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Abstract—In this paper, we propose an electric vehicle (EV)
charger controller using a deep reinforcement learning algorithm
to address load variations. The gain curve of the EV charger is
derived to analyze its electrical characteristics. Subsequently, the
deep deterministic policy gradient (DDPG) method is employed
to optimize the control gains of PI controller. Simulation results
demonstrate that the proposed method improves ripple reduction
performance compared to a conventional PI controller under load
resistance variations.

Index Terms—deep reinforcement learning, EV charger, adap-
tive PI controller, gain curve analysis

I. INTRODUCTION

The bi-directional power transfer capability of bi-directional
power converters is attracting attention in energy storage sys-
tems, electric vehicles (EVs), and smart grid systems. Among
bidirectional power converters, CLLC resonant converters have
been used for their zero-voltage switching (ZVS) characteris-
tics that reduce switch losses and wide output voltage range
compared to conventional dual active bridge converters [2]-
[5].

Proportional-integral-derivative (PID) controllers have been
proposed to regulate the output voltage in EV chargers be-
cause of easy implementation and intuitive controller gain
tuning guideline [7], [8]. However, it is not easy work to
determine optimal PID controller gains because EV charger
has nonlinearity depend on load resistance variation as well as
other nonlinear characteristics even if it is important to choose
and/or adaptive the control gains which covers whole operating
frequency range. To remedy this problem, since variable model
based optimization and robust controller have been proposed,
these methods have disadvantages such as computational bur-
den, parameter uncertainties, and so on [9]- [13]. Over the past
few decades, deep reinforcement learning methodologies have
been studied for other industrial application fields because it is
possible to optimize the control performance regardless of an
information of model parameters [14]- [17]. However, there is
no study in the sense of the EV charger robust/optimal control
against parameter variations.

In this paper, we propose an adaptive PI controller using
deep reinforcement learning to select optimal controller gains
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Fig. 1. DC-DC converter topology for EV charger

Fig. 2. Equivalent circuit model of the EV charger resonant tank

in EV charger. Firstly, mathematical model of EV charger is
introduced to explain the effect on load resistance variation.
Consequently, we provide gain curve analysis by showing
3-D gain curves between load resistance variation, voltage
gains, and normalized frequency (switching frequency). Deep
deterministic policy gradient (DDPG) algorithm is developed
to adjust PI controller gain adaptation by define states and
actions as deep reinforcement learning techniques. To show the
effectiveness of the proposed adaptive PI controller, simulation
results are shown by comparing classical PI controller under
load resistance variation conditions.

II. MATHEMATICAL MODELING AND ANALYSIS FOR EV
CHARGER

In this section, we introduce equivalent circuit model of the
EV charger and also provide analysis of gain curve according
to load resistance variation.

Fig. 1 shows DC-DC converter topology for EV charger. It
has a symmetric structure of two sides and a symmetric reso-
nant tank. The resonant tank consists of leakage inductances
(Ls and Lp), resonant capacitors (Cs and Cp), magnetizing
inductance Lm and high frequency transformer, providing



Fig. 3. 3-D gain curve according to load resistance and normalized frequency

galvanic isolation between primary side and secondary side.
To obtain voltage gain from input voltage to output voltage,
the equivalent circuit of EV charger can be described as shown
in Fig. 2. The input voltage of the resonant tank, vAB is
square wave form, with its magnitude varying from +Vdc

to −Vdc. Using Fourier series and applying First Harmonic
Approximation (FHA), the input voltage of the resonant tank
can be described as follows:

vAB =
4Vdc

π
sin(2πfst) (1)

where t and fs are time and switching frequency, respectively.
As the transformer has a turns ratio n, all parameters trans-
formed from the secondary side to the primary side can be
expressed as

L
′
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′

s =
1

n2
Cs, Rlec = n2 8

π2
RL (2)

where RL is load resistance of EV charger. let us define

Z1 = sLp +
1

sCp
, Z2 =

1

sC ′
s

, Z0 =
sLm(Z2 +Rlec)

sLm + Z2 +Rlec
(3)

In the equivalent circuit of the resonant tank, the output
voltage can be derived as follows:

v
′

CD = vAB
Zo

Zo + Z1

Rlec

Z2 +Rlec
(4)

Therefore, the transfer function of voltage gain can be
induced as follows:

H(s) =
v

′

CD

vAB
=

ZoRlec
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(5)

Substituting jωs for the ’s’ in (5), we can derive the
following reformulated equation
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(6)
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where ωs = 2πfs, ωr is the resonant frequency, Q is the
quality factor.

Fig. 3 shows a 3-D gain curve according to the EV charger
load resistance RL and normalized frequency fn which is the
ratio of switching frequency and resonant frequency. The gain
curve exhibits variations based on both the load resistance
magnitude and switching frequency. So, it is important to
adjust the frequency allows for achieving the desired gain.
However, as shown in Fig. 3, the maximum value of the gain
curve of EV charger varies depending on the change in the
EV charger load resistance. In addition, the slope of the gain
curve decreases rapidly according to load resistance variation.
Therefore, fixed PI control gain is not suitable for output
voltage regulation. It is highly required to adjust PI control
gain

III. ADAPTIVE PI CONTROLLER USING REINFORCEMENT
LEARNING

In this section, we review the DDPG algorithm and intro-
duce DDPG-based adaptive PI controller.

A. DDPG algorithm

The DDPG agent is a reinforcement learning algorithm
where the agent interacts with the environment. The agent
receiving observations and rewards by sending actions to the
environment. The agent interacts with the EV charger, where
states st and action at are defined as follows respectively:

st = (r(t), vo(t), vi(t), RL(t))

at = π(Si|θ)
(7)

The policy π is parameterized by a neural network θ and
returns deterministic action based on the state. The state
space consists of output voltage vo(t), input voltage vi(t),
EV charger resistance RL(t), reference signal r(t) of the EV
charger. The action is the value passed from the agent to the
environment, and in the DDPG agent, It returns the action
value based on the state.

The structure of DDPG consists of an actor and a critic,
where the actor returns the agent’s action based on observa-
tions. The critic returns the expected long-term reward based
on observations and actions. To enhance the stability of agent
learning, it is trained through target actors and target critics
with the same structure as the actor and critic. Mini-batches
used in training utilize data samples stored in the DDPG



experience buffer. The loss function used to train the critic
is defined as follows:

yi = ri + γG∗(Si+1, π
∗ (Si+1|ϕ∗)) (8)

L =
1

2M

M∑
i=1

(yi −G(Si, Ai|ϕ))2 (9)

where yi represents the sum of future rewards, ri represents
the reward, G∗ and G are the outputs of the target critic’s
neural network and the critic’s neural network, respectively.
The target critic network is parameterized by ϕ∗, the critic
network is also parameterized byϕ. π∗ represents the target
actor which is parameterized θ∗. γ is the discount factor for
rewards. The actor also updates its parameters using sampled
data using the following policy gradient method:

∇θJ ≈ 1

M

M∑
i=1

∇πG(Si, A|ϕ)∇θπ(Si|θ) (10)

where ∇πG represents the gradient of the critic’s output
with respect to actions, and ∇θπ denotes the gradient of
actions with respect to actor parameters. Therefore, the actor
undergoes neural network training over M samples using the
product of these two types of gradients.

B. DDPG-based adaptive PI controller

The integral gain of the PI controller for controlling the
voltage of the EV charger was obtained using the DDPG agent.
The basic form of a PI controller is as follows:

Kpe(t) +Ki

∫ t

0

e(τ)dτ

e(t) = r(t)− vo(t)

(11)

where Kp represents the proportional constant, Ki is the in-
tegral constant. Therefore, by dividing the integral component
of the control input by the action value of the DDPG agent
and the previously set integral constant component, we can
obtain the following control input:

u(t) = Kpe(t) + (Ki + at)

∫ t

0

e(τ)dτ (12)

where u(t) represents the control input. Fig. 4 is a block
diagram illustrating the generation process of the control input
applied to EV charger.

IV. SIMULATION RESULTS

A. Simulation setup

To validate the proposed method, we utilized a EV charger
and a DDPG agent within the MATLAB/Simulink environ-
ment. In (7), the input and output value of the EV charger
are considered as observation values and passed to the DDPG
agent. These observation values are returned as actions through
the actor neural network, which adjusts the integral constant
of the PI controller.

Fig. 4. Block diagram of PI controller with DDPG agent

B. Simulation results

To validate the performance of the proposed algorithm, we
performed simulations for the following two cases:

Case 1) Classical PI controller;
Case 2) DDPG-based adaptive PI controller.

The load resistance variation for the two cases is shown in
Fig. 5. The load resistance increases from 240 [Ω] to 80 [Ω]
after 3 seconds. The input voltage is 400 [V] and the reference
voltage is 250 [V]. Figs. 6 and 7 are the output voltage results
of the EV charger for case 1 and case 2, respectively. It can be
shown that the ripple of the output voltage in case 2 is reduced
compared to case 1. Since the agent’s action value changes
according to the load resistance variation of the EV charger,
the ripple reduction performance is improved compared to the
classical PI controller.

Fig. 5. Load resistance variation of the EV charger

V. CONCLUSIONS

In this paper, we proposed an adaptive PI controller using a
DDPG agent for the EV charger with load resistance variation.
The action of agent is varied according to the load resistance
variation, and the action value is used to adjust the PI gain.
The simulation is based on a scenario where the load resistance
of the EV charger resistance changes. The results show that



Fig. 6. Output voltage of classical PI controller

Fig. 7. Output voltage of proposed controller

the proposed method reduces the ripple of the output voltage
compared to the classical PI controller.
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