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Abstract—Multi-attribute editing in generative models has
been a challenging problem, especially in achieving realistic and
disentangled transformations across multiple attributes simul-
taneously. In this work, we propose an approach for multi-
attribute editing in the h-space of diffusion models, where
multiple attributes such as aging, gender and eyeglasses can
be edited simultaneously. Unlike existing methods that require
separate models for each attribute or operate in a highly coupled
latent space, our method harnesses the power of a unified
framework. We learn interpretable attribute directions in the
latent space through supervised training, enabling fine-grained
control over specific attributes without affecting others. This
disentangled editing allows for complex transformations, such
as modifying both age and hairstyle while preserving identity.
By performing edits in the h-space, we ensure high-quality,
coherent transformations, demonstrating the potential for rich
and flexible editing capabilities. The ability to perform multi-
attribute modifications in a single, unified model opens up
new possibilities for applications in computer vision, digital
media, and personalized content creation, making our method
a significant advancement in generative modeling.

Index Terms—Multi attribute Editing, Image Transformation,
Generative Models, Latent space

I. INTRODUCTION

Semantic image editing involves modifying specific at-
tributes of an image, such as changing hair color or simulating
aging, while preserving the overall identity and realism. This
capability has diverse applications in design, visualization, and
targeted data augmentation. Effective editing requires disen-
tangled attribute manipulation and precise control, particularly
when handling multiple attributes simultaneously.

Generative adversarial networks (GANs) [2] have demon-
strated significant potential in image synthesis and semantic
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editing, leveraging latent space representations to achieve fine-
grained attribute control [3]–[5]. Methods like InterFaceGAN
[1] have explored the rich latent properties of GANs, enabling
precise manipulation of facial attributes such as age, gender,
and expression. Similarly, StarGAN [4] allows multi-domain
image-to-image translation, making it possible to modify mul-
tiple attributes simultaneously within a single model. Despite
their successes, GAN-based approaches often face challenges
in disentanglement, limiting their ability to edit multiple
attributes independently and precisely.

Denoising Diffusion Models (DDMs) [6] have emerged
as a powerful alternative to GANs, offering superior image
quality and diversity in synthesis [12]. DDMs operate by
iteratively denoising latent representations, which can be com-
putationally expensive when applied directly in pixel space.
Latent diffusion models [7] address this issue by operating in
a compact latent space, significantly reducing computational
costs. However, these models often require fine-tuning or
additional training to incorporate new attributes, making them
computationally expensive and less practical.

Recently, Kwon et al. [11] introduced h-space, a rich latent
representation derived from the deepest feature maps of pre-
trained DDMs. This h-space encodes semantically meaningful
information, making it particularly suited for interpretable and
disentangled editing. Building on this, Boundary Diffusion [8]
demonstrated a method for single-attribute editing by defining
semantic boundaries in h-space, enabling editing without
requiring fine-tuning. While effective, Boundary Diffusion is
limited to single-attribute editing, leaving the challenge of
multi-attribute manipulation unaddressed.

In this paper, we extend the capabilities of DDMs to enable
multi-attribute editing in h-space. We propose a simple yet
efficient method that identifies semantic boundaries in h-
space using minimal supervision. Unlike previous approaches
that rely on extensive attribute annotations or pre-trained
classifiers, our method requires only 100 curated image pairs



for each attribute, containing examples with and without the
desired attribute. By projecting these image pairs into h-
space and training a linear classifier to define attribute-specific
boundaries, we identify dominant directions corresponding to
semantic attributes. These learned directions enable realistic
and coherent multi-attribute editing for attributes such as age,
smile, glasses, and hairstyle. Our approach demonstrates the
flexibility and power of leveraging h-space for disentangled
and controlled editing, even in a few-shot setting, while
advancing the realism in DDM-based semantic editing.

II. RELATED WORK

A. Latent Space and Diffusion Models for Semantic Editing

Latent space plays a critical role in modern image gen-
eration and editing tasks, offering a compact and structured
representation of high-dimensional data. By leveraging latent
space representations, it is possible to isolate and manipulate
specific semantic attributes while preserving the underlying
details of the image. [5], [9]. This capability makes latent
space essential for applications such as multi-attribute editing
and targeted transformations.

Generative models, such as GANs, have demonstrated the
power of latent spaces for controlling semantic attributes.
AttGAN [3] enables facial attribute editing by focusing on
specific features, such as age. Also, StarGAN [4] enables
multi-attribute editing by performing image-to-image transla-
tion across multiple domains. However, they often lack precise
disentanglement and require extensive re-training for fine-
grained attribute editing. DDMs have emerged as a strong
alternative, introducing a well-structured latent space with
semantically meaningful representations. This enables precise
control and manipulation of attributes without the need for
additional training.

B. Diffusion Models and Their Generative Process

DDMs generate high-quality images by reversing a noise-
adding process, where the forward process introduces noise
step-by-step into a clean image x0. This process results in
a fully noised latent vector xT , sampled from a Gaussian
distribution N (0, I). Mathematically, the forward process is
defined as:

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, 1), (1)

where αt is the noise scheduling factor controlling the level of
noise at each step. The reverse process, parameterized by ϵθ,
predicts the noise ϵ at each step, enabling the recovery of the
clean image x0 from xT . The objective of the reverse process
is to minimize the reconstruction loss over all timesteps:

L = Ex,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
. (2)

This iterative denoising process not only ensures high-
quality synthesis but also facilitates flexibility in semantic ma-
nipulation by working with intermediate latent representations.

C. The Emergence of h-Space in Diffusion Models

While DDMs traditionally operate in pixel space, recent
advancements by Kwon et al. [11] introduced h-space, a
latent space derived from the bottleneck feature maps of U-
Net architectures within DDMs. h-space offers a semantically
enriched and disentangled representation with the following
unique properties:

• Consistency Across Samples: A direction ∆ht produces
similar semantic changes across different images, en-
abling generalized attribute control.

• Intensity Control: The magnitude of ∆ht directly influ-
ences the degree of semantic change, allowing for fine-
grained attribute manipulation.

• Additivity: Linear combinations of different directions
(∆ht,1,∆ht,2, . . .) enable simultaneous and independent
editing of multiple attributes, making h-space particularly
effective for multi-attribute control.

D. Semantic Editing in h-Space

Semantic editing in h-space is achieved by defining
attribute-specific boundaries and applying offsets ∆ht during
the denoising process. Given the arithmetic nature of h-
space, these offsets align closely with semantic directions,
allowing precise manipulation. For instance, the edited latent
representation is given as:

hedit = h+
∑
j

αj∆ht,j , (3)

where αj controls the intensity of the attribute modification,
and ∆ht,j represents the learned direction for a specific
attribute j. This formulation ensures that edits are disentangled
and semantically coherent, preserving the overall identity of
the original image.

E. Applications and Advancements in h-Space

The structured properties of h-space address the limitations
of traditional approaches, such as Boundary Diffusion [8],
which focuses on single-attribute editing. By leveraging linear
combinations of directions, h-space enables efficient multi-
attribute editing, demonstrating its potential for advanced
applications such as face de-identification, targeted editing,
and multi-domain transformations.

Overall, DDMs and their latent h-space offer a robust
framework for high-quality, disentangled, and interpretable
image editing. This approach not only reduces computational
overhead but also introduces a scalable solution for complex
attribute manipulation, setting a new benchmark for semantic
editing tasks.

III. PROPOSED APPROACH

This work focuses on uncovering semantic directions within
the h-space of DDMs, that enables precise and interpretable
editing. This section first introduces our supervised method
to find interpretable directions in DDMs’ h-space. In the
second part, we show how to utilize discovered directions in
the inference process for responsible Multi-attribute editing.



Fig. 1. (a) The attribute directions nj are represented on a latent space,
visualized as a spherical manifold, where each vector corresponds to a
semantic attribute such as “Beard,” “smile,” or “Glasses” (b) A hyperplane
representation is shown, where the attribute directions nj are derived by
training linear classifiers to distinguish the presence or absence of specific
attributes. The red dot represents the latent point of an image, which can
be moved along any learned direction nj to manipulate the corresponding
attribute.

The proposed methodology focuses on leveraging the latent
h-space of the DDM for multi-attribute editing. During the
denoising process, h-space serves as a critical intermediate
representation, encoding rich semantic details of the image.
Attribute-specific boundaries (e.g., ”beard” or ”bald”) are
identified in the latent space using labeled examples. Multi-
attribute editing is achieved by perturbing the h-space repre-
sentation along these boundaries, enabling simultaneous and
independent control over multiple attributes. The learned at-
tribute directions ensure disentanglement, allowing the model
to edit features like aging, facial hair, or hairstyle without
compromising the coherence or identity of the subject. This
flexible approach demonstrates the ability to handle complex
and realistic transformations.

IV. PROBLEM STATEMENT

The objective of this work is to enable controllable semantic
image editing in the latent h-space of DDMs. Given N
attributes, the goal is to discover semantically meaningful
directions {n1,n2, . . . ,nN} in the h-space. Each direction
nj ∈ Rm corresponds to a specific attribute aj and enables
the manipulation of that attribute during the denoising process.
The modification of a latent representation is expressed as:

hedit = h+ αjnj , (4)

where h is the original latent representation, αj is a scalar
controlling the intensity of the change, and nj represents the
direction associated with attribute aj . The objective is to apply
these modifications while preserving the overall structure and
coherence of the generated image.

V. FINDING DIRECTIONS

To uncover interpretable directions in h-space, we utilize
labeled data with binary labels indicating the presence (1) or
absence (−1) of specific attributes. Linear classifiers (SVM)
are trained on the latent representations to separate regions in
the h-space corresponding to these attributes. Each classifier
imposes a hyperplane that separates regions associated with

Fig. 2. Framework Overview: The proposed methodology operates within the
latent h-space of the DDM. The top section illustrates the denoising process of
the U-Net, where h-space captures hierarchical semantic information. Multi-
attribute editing is performed by perturbing the latent representations inh-
space, guided by boundaries learned for individual attributes (e.g., ”beard”
and ”bald”). The bottom section shows how attribute boundaries and semantic
directions are identified and applied to achieve coherent and disentangled
transformations.

the presence and absence of a given attribute. The direction
orthogonal to this hyperplane defines the semantic direction
nj for that attribute.

For attribute manipulation, the latent representation is up-
dated as:

hedit = h+ αjnj , (5)

where traversing along nj increases or decreases the presence
of the attribute aj . For example, this approach can adjust
features like smiling, facial hair, or aging in a disentangled
manner.

A. Multi-Attribute Editing

For multi-attribute editing, multiple semantic directions
{n1,n2, . . . ,nm} are combined. The modified representation
is given by:

hedit = h+

m∑
j=1

αjnj , (6)

where αj controls the intensity of the contribution of each
attribute aj . This enables simultaneous and independent ma-
nipulation of multiple attributes, such as making a person
appear younger while adding glasses.

VI. REAL IMAGE EDITING FOR MULTI-ATTRIBUTE
MODIFICATIONS

We extend the editing approach to real images by first
mapping them into the latent h-space using DDIM inversion.
This allows edits to be applied in h-space in a manner
consistent with generated images. The editing process for real
images is formulated as:

ϵ̄θ(xt, de) = ϵθ(xt, ϕ) + λe (ϵθ(xt, de)− ϵθ(xt, ϕ)) , (7)

where ϵθ(xt, ϕ) represents the original denoising process,
ϵθ(xt, de) incorporates the semantic modifications via di-
rection de, and λe controls the strength of the edits. By



Fig. 3. Multi-Attribute Editing Results: (a) Aging with beard addition illustrates natural and identity-preserving transformations. (b) Baldness paired with
beard modification demonstrates smooth and coherent attribute integration. (c) Eyeglasses and mouth expression changes showcase fine-grained control over
distinct facial features. (d) Gender and smile adjustments highlight the versatility and accuracy of the model in managing diverse and intricate edits.

Fig. 4. Simultaneous modifications of multiple attributes: the first column
displays the original images, the second column showcases editing results with
two attributes, and the third column highlights edits involving three attributes,
including aging, beard addition, and male features, demonstrating consistent
and realistic transformations.

combining multiple directions de, we enable coherent and
simultaneous edits of attributes such as hairstyle, expression,
and accessories.

A. Advantages of the Latent Space Approach

This approach leverages the inherent structure of the h-
space for precise and interpretable edits without requiring
pixel-level supervision or synthetic datasets. By identifying
disentangled directions for each attribute, the method ensures
that attributes remain independent, even during multi-attribute
modifications. The framework excels at maintaining semantic
coherence and generating realistic transformations, making it
versatile for real-image and generated-image editing tasks.

VII. EXPERIMENTS

We evaluated the effectiveness of our multi-attribute editing
approach by identifying semantic directions in the h-space of
a pretrained DDPM model trained on CelebA [14]. The h-
space, defined by bottleneck activations across T timesteps,
captures hierarchical semantic features. Input images in pixel
space (3, 256, 256) are mapped to the deepest feature map in
h-space (T, 512, 8, 8), where edits are applied by introducing
perturbations (∆hT :1) to the latent representations during
generation.

We conducted experiments on various attribute combina-
tions, such as “smile,” “wearing glasses,” and “age,” to validate
the generalization of our method. By visualizing results, we
demonstrated precise multi-attribute editing with disentangled
and independent control of each attribute, confirming the
scalability and robustness of the approach across different
attribute combinations.

VIII. QUALITATIVE VISUALIZATION

The qualitative results, presented in fig. 3, highlight the
versatility and effectiveness of our multi-attribute editing
framework. In fig. 3, (a) and (b) demonstrate complex transfor-
mations such as aging combined with beard addition and bald-
ness respectively, showcasing the model’s ability to capture
realistic, disentangled edits. fig. 3, (c) illustrates the seamless
integration of eyeglasses and mouth expression modifications,
with subtle changes applied naturally to maintain coherence.
In fig. 3, (d), simultaneous gender and smile transformations
reveal the system’s capability to independently control facial
features while ensuring smooth transitions. Lastly, fig. 4,
highlights multi-attribute edits across various attribute com-
binations, such as old, beard, and male, emphasizing the
robustness of the approach to handle diverse and intricate
modifications. Collectively, these visualizations demonstrate
the model’s ability to apply precise, realistic, and identity-
preserving edits across a range of attributes and scenarios.



Moreover, fig. 5 illustrates the capability of controlling at-
tribute intensity in multi-attribute editing. The progression
from left to right demonstrates incremental modifications in
attributes such as aging and beard, showcasing fine-grained
control while maintaining the subject’s identity and coherence.

Fig. 5. Demonstration of intensity control for multi-attribute editing, where
attributes such as aging and beard are progressively modified with increasing
intensity from left to right, while preserving identity and realism.

IX. CONCLUSION

In this paper, we propose a novel multi-attribute editing
mechanism based on h-space manipulation within a symmet-
rical U-Net-like architecture of DDMs. By leveraging inter-
preted semantics and a conditional manipulation technique,
our method enables precise and independent control over facial
attributes using any pre-trained DDM. This effectively trans-
forms unconditional DDMs into versatile tools for controllable
editing. Our approach not only enhances attribute editing
accuracy but also improves detail preservation, achieving a
superior balance between reconstruction fidelity and attribute
modification. Extensive experiments demonstrate its strong
multi-attribute editing capabilities and potential for real-image
editing, showcasing its practicality and flexibility.
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