
Accuracy Performance Analysis of Quantized DNN Models
using Approximate 4-2 Compressor Based Multipliers

Seokhyeon Lee, Jeonggeun Kim, and Yongtae Kim†

School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
{dltjr0703, jeonggeun.kim, yongtae}@knu.ac.kr

Abstract—As deep neural networks (DNNs) face increasing
computational demands, approximate computing techniques are
gaining interest in reducing hardware costs. This paper investi-
gates the use of approximate compressor based 8-bit approximate
multipliers to evaluate their impact on quantized DNN perfor-
mance. The systematic evaluations on various well-known DNN
models, such as VGGNet, ResNet, Inception-v3, and DenseNet
show that the low-error approximate multipliers characterized
by error metrics maintain DNN inference accuracy similar to
exact multiplier. In contrast, the high-error designs lead to
significant accuracy degradation. Additionally, we observe that
the approximation-aware fine-tuning mitigates minor accuracy
losses for low-error multipliers but is less effective for high-
error designs. The findings highlight the importance of selecting
low-error approximate multipliers to balance computational
efficiency and DNN accuracy.

Index Terms—approximate multiplier, approximate compres-
sor, deep neural network (DNN)

I. INTRODUCTION

As deep neural networks (DNNs) continue to advance,
so does the demand for computational power. Researchers
continually endeavor to reduce the costs of inference and
training, while maintaining model accuracy. Common tech-
niques include quantization and low-precision floating-point
formats (e.g., half-precision). The IEEE 754 floating-point
standard itself has seen modifications to improve efficiency,
with formats like brain floating point (i.e., bfloat16) and
TensorFloat-32 (i.e., TF32) designed to decrease memory
usage and computation time [1], [2]. Beyond floating-point
optimizations, the numerous addition and multiplication opera-
tions in DNNs presents opportunities for approximation thanks
to their inherent error resiliency [3]–[6]. DNNs, particularly
in inference, are known to be robust to minor computational
errors, as their architecture allows them to maintain acceptable
accuracy levels even when exposed to random bit errors on
DNN weights. This tolerance facilitates the implementation
of approximate computing, thereby enhancing computational
efficiency. Building on this, the quantization process in DNNs
creates opportunities to employ approximate integer arithmetic
for multiply-and-accumulate (MAC) operations, moving be-
yond traditional floating-point approaches. This shift can lead
to significant improvements in hardware efficiency, including
reductions in area, delay, and power consumption. One promis-
ing method involves leveraging approximate multipliers, with
approximate compressors offering a viable solution for their
implementation. Specifically, utilizing approximate 4-2 com-
pressors during the partial product reduction, which involves
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Fig. 1. (a) Exact 4-2 compressor and (b) approximate 4-2 compressor [7].

compressors and adders, can significantly reduce hardware
resources while maintaining acceptable accuracy performance.

While prior works have demonstrated the effectiveness of
these approximate multipliers in specific applications, such
as digital image processing, their broader impact on DNN
performance remains insufficiently explored. In particular, the
effects of 4-2 compressor-based approximate multipliers on
both the computational characteristics and accuracy of DNNs
have not been thoroughly analyzed. To shed light on this
aspect, this paper evaluates the impact of compressor-based 8-
bit approximate multipliers on the inference accuracy of quan-
tized DNNs. We analyze the correlation between multiplier
error characteristics and DNN performance, highlighting the
importance of low-error designs, and explore the benefits of
approximation-aware fine-tuning across various architectures.

II. APPROXIMATE MULTIPLIERS

Multiplication within digital circuits comprises three pri-
mary phases: partial product generation (PPG), partial product
reduction (PPR), and final addition. While the PPG involves
generating partial products through AND gates and the final
addition sums the reduced partial products, the PPR phase,
which has numerous 4-2 compressors, half-adders (HAs) and
full-adders (FAs) to reduce the partial products, is the most
computationally intensive and hardware-demanding. Hence,
the complexity of the PPR phase makes it a prime target
for approximation techniques aimed at improving efficiency.
As Illustrated in Fig. 1(a), an exact 4-2 compressor consists
of two cascaded FAs, resulting in a higher count of XOR
gates. Furthermore, exact 4-2 compressors has five inputs (X1,
X2, X3, X4, Cin) and generate three outputs (C, Cout, S).
Approximate 4-2 compressors, on the other hand, simplify



TABLE I
TRUTH TABLE FOR VARIOUS APPROXIMATE COMPRESSORS.

Inputs Prob. Momeni Yang Akbari Ha Ahma Zhang
X4:1 CS ED CS ED CS ED CS ED CS ED CS ED
0000 81/256 01 +1 00 0 00 0 00 0 00 0 00 0
0001 27/256 01 0 01 0 01 0 01 0 01 0 01 0
0010 27/256 01 0 01 0 01 0 01 0 01 0 01 0
0011 9/256 01 -1 10 0 00 -2 10 0 01 -1 01 -1
0100 27/256 01 0 01 0 01 0 01 0 01 0 10 +1
0101 9/256 10 0 10 0 01 -1 10 0 11 +1 10 0
0110 9/256 10 0 10 0 01 -1 10 0 11 +1 10 0
0111 3/256 11 0 11 0 01 -2 11 0 11 0 10 -1
1000 27/256 01 0 01 0 11 +2 01 0 01 0 10 +1
1001 9/256 10 0 10 0 11 +1 10 0 11 +1 10 0
1010 9/256 10 0 10 0 11 +1 10 0 11 +1 10 0
1011 3/256 11 0 11 0 11 0 11 0 11 0 10 -1
1100 9/256 01 -1 10 0 10 0 01 -1 01 -1 10 0
1101 3/256 11 0 11 0 11 0 10 -1 11 0 11 0
1110 3/256 11 0 11 0 11 0 10 -1 11 0 11 0
1111 1/256 11 -1 11 -1 10 -2 11 -1 11 -1 11 -1

this structure by reducing the number of inputs to four of
X1, X2, X3, and X4 and outputs to two of C and S as shown
in Fig. 1(b). This reduction complexity translates directly to
lower hardware resource utilization.

Table I presents the truth table for six approximate 4-2
compressor designs proposed by Momeni [7], Yang [8], Akbari
[9], Ha [10], Ahma [11], Zhang [12]. The table highlights
input cases where errors occur and their magnitudes through
error distance (ED) defined as the difference between the
exact and approximate compressor outputs. A higher number
of non-zero ED values across all input patterns indicates
greater overall approximation errors, especially when input
patterns with a high probability of occurrence have non-zero
ED. These conditions can reduce computational accuracy but
improve hardware efficiency by lowering area, power, and
delay. Therefore, understanding these trade-offs is critical for
selecting compressors that balance hardware efficiency and
model accuracy in deep learning applications.

III. EXPERIMENTAL RESULTS

In this section, we systematically analyze the inference
accuracy of various DNNs using various approximate 4-2
compressor based multipliers and also evaluate the impact of
pre-training and re-training approaches.

First, we evaluate the error characteristics of the approxi-
mate multipliers in terms of error rate (ER), normalized mean
error distance (NMED), mean relative error distance (MRED),
and number of effective bits (NoEB), which are widely used
metric to assess the performance of approximate arithmetic.
Briefly, the ER measures the percentage of input combinations
for which the approximate multiplier produces an incorrect
output compared to the accurate multiplier. The NMED pro-
vides a relative measure of the average error magnitude with
respect to the maximum possible output value. The MRED
quantifies the average relative error introduced by the approxi-
mate multiplier compared to the accurate multiplier. The NoEB
indicates the number of output bits that are potentially free
from error in the approximate multiplier. Table II summarizes

TABLE II
ERROR METRICS OF VARIOUS 8× 8 APPROXIMATE MULTIPLIERS.

Design ER
(%)

NMED
(10−3)

MRED
(10−2) NoEB

Momeni 93.38 1.634 9.033 8.92
Yang 3.59 0.048 0.024 11.60

Akbari 84.34 2.928 4.823 8.01
Ha 27.85 0.453 0.368 9.85

Ahma 77.40 1.469 1.698 8.94
Zhang 92.45 1.953 4.412 8.70
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Fig. 2. DNN inference accuracies under various approximate multipliers.

the error metrics for various approximate multipliers. The Mo-
meni, Akbari, Zhang, and Ahma show high ER, NMED, and
MRED values, indicating larger approximation errors, while
the Ha and Yang achieves relatively better error characteristics
and with the higher NoEBs, reflecting better output reliability.

To examine the impact of approximate compressor based 8-
bit multipliers on quantized DNN inference accuracy, we em-
ployed the AdaPT framework that allows emulations approxi-
mate DNN hardware accelerators using approximate multipli-
ers [13]. Specifically, this framework facilitates direct replace-
ment of exact multipliers with approximate versions, leverag-
ing lookup tables (LUTs) for efficient DNN computations. We
considered four well-known pre-trained DNN models, which
are VGG-19, ResNet50, Inception-v3, and DenseNet. All the
models were adapted for 8-bit operations using pre-trained
weights on CIFAR-10 dataset. We assessed initial accuracy
and then applied approximation-aware fine-tuning (i.e., re-
training) to quantify the potential for mitigating accuracy loss.
This approach enabled us to characterize the performance of
these multipliers across diverse DNN architectures.

Fig. 2 illustrates the inference accuracy of the four different
DNN models when using the six approximate multipliers.
As expected, the approximate multipliers with lower NMED
and MRED values, such as Yang, Ha, and Amha, directly
corresponded to higher inference accuracies across all tested
DNN models. These multipliers exhibit near-optimal perfor-
mance across all architectures, achieving accuracies close
to those obtained with exact multiplier. This indicates that
their low NMED and MRED values introduce minimal error,
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Fig. 3. Inference accuracy of pre-trained and re-trained ResNet model.

resulting in a limited negative impact on the DNN’s ability
to generalize. On the other hand, the Akbari and Zhang
have relatively higher MRED values, leading to accuracy
drops of 76.82% and 89.70% respectively, compared to the
best-performing multipliers. The Akbari, in particular, shows
significantly poorer performance on more complex models
such as Inception-v3, with an accuracy reduction of 53.01%p
compared to using exact multiplier. Unfortunately, the Momeni
performs worst overall, due to its high ER and MRED caused
from the inherent vulnerability of its design to all-zero input.
The logic of the Momeni, as depicted in Fig. 1(b), leads to
frequent inaccuracies, particularly given the high probability
(i.e., 81/256) of all-zero input, as detailed in Table I.

Fig. 3 shows the accuracy performance between pre-trained
and re-trained ResNet model for each approximate multiplier.
We re-trained the ResNet model using the approximation-
aware fine-tuning to adapt the pre-trained initial weights for
each specific approximate multiplier. As expected, the re-
trained ResNet model mitigates minor accuracy losses and
improves the overall inference accuracy, especially for approx-
imate multipliers with relatively better error characteristics,
such as the Ahma, Ha, and Yang. For the Akbari and Zhang,
despite its high NMED, the re-training significantly improves
inference accuracy, increasing it 19.36%p and 13.28%p, re-
spectively. This suggests that while there are some errors
on computations, the re-training can effectively mitigate the
errors. However, for the Momeni, the re-training provides
minimal improvement. Its high ER and MRED overwhelm the
re-training process. The high frequency of error, due to the all-
zero input vulnerability, hinders the effective adaptation. This
emphasizes the importance of considering error metrics, when
selecting approximate multipliers and applying re-training.
This results indicate that the approximation-aware fine-tuning
is effective for the approximate multipliers with relatively low
MRED values. While the re-training can partially compensate
for the multipliers with higher NMED values, such as the Ak-
bari and Zhang, those with high MRED values, as can be seen
with the Momeni, pose significant challenges. Therefore, the
evaluation of error metrics is crucial for selecting multipliers
and effective application of approximation-aware fine-tuning.

IV. CONCLUSION

In this paper, we investigated the impact of various approx-
imate 4-2 compressor-based 8-bit multipliers on the inference
accuracy of various quantized DNNs. We observed a strong
correlation between the error characteristics of the multipliers
and the resulting DNN inference accuracy. The approximate
multipliers with relatively low error metric values, such as
the Ahma, Ha, and Yang, maintained accuracy close to that
achieved with the exact multiplier across various DNN models.
On the other hand, the multipliers such as the Akbari and
Momeni, which have higher error metric values, led to sub-
stantial accuracy degradation. Particularly, the approximation-
aware re-training proved effective in mitigating minor accu-
racy losses introduced by low-error multipliers. However, this
technique offered limited benefit for high-error multipliers,
highlighting the inherent limitations of correcting frequently
occurring errors during training.
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