as data modeling and
solving partial differential equations.

Combining LSTM with KAN can build a powerful predic-
tive model that not only inherits the advantages of LSTM in
handling sequential data but also integrates the ability of KAN
to enhance the network in capturing complex patterns and
regularities in the data. Fig. 2 illustrates the basic framework
structure of the LSTM-KAN model.

The equations involved in the LSTM-KAN model are as
follows:

Forget gate:

ft = σ (Wf [ht−1, xt] + bf ) (1)

Input gate:

it = σ (Wi [ht−1, xt] + bi) (2)

gt = tanh (Wg [ht−1, xt] + bg) (3)



Fig. 2. Traffic Prediction Architecture based on the LSTM-KAN Model.

Cell state:
ct = ft × ct−1 + it × gt (4)

Output gate:

ot = σ (Wo [ht−1, xt] + bo) (5)

ht = ot × tanh(ct) (6)

Kolmogorov-Arnold Networks:

KAN(ht) = (Φl−1 ◦ Φl−2 ◦ · · · ◦ Φ2 ◦ Φ1)ht (7)

Φ = {ϕq,p} (8)

ϕ(ht) = w

(
b(ht) +

∑
i

ciBi(ht)

)
(9)

b(ht) =
x

1 + e−x
(10)

The forget gate determines which information to retain or
discard from the cell state. This decision is based on the
current time step’s input xt and the previous time step’s
hidden state ht−1, implemented through a sigmoid function
with weights Wf and biases bf . The input gate is responsible
for determining which information in the current time step is
important and should be added to the cell state. This includes
the input gate it calculated by the sigmoid function and the
candidate values gt generated by the tanh function, where the
weights are denoted by Wi and Wc, and the biases are denoted
by bi and bc.

The update of the cell state Ct combines the outputs of
the forget gate and the input gate, as well as the cell state
from the previous time step Ct−1. The output gate determines
the value of the next hidden state, which involves the current
time step’s input xt and the previous time step’s hidden state
ht−1, implemented through a sigmoid function with weights
Wo and bias bo, along with a tanh function. Φ is the functional
matrix, Φl is the functional matrix of the l-th layer of KAN,
q is the input dimension, p is the output dimension, and∑

i ciBi(ht) represents the linear combination parameterized
by B-splines, where b(ht) represents the activation function.

Fig. 3. Workflow of Federated Learning.

Through these computational steps, the client model is capable
of effectively handling long sequence data and demonstrating
superior performance in various time series analysis tasks.

C. Server-side ModelClient Model

In conventional approaches, centralized machine learning
algorithms or centralized computing methods typically require
data to be sent from various nodes to a central server for model
training and processing. This approach is not only inefficient
but also poses risks of data leakage. The core advantage of
FL lies in its ability to overcome the limitations of traditional
centralized algorithms, especially when dealing with large-
scale distributed data. The workflow of FL is depicted in Fig.
3, detailing the entire process from local model training to
server-side model aggregation.

The clients are responsible for preprocessing and segment-
ing local data, while the server oversees the configuration
and initialization of the global model. The server sends the
initial parameters of the global model to the clients, based
on which the clients train and optimize their local models.
After optimization, the clients send back the updated model
parameters to the server, which integrates these parameters



to update the global model. The updated global model is
then distributed to the clients for the next round of training.
This process will be repeatedly iterated through multiple
rounds until the model training achieves satisfactory results.
Ultimately, the clients will evaluate the performance of the
model using their local test datasets.

In most FL algorithms, this process iterates continuously
until the model training converges or the number of itera-
tions reaches a predetermined limit. The FedNova algorithm
employed in this paper adopts the core idea of normalizing
the local gradients of each client by averaging them based on
the number of local updates performed by the client, rather
than simply averaging the unnormalized local gradients. This
approach helps address data heterogeneity issues, enhances
model performance, and reduces communication overhead.
The detailed procedures of FedNova and other related algo-
rithms used in this study are outlined in explicit algorithmic
forms, such as Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

The experimental section conducts comparative analysis
from three dimensions. 1) Comparing the proposed FedNova-
LSTM-KAN model with traditional traffic prediction mod-
els validates that FL, represented by FedNova, outperforms
traditional centralized learning. 2) Contrasting the proposed
FedNova-LSTM-KAN with FedNova-LSTM and LSTM vali-
dates that FL based on LSTM-KAN outperforms conventional
methods. 3) Comparing the FL method based on LSTM-KAN
with five FL strategies: FedAvg, FedAdagrad, FedYogi, Fe-
dAvgM, and FedAdam, the FedNova algorithm demonstrates
its advantage in solving the problem of ”target inconsistency”
caused by differences in client data distribution and computing
speed.

A. Dataset

The dataset used in this study is sourced from the Tele-
com Italia Big Data Challenge [7]. This dataset encompasses
detailed communication traffic records from two regions in
Italy: Milan and Trentino. The focus of the study was on the
traffic data of Milan, which was divided into 10,000 regions.
Each region has widely recorded the traffic usage of users
in three different communication activities: SMS, voice call
and Internet service. The data covers a two-month period
from November 1, 2013 to January 1, 2014 with the raw
data recorded at 10-minute intervals. To enhance the efficiency
and accuracy of model training, this study resampled the data
to record once per hour, reducing the potential impact of
inadequate data volume within individual time intervals.

B. Experimental Environment and Parameter Settings

During the model training process, the dataset is initially
split with 20% set aside for validation and the remaining 80%
used for training. The LSTM network model parameters are
set with a hidden size of 128 and the number of layers set to
1. Gradually adjusting parameters during the training process
to achieve an optimal model. The learning rate is set to 0.001,

Algorithm 1 Federated Learning Algorithms

Input: local datasets Di, number of clients N , number of
federated rounds T , number of local epochs E, learning
rate η, beta, β1, β2 ∈ [0, 1) for FedAvgM, FedYogi, λ
degree of adaptivity
Output: Final global model parameters vector wT

1: Server executes:
2: Initialize w0

3: for t = 0 to T − 1 do
4: Sample a set of parties St

5: n←
∑

i∈St

∣∣Di
∣∣

6: for all i ∈ St in parallel do
7: Send the global model wt to client Ci

8: ∆wt
i , τi ← LocalTraining(i, wt)

9: end for
10: ∆W ←

∑
i∈St

|Di|
n ∆wt

k

11: if FedAvg/FedProx then
12: wt+1 ← wt − η∆W
13: else if FedNova then
14: wt+1 ← wt − η

∑
i∈St
|Di|τi
n

∑
i∈St

|Di|
nτi

∆wt
k

15: else if FedAvgM then
16: ut ← βut−1 +∆W
17: wt+1 ← wt − ut

18: else if FedAdagrad then
19: ut ← ut−1 +∆W 2

20: wt+1 ← wt + η ∆W√
ut+λ

21: else if FedYogi then
22: mt ← β1mt−1 + (1− β1)∆W
23: ut ← ut−1 − (1− β2)∆W 2sign(ut−1 −∆W 2)
24: wt+1 ← wt + η mt√

ut+λ

25: else if FedAdam then
26: mt ← β1mt−1 + (1− β1)∆W
27: ut ← β2ut−1 + (1− β2)∆W 2

28: wt+1 ← wt + η mt√
ut+λ

29: end if
30: end for
31: return wT

32: Client executes:
33: For every algorithm: L(w; b) =

∑
(x,y)∈b l(w;x; y)

34: For FedProx: L(w; b) =
∑

(x,y)∈b l(w;x; y)+
µ
2 |w − wt|2

with a Batch size of 32 and Epoch size of 300. The optimizer
selected is Adam, with FL rounds set to 100.

The hardware setup for the experiment includes a device
running the Windows 11 operating system, equipped with an
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz processor, 8
GB of memory, an Intel(R) UHD Graphics 620 GPU, and two
additional GPUs. In terms of software environment, Python
version 3.10.14 and Torch version 2.3.0 are used.

C. Evaluation Metrics

This study employed two evaluation metrics, Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE), to



measure the accuracy of the model’s predictive performance.
Specifically, the considered metrics are defined as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (11)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (12)

where yi represents the actual value of the i-th traffic, ŷi rep-
resents the predicted value of the i-th traffic, and n represents
the number of data points included in the test set.

D. Comparison of Federated Learning and Centralized Learn-
ing Algorithms

In this section, the proposed FL algorithm is compared
with other popular centralized learning algorithms in terms of
performance. On the same dataset, we evaluated the predictive
performance of CNN, RNN, GRU, Transformer, Bi-LSTM,
LSTM-KAN, Bi-LSTM-KAN, and Encoder-Decoder models,
comparing their predictive errors with the FedNova-LSTM-
KAN model proposed in this study. During this process,
centralized learning algorithms aggregate the traffic data from
the three areas, utilizing a global model for overall traffic
prediction. The RMSE and MAE of all these customized
models are averaged to form a single metric, ”Avg.”, to
measure the predictive accuracy of the FedNova-LSTM-KAN
model. Specific data can be found in Table I.

On the selected three traffic datasets, compared to the
best-performing traditional centralized method, the Bi-LSTM
model, the FedNova-LSTM-KAN model achieved a reduction
of 12.2% in RMSE and 13.2% in MAE. Compared with
existing models, the FedNova LSTM-KAN model proposed
in this study exhibits superior performance. This achievement
is attributed to the successful integration of LSTM’s expertise
in processing sequential data and KAN’s advantage in function
approximation, effectively capturing the temporal and spatial
features of traffic data. In addition, the model also possesses
interpretability and interactivity that MLP lacks, and can
achieve higher prediction accuracy with fewer parameters,
demonstrating its excellent parameter efficiency.

E. Ablation Study

To evaluate the stability and robustness of the proposed
model in this study, we conducted ablation experiments to
identify the key components that influence the model’s per-
formance. In the ablation experiments, we specifically focused
on centralized learning methods conducted within the same re-
gion, conventional FL strategies, and the FL strategy proposed
in this study that integrates KAN.

As shown in Table II, we conducted an analysis of the
contributions of FedNova and KAN. FedNova-LSTM-KAN
performed the best in terms of predictive accuracy, followed
by FedNova-LSTM, with LSTM showing relatively poorer
performance. From Table 3, it is evident that our method
outperforms centralized learning and standard FL methods

in traffic prediction performance across the three datasets.
Compared to centralized LSTM learning, after training with
our method, the RMSE values for the three datasets all show
a decreasing trend. The RMSE performance for data1, data2,
and data3 decreased by approximately 27.7%, 52.3%, and
14.8% respectively. The MAE performance for data1, data2,
and data3 decreased by approximately 32.2%, 72.2%, and
17.4% respectively.

F. Comparison of Different Federated Learning Strategies

To further validate the effectiveness of the proposed research
method, especially in examining the performance of different
FL strategies when dealing with heterogeneous data, this
section conducts a comparative analysis between five FL
strategies (FedAvg, FedAdgrad, FedYogi, FedAdam, and Fe-
dAvgM) in traffic data prediction and the predictive results of
the model proposed in this paper. Through this comparison, we
can more accurately assess the performance of the proposed
model in real-world applications.

Table III presents a comparative analysis of six FL al-
gorithms, namely FedAvg, FedAdagrad, FedYogi, FedAvgM,
FedAdam, and FedNova, in terms of their performance on
traffic prediction tasks, as measured by RMSE and MAE
metrics. The experimental results indicate that compared to
FedAvg, FedAdagrad, FedYogi, FedAvgM, and FedAdam,
FedNova achieved a decrease in RMSE of 3.0%, 9.2%, 8.0%,
22.8%, 12.9% respectively, and a decrease in MAE of 6.2%,
13.8%, 15.6%, 28.1%, 22.5% respectively. The improvement
in model performance can be attributed to the FedNova algo-
rithm, which, after initial training at the server end, allows fine-
tuning on individual client devices using local data, thereby
enabling the model to better adapt to their respective data
characteristics.

V. CONCLUSION

In response to the limitations of traditional centralized traffic
prediction methods in terms of data throughput and prediction
accuracy, this study proposes a traffic prediction method based
on FedNova-LSTM-KAN. Through a series of simulation
experiments, we have derived several key conclusions:

• Compared to centralized models, our model achieves
lower prediction errors while reducing data exchanges.
This indicates that FedNova can enhance prediction ac-
curacy while reducing data transmission requirements.

• Through ablation experiments, we validated the key con-
tributions of KAN technology and the FedNova algorithm
in enhancing model performance. In the experiments, in-
crementally integrating FedNova with KAN significantly
and consistently improved the efficiency of the model,
highlighting the superiority of the proposed model in
traffic data prediction and time series modeling.

• Among numerous comparisons of FL algorithms, the
combination of LSTM-KAN and FedNova demonstrates
significant performance advantages. The FedNova algo-
rithm effectively integrates individual differences and
improves the adaptability and generalization ability of the



TABLE I. Comparison between this method and traditional deep learning methods.

Model
RMSE MAE

data1 data2 data3 Avg data1 data2 data3 Avg

CNN 13.5073 15.5959 49.85 26.3177 12.9927 12.6491 31.6009 19.0809

RNN 6.068 14.7363 47.9939 22.9327 3.9935 10.6626 28.6122 14.4228

GRU 5.5909 10.7789 49.3275 21.8991 3.5843 6.2459 29.6809 13.1704

Transformer 24.599 18.7123 49.0107 30.7740 24.1948 16.1726 29.7974 23.3883

Bi-LSTM 4.4755 10.801 48.1306 21.1357 2.9493 8.2449 25.3446 12.1796

LSTM-KAN 4.6393 9.3991 47.3947 20.4777 2.9966 6.1 27.584 12.2269

Bi-LSTM-KAN 16.4564 15.8133 46.2226 26.1641 16.1308 14.3116 26.7727 19.0717

Encoder-Decoder 15.6929 16.3037 57.5878 29.8615 5.8126 7.3247 33.8788 15.6720

FedNova-LSTM-KAN 5.2439 7.9341 42.464 18.5473 4.2337 4.1061 23.3855 10.5751

TABLE II. Comparison of Ablation Experiment Data.

Model
RMSE MAE

data1 data2 data3 Avg data1 data2 data3 Avg

LSTM 7.2533 16.6293 49.8247 24.5691 6.2455 14.7814 28.3003 16.4424

FedNova-LSTM 5.3853 9.6705 44.878 19.9779 4.3652 6.9931 25.7207 12.3597

FedNova-LSTM-KAN 5.2439 7.9341 42.464 18.5473 4.2337 4.1061 23.3855 10.5751

TABLE III. RMSE and MAE of Different Federated Learning Methods.

Model
RMSE MAE

data1 data2 data3 Avg data1 data2 data3 Avg

FedAvg-LSTM-KAN 5.4026 8.0526 43.9209 19.1254 4.4308 4.692 24.6922 11.2717

FedAdagrad-LSTM-KAN 5.3704 8.4594 47.4269 20.4189 4.3033 4.5283 27.9576 12.2631

FedYogi-LSTM-KAN 6.9765 8.7394 44.7925 20.1695 6.2806 5.5071 25.8135 12.5337

FedAvgM-LSTM-KAN 12.9249 13.5322 45.6592 24.0388 8.2225 9.4794 26.4097 14.7039

FedAdam-LSTM-KAN 5.5404 13.0488 45.2734 21.2875 4.1597 9.8154 26.9731 13.6494

FedNova-LSTM-KAN 5.2439 7.9341 42.464 18.5473 4.2337 4.1061 23.3855 10.5751

model through personalized fine-tuning and normalized
averaging techniques.

Overall, the traffic prediction method proposed in this study
has demonstrated outstanding performance across multiple
base station traffic prediction tasks. Future research plans to
expand the range of traffic data, incorporating factors such as
weather and base station density to improve prediction accu-
racy, and optimize federated learning algorithms to enhance
accuracy.
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