HUMAN-IN-THE-LOOP FOR MACHINE
LEARNING IN OFFENSIVE CYBERSECURITY

1% Satida Ruengsurat

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Ishikawa, Japan
satida.rue @jaist.ac.jp

3" Vidchaphol Sookplang
Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology
Ishikawa, Japan
vidchaphol @jaist.ac.jp

5™ Prarinya Siritanawan
Graduate School of Science and Technology
Shinshu University
Nagano, Japan
prarinya@shinshu-u.ac.jp

7% Kotani Kazunori
Faculty of Transdisciplinary Science
Kanazawa University
Ishikawa, Japan

Abstract—Penetration testing is one of the methods that is
used to find the exploitable vulnerabilities so that we are able
to fix those vulnerabilities. Intrusion detection system is one of
the defensive systems that needs to be improved all the time to
prevent the intruders or the cyber criminals from bypassing the
detection system and stealing important and valuable information
or data. Nowadays, there are automation tools that are used to
support the adversarial attack on intrusion detection systems.
However, those tools may have some errors that, even if they
can not be detected by intrusion detection systems, they can
be seen by human experts. Including the human experts in the
development of the tool therefore is a way to improve the attack
performance and decrease the errors of the tool. In this study,
we developed a model that mimics normal traffic behavior while
also being capable of evading existing detection systems, with
human expert assistance to improve the performance. The result
of the experiment shows that the model successfully decreases
the detection rate and the performance of the attack is up to
the attack types. Moreover, with the help from the expert in
developing the model and in the attack process, the errors in the
tool are reduced and the performance of the attack is increased.

Index Terms—Human-in-the-Loop, Adversarial crafted traffic,
Machine learning

I. INTRODUCTION

The weakness in the identification and authentication system
can cost a great deal of money to an organization. People

2" Jaimai Eawsivigoon
Mahidol University International College
Mabhidol University
Nakhon Pathom, Thailand
jaimai.eaw @student.mahidol.edu

4™ Karin Sumongkayothin
Faculty of Engineering
Mabhidol University
Nakhon Pathom, Thailand
karin.sum @mahidol.edu

6 Razvan Beuran
Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology
Ishikawa, Japan
razvan@jaist.ac.jp

with malicious intentions use this vulnerability to bypass the
detection system which leads to loss of data or damage to the
system. Therefore, it is important to detect those malicious
attempts in order to prevent them from damaging the system.

With the goal of developing effective threat detection and
prevention systems, artificial intelligence (Al) is implemented
in cybersecurity. Systems with Al are capable of analyz-
ing network traffic, security records, and user behavior to
build baselines, spot abnormalities, and spot possible insider
threats or unauthorized access attempts. Al is also useful
in automating incident response procedures, enabling quick
responses to isolate affected systems, stop malicious activity,
and implement corrective measures.

A sizable number of pre-made algorithms are included in
machine learning, which is a subset of Al that may be applied
to datasets to get insightful data insights. These algorithms
have been improved throughout time to operate on a wide
range of various datasets [1]. ML in cybersecurity is emerging
as the next generation of tools for detecting and preventing
malicious actions by analyzing large volumes of data, iden-
tifying patterns, and detecting anomalies that may indicate
an ongoing attack. Furthermore, leveraging these algorithms
enable system to mitigate malicious action after detecting
them. In addition, the use of ML in the detection system can
be beneficial in various aspects as it is faster, more efficient,

and continuously operating, unlike humans who have limited
energy and resources [2].

On the other hand, the malicious actor continues to develop
new offensive tools to bypass the ML-incorporated detection
systems [3]. ML can also be used to improve offensive strate-
gies by using adversarial attack technique to avoid detection
and exploit vulnerability [4]. While ML algorithms are ef-
fective for improving the performance of these attacks against
current detection systems, they still face some challenges. One
significant challenge is that these improved attacks can be
detected by experts in the cybersecurity field. For instance,
malicious packages in the network might be recognized by
experts who are familiar with various attack methods. By
involving them in the system, they can guide ML to create
attacks that are less noticeable by the experts in defensive
cybersecurity field. Hence, the integration of human expertise
into Al systems becomes crucial.

Human-in-the-Loop (HITL) is a technique that refers to the
integration of human expertise and decision-making within Al
systems. For instance, in the healthcare industry, HITL is also
utilized to help clinicians diagnose medical disorders with the
use of Al systems, with the recommendations of the systems
being verified and improved by human specialists [5]. It is
emphasized in the research that the synergy produced by the
use of HITL approaches, which combines human judgment
with Al, improves decision-making and system flexibility by
overcoming the constraints of each component acting alone
[6].

This research proposes offensive method towards ML de-
tection models using Human-in-the-Loop (HITL) technique
which can improve the attack ability, making the attack blend
with benign package and less visible to the human experts.

The remainder of this paper is organized as follows. Section
2 reviews existing works related to offensive cybersecurity on
machine learning and human-in-the-loop technique. Section 3
explains how our system works. Section 4 presents the metrics
for evaluation. Section 5 presents the results of our experiment
and Section 6 offers conclusions of our study.

II. LITERATURE REVIEW

Machine learning plays a vital role in user and entity
behavior analytics, where they establish baselines of normal
behavior and detect deviations that may indicate insider threats
or compromised accounts. Furthermore, to allow the detection
system to separate suspicious behavior from all actions, ex-
perts applied the classification ML algorithm to the systems
[7].

However, with the trend of AI and ML being used in
defensive cybersecurity, ML is being applied to attacking
techniques on the Offensive side as well in order to improve
efficiency and develop a new method of attacking. Moreover,
to be able to bypass more robust defense systems successfully
as an ML-based detection system, the attacking methods that
can trick the ML anomaly detectors are developed called
‘Adversarial Attacks’.

Adversarial Attacks is an attacking technique that refers to
creating adjustments or modifications made to input data in
order to fool or mislead machine learning algorithms which
can cause the ML model to make an incorrect prediction which
can lead to vulnerabilities in the system. It sometimes involves
inserting precisely constructed adjustments or noise into the
input data, which may be unnoticeable to humans but can
have a major influence on the model’s output. The goal of
adversarial attacks is to exploit vulnerabilities or weaknesses
in the model’s decision-making process, potentially leading
to security breaches or incorrect outcomes. Many research
shows that adversarial attacks are able to break the ML defense
system.

For instance, Ravi Chauhan at el. [8] proposes a model
using Generative adversarial networks to generate adversarial
DDoS attacks that can change the attack profile and can be
undetected. The working mechanism of their attack is to use
a generator to create an adversarial attack, then collect the
detected results from the Intrusion detection system(IDS) and
give the feedback to the attack generator to create a better
result. Li, Heng at el. [9] proposed a new adversarial-example
attack technique as a black-box attack that can evade both
malware detection and adversarial detection to break through
the firewall of the Android malware detection system.

As detection models advance, certain tools have been de-
veloped to deceive these detectors, making attacks appear as
normal traffic. In this research, we have decided to use a tool
called “Traffic Manipulator” [10] as a base to create an attack-
ing model. Traffic Manipulator is an advanced black-box traffic
mutation tool designed to skillfully and resourcefully create
adversarial traffic [10]. Its primary purpose is to outsmart
learning-based Network Intrusion Detection Systems (NIDS)
while maintaining the original functionality of the network.

Similarly, Aritran Piplai at el. [3] proposed Generative
Adversarial Network (GAN) based algorithm to generate data
to train an efficient neural network-based classifier, and then
break their system using adversarial attack. This shows that
even a well-developed classifier can still be vulnerable to
adversarial attacks.

However, creating adversarial attacks in the network do-
main faces significant limitations due to the restricted feature
space available for mutation or modification [11]. Previous
works on developing adversarial attacks often overlook these
constraints, which resulted in their attacks being impractical
and reducing their functionality. Therefore, having an expert
to guide the model on this weakness is crucial for verifying
the validity and correctness of prediction while also improving
the performance of the ML.

For the professional fields that lack training data [12],
human knowledge is a very effective aid as the pre-training
knowledge for the machine learning model. This is where the
“human-in-the-loop” term was introduced. Human-in-the-loop
(HITL) is the concept of integrating human knowledge and
experience into machine learning(ML) in order to improve
the accuracy of the prediction using the minimum cost. In
addition, HITL processes can reduce error and bias in machine

outputs, as humans can verify the results and provide feedback
during learning processes to ensure the validity of the outputs
[13]. A great number of research on HITL have been published
and the trend is increasing every year [6]. HITL in the ML
concept is being used in various systems including security
systems such as fraudulent information filtering and authenti-
cation attack detection [14], [15]. Moreover, the enhancement
of performance is seen in most of the models using HITL
[6] which can indicate the effectiveness of human teaching
performance on the machine learning results.

The combination of adversarial attacks with HITL ap-
proaches is a relatively new and challenging area for devel-
oping machine learning-based attack models. Therefore, we
focus on applying HITL technique to the attacking model in
order to improve the performance and validity of the attack to
evade the detection system while also avoiding being detected
by human experts evaluation.

III. PROPOSED METHOD

Malformed packets

Yes detected

No—l
Feature
extractor

Input csv

Preprocess
data

RN

N
&

Offensive Cybersecurity Defensive Cybersecurity

Expert Expert
Input the probability Evaluate the pcap file Input
of profocols T preprocessed
Input as Output as osv

Adversarial
traffic
generator

pcap file ML anomaly

detection

Mutated
traffic

Original Attack| pcap file
Traffic

Output

Fig. 1. The flowchart of how the system works

The proposed system workflow of this study is illustrated
in Fig. 1. Firstly, we input original attack traffic into the
adversarial traffic generator, producing mutated traffic as an
output. We decided to use the Traffic Manipulator tool as
the adversarial traffic generator. Traffic Manipulator generates
adversarial examples from the original attack traffic assuming
that an adversary has no internal information of the detection
model. This tool uses the Particle Swarm Optimization (PSO)
algorithm to search for approximate solutions in the high-
dimensional discrete traffic space. The Traffic Manipulator
generates the crafted packets, alters the interarrival time,
protocol layer, and payload size of the crafted packets, and
adds them to the original malicious traffic to create the mutated
traffic. The features extracted from the mutated traffic by the
extractor will be as similar as possible to the target feature set.
The output of this tool is the mutated traffic, which imitates
the normal traffic to bypass the anomaly detection model.

However, the Traffic Manipulator has some limitations.
The protocols of the crafted packets are randomly chosen
from the existing protocol layer of the original packets. The

payload of the crafted packets is added randomly without
considering the layout and protocol of the packet. Since the
crafted packets added to the original traffic are generated with
random protocols and random payload, most of the crafted
packets added to the traffic are invalid packets. Although the
attack of the mutated traffic may be able to bypass through the
anomaly detection model, it might still be detected by human
experts. In Fig. 2, the crafted packet has an error related to
the invalid payload length. This error makes the crafted packet
easily detectable by human experts. Therefore, we modified
the Traffic Manipulator code to increase the practicability by
letting the offensive cybersecurity expert input the probability
of the protocol they focus on when adding the crafted packets.
The protocols available are TCP, UDP, ICMP, IP, IPv6, ARP,
and Ethernet.

We also added some code to categorize the original packets
according to the protocol into lists and keep them as the
template for the crafted packets. Lastly, we added the code
so that the tool will randomly choose a template from the
list according to the input protocol to create crafted packets
instead of generating packets and payloads randomly. After
some modifications, the crafted packets no longer appear with
error warnings, making mutated malicious traffic more difficult
for human experts to detect.

Then, we let the defensive cybersecurity expert evaluate the
mutated traffic generated by the adversarial traffic generator.
The experts check if there is any error warnings or strange
packets that is visible to their eyes. If there are malformed
packets, the offensive cybersecurity expert will notify the
adversarial traffic generator to regenerate the mutated traffic. In
this process, the offensive cybersecurity expert might change
the probability of the protocol to adjust the outcome traffic.
However, if no error is detected, the mutated traffic will be
extracted into features.

The traffic needs to be extracted for testing the performance
of the attack. The mutated traffic will be used as the input
of the detection model to see the number of attacks detected
compared to the original traffic. However, while the detection
model needs the features in the form of a CSV file as input,
the output of the Traffic Manipulator is in the form of a PCAP
file. Therefore, we use CICflowmeter to extract the necessary
features from mutated traffic PCAP files and convert them
to CSV files. We then use the features of the CSV file to
perform the data preprocessing. We preprocess the extracted
mutated traffic by removing the rows containing "NaN” or
“infinity” values, as well as excluding the columns containing
solely zeros and non-numerical data. Then, we drop some
features to match the input features of the detection model.
The preprocessed mutated traffic is used as an input of the
anomaly detection model.

We use the detection model that we trained from the
CICIDS2017 dataset to test whether the method of generat-
ing adversarial crafted traffic decreases the chance of being
detected by the anomaly detector. We preprocess the dataset,
perform feature importance calculations, and identify highly
correlated pairs to select the features used for training. The

No. Time Source Destination Protocol Lengtt UTC Arrival Time
14236 61.354925 192.166.10.16 23.33.115.206 TCP 66 Jul 5, 2017 14:12:01.36700900¢

14237 61.360469
14238 61.366666

23.208.218.66
23.208.218.66

192.168.10.16
192.168.10.16

TLSV1.2
TLSV1.2

368 Jul 5, 2017 14:12:01.372553000
564 Jul 5, 2017 14:12:01.378750000

2423960 » 192 26330 02212 o Sl 2012 24:12:01
14248 61.391159 192.168.10.1 192.165.10.3 636 Jul 5, 2017 14:12:01.403243000
prroaman T2 168 10°T 92168103 On T UTS, 201/ 1% 12701 405 26/000
14242 61.391786 192.168.10.1 192.168.10.3 DS 158 Jul 5, 2017 14:12:01.403576000
14243 61.392057 192.165.10.16 69.172.216.55 TcP 74 3ul 5, 2017 14:12:01.404141800
14244 61.392129 192.168.10.3 192.168.10.16 NS 218 Jul 5, 2017 14:12:01.404213000
14245 61.392731 192.168.10.3 192.168.10.16 NS 218 Jul 5, 2017 14:12:01.4045%ace
14246 61.393334 192.168.10.3 192.168.10.16 NS 96 Jul 5, 2017 14:12:01.4654
14247 61.393937 192.168.10.3 192.168.10.16 DS 96 Jul 5, 2017 14:12:01.4060;
14248 61.395978 192.168.10.16 19 200 TcP 74 Jul 5, 2017 14:12:01.405062000

<
Internet Protocol Version 4, Src: 192.168.10.1, Dst: 192.168.10.3 ~

v
Source Port: 21076
Destination Port: 29556
v

v [Expert Info (Error/Malformed): Bad length value 27476 > IP payload length]
[Bad length value 27476 > IP payload length]
[Severity level: Error]
[Group: Malformed]

No. Time Source Destination Protocol Lengtt UTC Arrival Time
14248 61.153407 192.168.10.16 23.33.118.206 TLSvi.2 97 Jul 5, 2017 14:12:01.165491600
| 14249 61.154010 192.168.10.16 23.33.118.206 TCP 66 Jul 5, 2017 14:12:01.166093000
| 14250 61.161629 23.208.218.66 © 192.168.10.16 TLSv1.2 308 Jul 5, 2017 14:12:01.173713000
14251 61.167111 23.208.218.66 192.168.10.16 TLSv1.2 Se4 Jul S, 2017 14:12:01.179195000
14252 61.167714 192.168.10.16 23.206.218.66 Tcp 66 Jul 5, 2017 14:12:01.179798000
14253 61.195448 192.168.10.1 192.168.10.3 ons 220 Jul 5, 2017 14:12:01.207532000
14254 61.196051 192.168.10.1 192.168.10.3 oNs 158 Jul 5, 2617 14:12:01.208135000
| 14255 61.196201 192.168.10.16 69.172.216.55 Tcp 74 Jul 5, 2 & 05255000
14256 61.196268 192.168.10.3 192.168.10.16 ONS 218 Jul 5, 2017 14: 208352000
4257 61.196871 192.168.10.3 192.168.10.16 oHS 218 Jul 5, 2017 14:12:01.208955600
58 61.197473 192.168.10.3 192.168.10.16 oNs 96 Jul S, 2017 14:12:01.209557000
PP 292,620 192,62 202 o lS2022.24:22:00_ 210120000
12260 61.200249 192.168.10.3 192.168.10.16 OIS 125 Jul S, 2017 14:12:01.212333000
T ST e i SEE BT

Frame 14260: 125 bytes on wire (1000 bits), 125 bytes captured (1000 bits)

Ethernet II, Src: Dell 9b:e3:7d (18:66:da:9b:e3:7d), Dst: Dell 9b:8a:bf (00:23:ae:9b:8a:bf)
> Internet Protocol Version 4, Src: 192.168.10.3, Dst: 192.168.10.16

User Datagram Protocol, Src Port: 53, Dst Port: 32877

Domain Name System (response)

Fig. 2. Mutated traffic before and after modifying Traffic Manipulator

highlighted features in Fig. 3 are those selected for use.

no. Featurename no. Feature name no. Feature name no. Feature name

1 |FlowD 22 |FlowPackets/s 43 |FwdPackets/s 64 |FwdAvgPackets/Bulk

2 [sourcelP 23 |FlowIAT Mean 44 [Bwd Packets/s 65 |FwdAvgBulk Rate

3 |sourcePort 24 |FlowlATStd 45 |MinPacket Length 66 |Bwd AvgBytes/Bulk

4 |p 1P 25 |FlowIAT Max 46 |MaxPacket Length 67 [BwdAvg

5 |Desti Port 26 |FlowIATMin 47 [Packet Length Mean 68 [Bwd AvgBulk Rate

6 |Protocol 27 |Fwd AT Total 48 |PacketLength Std 69 |SubflowFwd Packets

7 i 28 |FwdIATMean 49 |PacketLengthVariance| 70 _|Subflow Fwd Bytes |
8 |FlowDuration 29 [FwdIATStd 50 _|FIN FlagCount 71 |SubflowBwd Packets

9 [TotalFwd Packets 30 |Fwd IAT Max 51 |SYNFlagCount 72 |SubflowBwdBytes

10 |TotalBackward Packets 31 |FwdIATMin 52 |RSTFlag Count 73 |Init Win_bytes forward
11 |TotalLengthof FwdPackets| 32 |BwdIAT Total 53 |PSH Flag Count 74 |Init_ Win_bytes_backward |
12 [TotalLength of Bwd Packets| 33 |BwdIAT Mean 54 |ACKFlag Count 75 |act_data_pkt_fwd |
13 |FwdPacket Length Max 34 |BwdIATStd 55 |URG Flag Count 76 | min_seg size_forward

14 |FwdPacket Length Min 35 [BwdIAT Max 56 |CWEFlag Count 77 |ActiveMean

15 |FwdPacketLength Mean 36 [BwdIATMin 57 |ECEFlag Count 78 |Activestd

16 |FwdPacket Length Std 37 |FwdPSHFlags 58 |Down/Up Ratio 79 |ActiveMax |
17 |Bwd Packet Length Max 38 |BwdPSH Flags 59 |Average Packet Size 80 |Active Min

18 |Bwd Packet Length Min 39 |Fwd URGFlags 60 |AvgFwdSegmentSize 81 _|idleMean

19 |Bwd Packet Length Mean 40 [BwdURGFlags 61 |AvgBwdSegmentSize | 82 |idleStd
20 [Bwd Packet LengthStd 41 |FwdHeaderlength| 62 |FwdHeader Length 83 |ldleMax
21 |FlowBytes/s 42 |BwdHeaderLength| 63 |FwdAvgBytes/Bulk 84 |idleMin

Fig. 3. Features in the CICIDS2017 dataset where the highlighted are selected
features

We used 3 detection models: the Deep Neural Network
(DNN) model, the Random Forest model, and the Support
Vector Machine (SVM) model. The reason we decided to use
these models is that we wanted to test the performance of
the attack on both the neural network model and the classical
models. The output of the detection model is the classification
result if the records are classified as abnormal or benign.

In our study, human experts contribute to improving the
performance of the system. Firstly, the expert will be in the
process of modifying the Traffic Manipulator tool to guarantee
that the content of the crafted packets is according to the
protocol and that the crafted packets will not be invalid. The
expert will determine the probability of protocol for the crafted
packets corresponding to each type of attack, as each type
requires a specific combination of protocols. Lastly, the expert
will check through the packets of a mutated traffic PCAP file
generated by the Traffic Manipulator to see if the traffic looks
normal or not. The experts in our study must be the offensive
or defensive cybersecurity experts who specialize in network
security.

IV. EVALUATION METRICS

The behavior of the mutated traffic detected by the detection
system will be categorized into normal and abnormal behavior.

If the behavior invalidates the network traffic features, it will
be labeled as abnormal.

In this study, we use the attack-detected rate, which is the
rate of attack records detected compared to the total attack
records in the original traffic, as the measurement to evaluate
the performance of our model. If the attack-detected rate of
mutated traffic is lower than the attack-detected rate of the
original traffic, it can be interpreted as our model successfully
mimicking normal traffic behavior and evading the detection
system. The attack-detected rate can be written as Equation 1:

ey

where 7 is attack-detected rate; p is predicted attack count and
t is total attack count.

r=" 100
¢

V. EXPERIMENT RESULTS

This section initializes testing phase of the detection models
and presents the results of testing the modified Traffic Manip-
ulator tool against these models.

A. Initial test of the detection models

We assess the performance of the detection models using
unmodified datasets to validate their effectiveness, demon-
strating the capabilities of Random Forest, SVM, and DNN
models. Firstly, we trained and tested the Random Forest
model, achieving an accuracy of 0.999, a precision of 0.999,
a recall of 0.990, and an fl-score of 0.999.

Next, we trained and tested the SVM model, achieving an
accuracy of 0.954, a precision of 0.955, a recall of 0.954, and
an fl-score of 0.954.

Finally, we trained and tested the Deep Neural Network
(DNN) model, achieving an accuracy of 0.989, a precision of
0.984, a recall of 0.994, and an f1-score of 0.989.

Judging from the various metrics, the Random Forest model
outperformed the other models, followed by the Deep Neural
Network and then the SVM.

B. Testing the effect of the probability of protocol proportion
to output of the Traffic Manipulator

The output of the Traffic Manipulator tool is tested using
the detection models. Given that the models have already

demonstrated strong performance, as indicated in Section
A. We evaluated the tool’s effectiveness by comparing the
predicted labels from the detection models for both the original
data and the tool’s output, categorized by attack type. The
paper of Traffic Manipulator primarily focused on pattern-
based attacks so we picked DoS Goldeneye for verification.
To expand our research, we also tested two protocol-based
attacks: SQL Injection and Heartbleed. The objective is to
determine the best probability of protocol proportion for each
attack type.

For the DoS Goldeneye attack, there are 5,148 records
in the original traffic dataset. From the original traffic, the
DNN detection model predicts 1,743 attack records (33.86%
of the original traffic), the Random Forest model predicts 2,789
attack records (54.18% of the original traffic), and the SVM
predicts 639 attack records (12.41% of the original traffic).

In Tablel, the best probability of protocol proportion for the
DNN model is 70% TCP, 15% UDP, and 15% IP, with 444
attack records predicted (8.62% of the original traffic). For
the Random Forest model and SVM model, the best protocol
proportion is 34% TCP, 33% UDP, and 33% IP. The Random
Forest model predicts 246 attack records (4.78% of the original
traffic), while the SVM predicts 463 attack records (8.99% of
the original traffic).

In conclusion, the results indicate that the mutated traffic
from the Traffic Manipulator can evade the detection models
effectively compared to original traffic.

For the SQL Injection attack, there are 21 records in the
original traffic dataset. From this traffic, the DNN detection
model predicts 64 attack records (304% of the original traffic),
the Random Forest model predicts 6 attack records (28.57% of
the original traffic), and the SVM predicts 205 attack records
(976% of the original traffic).

In Table2, for the DNN detection model, there are mul-
tiple best combinations, each resulting in 56 predicted attack
records (266% of the original traffic). However, the probability
of protocol proportion appears to be insignificant for the
Random Forest model where the number of attack records
detected in the mutated traffic remains unchanged compared to
the original traffic. For the SVM model, the best combination
is 25% UDP, 25% IP, and 50% ARP, reducing the predicted
attack records to 109 (519% of the original traffic).

In summary, while the Traffic Manipulator can mutate SQL
Injection traffic and evade detection models, it is less effective
compared to its performance with DoS Goldeneye.

For the Heartbleed attack, there are 11 records in the original
traffic dataset. From this traffic, the DNN detection model
predicts 462 attack records (4200% of the original traffic), the
Random Forest model predicts 31 attack records (281.81% of
the original traffic), and the SVM predicts 2,114 attack records
(19218.18% of the original traffic).

In Table3, the best protocol proportion combination for both
the DNN and Random Forest models is 15% TCP, 15% UDP,
and 70% IP, with the DNN predicting 859 attack records
(7809.09% of the original traffic) and the Random Forest
predicting 23 attack records (209% of the original traffic). For

the SVM, the best combination is 50% TCP, 25% UDP, and
25% 1P, with 1,142 attack records predicted (10381.81% of
the original traffic).

Aside from the DNN, the number of predicted attack records
in the mutated traffic is reduced compared to the original.

The number of attacks predicted by the models for SQL
Injection and Heartbleed exceeds the number of traffic records
in the original dataset. This may be due to the limited number
of attack records for certain attack types in the training set.
The distribution of attack records in the CICIDS2017 dataset
is unbalanced, with only a small number of records for some
attack types, such as SQL Injection and Heartbleed, and a
larger number of records for others, like DoS attacks. This
imbalance leads to poor model performance for certain types
of attacks.

VI. CONCLUSION

In the field of offensive cybersecurity, autonomous attack
generators are designed to evade detection by machine learning
models. Despite this, human experts are often capable of
identifying anomalies in the generated traffic. Our goal is to
develop a model which generates attacks that simulate normal
traffic behavior, incorporating human assistance to enhance its
performance.

The original tool struggles because its crafted packets are
easily spotted by humans. On the contrary, our improved
model uses original traffic content to create more convincing
packets, thereby reducing detectability by human observers.
Additionally, our model allows experts to adjust the probability
of different protocol proportions of the mutated packets.

The model is evaluated using the CICIDS2017 dataset,
employing Random Forest, SVM, and DNN detection models.
The testing process starts with our adversarial traffic generator
mutating the original traffic into a mutated traffic. This mutated
traffic is then assessed against the detection models, which
have been trained on the dataset, to determine whether the
traffic is classified as an attack. We measure the model’s per-
formance based on the attack-detected rate written in Equation
1.

Our test results indicate that the output from our adversarial
traffic generator no longer contains invalid packets detectable
by experts, unlike the original version. Our adversarial traffic
generator demonstrates a success in evading detection models
for pattern-based attacks, as evidenced by the reduction in
detection rates. For the DNN model, the attack-detected rate
reduces from 33.86% to 8.62%. For the Random Forest model,
the attack-detected rate reduces from 54.18% to 4.78% and for
the SVM model, the attack-detected rate reduces from 12.41%
to 8.99%. However, it is less effective against command-
based attacks. Moreover, with expert involvement in tuning
the probability protocols proportion, the performance of our
adversarial traffic generator can be further improved.

REFERENCES

[1] D. Wankhede, “Artificial intelligence and its subsets: Machine learning
and its algorithms, deep learning, and their future trends,” vol. 9, pp.
page no.il12-i117, 06 2022.

[2]

[7]

[9

—

(10]

TABLE I

BEST PROTOCOL PROPORTION FOR DOS GOLDENEYE ON DIFFERENT DETECTORS

Detector Protocol (%) Attflck R.ec.ords Att?ck Records
Detected in Original Traffic | Detected in Mutated Traffic
TCP | UDP | ICMP | IP | IPv6 | ARP | Ethernet
DNN 70 15 0 15 0 0 0 1743 444
Random Forest 34 33 0 33 0 0 0 2789 246
SVM 34 33 0 33 0 0 0 639 463
TABLE II
BEST PROTOCOL PROPORTION FOR SQL INJECTION ON DIFFERENT DETECTORS
Detector Protocol (%) Att::lck R'ec'ords Att?)ck Records
Detected in Original Traffic | Detected in Mutated Traffic
TCP | UDP | ICMP | IP | IPv6 | ARP | Ethernet
0 25 0 50 0 25 0 64 56
DNN 0 25 0 25 0 50 0 64 56
0 70 0 15 0 15 0 64 56
Random Forest Same for all protocol proportion combination 6 6
SVM 0] 25] 0 [35] 0 [25] 0 205 109
TABLE I
BEST PROTOCOL PROPORTION FOR HEARTBLEED ON DIFFERENT DETECTORS
Attack Records Attack Records
Detector Protocol (%) Detected in Original Traffic | Detected in Mutated Traffic
TCP | UDP | ICMP | IP | IPv6 | ARP | Ethernet
DNN 15 15 0 70 0 0 0 462 859
Random Forest 15 15 0 70 0 0 0 31 23
SVM 50 25 0 25 0 0 0 2114 1142
N. Kiihl, M. Goutier, L. Baier, C. Wolff, and C. Wolff, “Human vs. [11] R. Sheatsley, N. Papernot, M. J. Weisman,
supervised machine learning: Who learns patterns faster?” Cognitive and P. D. McDaniel, “Adversarial examples in

System Research, vol. 76, pp. 78-92, 2022.

domains,” CoRR, vol.

abs/2011.01183, 2020.

G. Verma,
constrained
[Online]. Available:

A. Piplai, S. S. L. Chukkapalli, and A. Joshi, “Nattack! adversarial
attacks to bypass a gan based classifier trained to detect network
intrusion,” in 2020 [EEE 6th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), 2020, pp. 49-54.

M. Ozay, 1. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V.
Poor, “Machine learning methods for attack detection in the smart
grid,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 27, no. 8, pp. 1773-1786, aug 2016. [Online]. Available:
https://doi.org/10.1109%2Ftnnls.2015.2404803

A. Ganesan, A. Paul, G. Nagabushnam, and M. J. J. Gul, “Human-
in-the-loop predictive analytics using statistical learning,” Journal of
Healthcare Engineering, vol. 2021, 2021.

X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey of
human-in-the-loop for machine learning,” Future Generation Computer
Systems, vol. 135, pp. 364-381, 2022.

G. Abdiyeva-Aliyeva, J. Aliyev, and U. Sadigov,
of classification algorithms of machine learning in cyber-
security,” Procedia Computer Science, vol. 215, pp. 909-
919, 2022, 4th International Conference on Innovative Data
Communication Technology and Application. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050922021640
R. Chauhan and S. Shah Heydari, “Polymorphic adversarial ddos attack
on ids using gan,” in 2020 International Symposium on Networks,
Computers and Communications (ISNCC), 2020, pp. 1-6.

H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, “Adversarial-example at-
tacks toward android malware detection system,” IEEE Systems Journal,
vol. 14, no. 1, pp. 653-656, 2020.

D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi, and
X. Yin, “Evaluating and improving adversarial robustness of machine
learning-based network intrusion detectors,” IEEE Journal on Selected
Areas in Communications, pp. 1-1, 2021.

“Application

[12]

[13]

[14]

[15]

https://arxiv.org/abs/2011.01183

X. Zhang, S. Wang, J. Liu, and C. Tao, “Towards improving diagnosis of
skin diseases by combining deep neural network and human knowledge,”
BMC Medical Informatics and Decision Making, vol. 18, 07 2018.

0. Gomez-Carmona, D. Casado Mansilla, D. Lopez-de Ipifia, and
J. Garcia-Zubia, “Human-in-the-loop machine learning: Reconceptual-
izing the role of the user in interactive approaches,” Internet of Things,
vol. 25, p. 101048, 04 2024.

D. Odekerken and F. Bex, Towards Transparent Human-in-the-Loop
Classification of Fraudulent Web Shops, 12 2020.

J. Brown and M. Anwar, “Blacksite: human-in-the-loop artificial im-
mune system for intrusion detection in internet of things,” Hum.-Intell.
Syst. Integr., vol. 3, pp. 55-67, 2021.

