
IO patterns-aware and dynamic scheduling based
data placement in hybrid storage system

Lei Yan∗†§, Wenguo Liu∗, Xuesheng Li†, Nan Su‡

Haijun Zhang†, Zaigui Zhang†‡, Dong Zhang∗†
∗Inspur Group Company Limited, Jinan, Shandong, 250102

‡Inspur (Zhengzhou) Data Technology Co., Ltd, Zhengzhou, Henan, 450047 China
†Inspur (Jinan) Data Technology Co., Ltd, Jinan, Shandong, 250101 China

§yanlei02@inspur.com

Abstract—QLC flash offers higher storage density, significantly
reducing the cost of storage systems. However, the I/O per-
formance of QLC SSD is not satisfactory, due to the limited
write performance. To make matters worse, the frequent garbage
collection can lead to the serious write amplification which has
negative impact on the device lifespan. Traditional LRU (Least
Recently Uesd) method may relieve the mentioned problem, but
it comes at the cost of limited memory space. In this paper,
we propose a reinforcement learning (RF) based data placement
strategy for the hybrid storage system, including SLC and QLC
SSDs. First, we investigate the read and write features of the
different flash SSDs. Then, the IO is classified and distributed to
different storage devices with a dynamic size threshold. And then,
a RF-based method is proposed to extract and predict the the
I/O patterns of application. Finally, the data placement strategy
is established with considering the system state and the workload
features. The real workload is used to evaluate the effectiveness
of the proposed method, and the result shows that the access
latency can be reduced by up to 40% compared with the three
other similar methods.

Index Terms—Hybrid storage system, Reinforcement learning,
Data placement, Request scheduling, SSD

I. INTRODUCTION

QLC (Quad-Level Cell) flash memory stores 4 bits of data
per cell, offering higher storage density and lower cost, making
it suitable for large-capacity storage applications. Due to the
increased number of bits stored, QLC has lower durability
and write performance compared to TLC and MLC, making
it ideal for workloads with frequent reads but relatively fewer
writes, like cold data storage.

However, the high storage density of QLC flash conflicts
with the frequent write access patterns of modern applications,
such as, AI training and realtime analysis. In order to improve
the I/O (input and output) performance under various access
patterns, researchers have proposed various effective methods
which can be categorized into caching and tiering.

In Fig.1, the hybrid storage system (HSS) is composed of
SLC SSD (faster) and QLC SSD (slower), and the blocks in
both SSDs refer to the data with the different access frequency.

A. Caching and tiering
Data Caching refers to the temporary storage of frequently

accessed or recently used data in faster memory, such as
DRAM or SSDs, to minimize latency and enhance perfor-
mance. It operates by keeping a subset of data closer to the

SLC SSD

QLC SSD
SLC SSD QLC SSD

Caching Tiering

(a) (b)

Data AcecessData Acecess

Fig. 1. Caching and tiering

CPU or application layer, enabling quick retrieval. Algorithms
like LRU determine which data to retain in the cache, making
it ideal for scenarios requiring immediate data access, such
as database queries or real-time analytics.In data caching of
Fig.1(a), and the hot data of blue and orange blocks are cached
into faster SLC SSD in data access.

Data Tiering is the practice of organizing and storing
data across different storage media based on access patterns
and storage characteristics. Frequently accessed ”hot” data is
placed on faster, more expensive storage (e.g., SSDs), while
infrequently accessed ”cold” data is stored on slower, more
economical options (e.g., HDDs). This method prioritizes cost
efficiency and performance by matching storage resources to
data needs over time, particularly in large-scale enterprise
or cloud environments. While, in Fig.1(b), the hot data is
migrated into SLC, and the cold data stays in QLC.

Data caching and data tiering are complementary tech-
niques. Caching focuses on accelerating short-term access by
temporarily storing hot data, while tiering optimizes long-term
storage efficiency by dynamically classifying and migrating
data. Together, they enhance HSS by combining rapid access
with cost-effective storage management.

B. Data placement and SSD specification

According the specification and comparison between SLC
and QLC in part A, there are three facts should be considered
in the design of data placment strategy.

1) The read performance of QLC SSD is not significantly
different from that of SLC SSD, but QLC SSD has larger
capacity, making it more suitable for read operations;



2) The write performance of SLC SCM is much higher than
that of QLC SSD in terms of both bandwidth and IOPS,
so SLC SCM is more suitable for write operations;

3) The flushing speed and capacity of SLC SSD need to
be considered to avoid slow flushing and data loss.

Therefore, SLC is usually used as the performance tier in
the HSS, and QLC as the capacity tier. The performance tier
primarily handles small data write requests, while large data
writes can have their placement configured based on the actual
conditions of the storage system. The capacity tier mainly
handles read requests, but before data is flushed from the
performance tier to the capacity tier, read requests can still
be served by the performance tier.

For the allocation of read and write capacity in the per-
formance tier, factors such as write speed, flushing speed,
the proportion of reads from the high-performance tier, and
the proportion of reads from the capacity tier are considered
when allocating the capacity for read and write data in the
high-performance tier.

In this paper, our research filed is focus on the data-tiering
in the hybrid flash storage system. In addition, we aim to
design a novel adaptive tiering framework for the hybrid
SLC+QLC storage based on the Reinforcement-learning and
the I/O rescheduling. Our contributions are,

1) We investigate and analyze the read and write perfor-
mance of SLC and QLC SSD, and conclude that the
appropriate scenarios of QLC SSD;

2) A novel data placement strategy is designed with access
pattern aware for the HSS with SLC and QLC SSDs;

3) A reinforcement learning based method is designed and
adopted into the strategy establishment;

4) We implement the proposed method in a real HSS
environment, and evaluate its efficiency with real and
open-sourced workloads.

The rest of paper is organized as follows. Related works
and their data placement models are presented in the Section
II. In Section III, we describe the motivation of this paper
and formulate the global latency optimization problem. In
Section IV, we present IO patterns-aware rescheduling based
data placement method and the reinforcement learning based
strategy. The simulation results will be presented and analyzed
in Section V. Finally, we summarize the paper in Section VI.

II. RELATED WORK

In the hierarchical memory, Song et al. [1] design novel
architecture with SRAM and racetrack memory, and a data
placement scheme and an instruction scheduling strategy are
proposed to reduce the operation shift.

Sybil has designed a data placement module on the host side
that leverages reinforcement learning to gather information
about workload and HSS system configuration changes. It
formulates optimal data placement strategies for various work-
loads and HSS systems to achieve the desired optimization
goals in terms of request latency and IOPS [2].

NHC has designed a request scheduling strategy based on
the read/write latency and IOPS characteristics of NAND

SSDs and Optane SSDs, aiming to improve request response
efficiency [3]. Specifically, it schedules additional requests
from the performance tier to the capacity tier, thereby further
enhancing IOPS.

In order to achieve the better performance and lower storage
cost, Raina et al. [4] design a novel key-value store which can
efficiently migrate and compact data between 3D XPoint and
QLC NAND.

Under edge-cloud scenario, if the data is not placed proper-
ly, the multi-sourced data with different properties causes high
file access latency. In order to reduce the access latency, Ren
et al. [5] propose the a machine learning based data placement
mechanism for HSS composed of HDD, SSD and PCM.

For SLC+QLC hybrid controller design, a modeling frame-
work is developed to estimate the performance and endurance,
which are affected by the variable write features and space
utilization [6]. In addition, the framework can make the data
movement strategy with the accurate and fast prediction.

Luo et al. [7] investigate the performance and reliability in
the real hybrid SSDs, and present HyFlex, which is composed
with data placement/ GC aware capacity tuning and disturb-
aware data migration to deal with the QLC read disturb,
performance collapse and fluctuation.

Wang et al. [8] present a data caching framework for the
HSS with SMR and Flash SSD. The tradeoff relationship
between data popularity and SMR write amplification is opti-
mized for the global system access latency performance.

Most of the current work mentioned above focus on the data
placement strategy between DRAM and SCM/SSD [1], [3],
[5], [8], and there is only few work on the all flash HSS. As
for the [2] and [6], the data placement strategy establishment
totally relies on the IO access pattern training and prediction,
and this leads to a complex IO scheduling processing.

III. MOTIVATION AND PROBLEM FORMULATION

A. Motivation: I/O pattern awareness and rescheduling

IO pattern awareness plays a key role in formulating data
placement strategies in HSS. By analyzing the IO patterns
of different types of storage media (such as QLC SSD and
SLC SSD), the system can choose appropriate data storage
locations based on the frequency of read/write operations, data
access patterns, and bandwidth and latency requirements. For
example, data with high write frequency can be preferentially
stored in SLC SSD, which has superior write performance,
while big data size with low read frequency is better suited
for the larger capacity of QLC SSD. Additionally, IO pattern
awareness helps dynamically adjust data migration strategies,
balancing performance and endurance, to achieve optimal
resource utilization and performance optimization in multi-tier
storage architectures.

Request scheduling is also important in data placement
strategies establishment. By implementing effective request
scheduling, the system can optimize data storage locations and
access efficiency based on the performance and access patterns
of different storage media. For example, in high-concurrency



Monitor

SLC QLC

Read 
manager

Big IO Small IO

WRITE READ

Data 
Migration

Write 
manager

Fig. 2. I/O pattern awareness and rescheduling

read/write scenarios, the system can prioritize placing fre-
quently accessed data on high-performance storage media,
such as SLC SSD, while storing less frequently accessed
data on larger capacity media, like QLC SSD. Additionally,
dynamic scheduling strategies can adjust data migration and
access paths based on real-time load changes, effectively
reducing latency and enhancing overall system performance.
Furthermore, well-designed request scheduling helps balance
the load on storage media, prolonging device lifespan and fur-
ther optimizing resource utilization. This dynamic adaptability
enables HSS to maintain efficient and stable performance
across diverse application demands.

Fig. 2 shows the framework of the data placement strat-
egy based on I/O pattern awareness and rescheduling. The
framework is composed of a monitor, a write manager and a
read manager, a SLC SSD and a QLC SSD. In which, the
monitor operates a reinforcement learning based method to
train and predict the access patterns for the workload. The
write manager recognize the IO size based on a dynamic
threshold, and the read manager schedules the read IO with
consideration of the resource utilization of storage space,
bandwidth, and working load. The SLC and QLC SSDs are
regarded as the performance layer and capacity layer.

For a write-heavy, read-many scenario: data is written to
the performance tier, and when performance tier reaches its
capacity threshold or meets conditions that require flushing,
the data is flushed to the capacity tier. If the write operation
in the performance tier is complete but the data has not yet
been flushed to the capacity tier, read operations will access the
data from the performance tier. Once the data has been flushed
to the capacity tier but not yet deleted from the performance
tier, the capacity tier is preferred for serving read requests.

For a multi-write scenario: data is written to the perfor-
mance tier, with a strategy and threshold designed for flushing
data to the capacity tier. When the threshold is exceeded
or certain conditions are met, the data is flushed from the
performance tier to the capacity tier. The challenge here is
to design a mechanism for marking data as dirty in the
performance tier, along with a flushing mechanism and a data

TABLE I
NOTATIONS

Notation Meaning
C total IO requests number of workload
a read-to-write ratio
L the total access latency
A the average data size for read requests
B the average data size for write requests

r1, r2 the sequential read bandwidth of SLC and QLC SSDs
w1, w2 the sequential write bandwidth of SLC and QLC SSDS
r′1, r′2 4KB file random read performance of SLC and QLC SSDs

w′1, w′2 4KB file random write performance of SLC and QLC SSDs
s1 available space of SLC
s2 available space of QLC

consistency mechanism.

B. Problem formulation

This part aims to formulate the problem for the I/O pattern
awareness and rescheduling based data placement in the HSS.

Assuming a real-world application has a total number of
IO requests represented by C, and the total access latency
is L. The read-to-write ratio is a and 1− a, with the aver-
age data size for read and write requests being A and B,
respectively. Furthermore, assume that the sequential read and
write bandwidth of SLC is r1 and w1, while for QLC it is
r2 and w2; similarly, the 4KB file random read and write
performance for SLC is r′1 and w′1, and for QLC it is r′2
and w′2. Our goal is to minimize the overall access latency L

by recognizing the read/write characteristics and placing the
data appropriately, while scheduling access requests efficiently
between hybrid storage devices. The optimization problem is
defined as follows:

min(L) = f (C,a,A,B,r1,w1,r2,w2,r′1,w
′
1,r
′
2,w
′
2,s1,s2)

Moreover, based on the analysis of SLC and QLC per-
formance and their application scenarios in Section 2, we
introduce several constraints and assumptions to simplify the
optimization problem and reduce its complexity:

1) Since SLC and QLC have similar read performance, we
assume r1 = r2;

2) Due to the significant difference in write performance
between SLC and QLC, we set all large data write
requests to be handled by QLC, while small write IOs
are handled by SLC;

3) To reduce design complexity, we assume data access has
locality characteristics over time, which can be extracted
using machine learning methods. Therefore, requests are
sensed and scheduled only when there is a noticeable
change in request characteristics.

Finally, the simplified optimization problem is rewritten as:

min(L) = f (C,a,r1,w1,w2,s1,s2)

IV. IO PATTERNS-AWARE AND RESCHEDULING BASED
DATA PLACEMENT METHOD

In this section, we first present a reinforcement learning
based method for the IO patterns extraction and training.



Then, we propose a request rescheduling method based a self-
adaptive threshold with the awareness of system resource.
At the end, the algorithm for the data placement method is
presented in Algorithm I.

A. IO patterns-aware and dynamic scheduling based data
placement

In this section, we design an IO patterns-aware and dynamic
scheduling based data placement method for the applications
with various IO patterns. We first analyze the impact of IO
patterns on the performance of HSS, and a threshold-based IO
scheduling method is designed for the IO with the too large or
too small request size. For the IO with other patterns, we then
present a reinforcement learning based placement strategy to
optimize the IO latency and system performance.

B. IO pattern analysis and request scheduling

In this paper, the direct-access model is adopted to evaluate
the performance of the HSS, where all IO is directly responded
to by the storage layer. In which, the HSS in this scheme
is composed of the SLC SSD from Kaixia’s FL6 series and
QLC SSD self-developed by Inspur. In addition, the baseline
performance of sequential write and read, random write and
read for these two SSDs is tested, and the results are shown
in table II of Section V.

We mainly analyze the impact of IO features on the HSS we
have constructed, in order to select appropriate IO features for
data placement strategies. In practical, the IO patterns related
to the performance of the storage layer mainly include request
type, request size, read-write ratio, garbage collection, and
wear level. In addition, the average number of accesses and
unique requests also have a certain impact on the IO efficiency
of the storage system. Therefore, the IO patterns observation
in our design mainly follow the following principles:

1) Observing the frequency of write operations and IO size,
by scheduling write requests reasonably, can not only
reduce data movement, but also reduce QLC write times,
reduce SSD wear, and improve device lifespan;

2) By observing the data locality characteristics of read
operations and utilizing the performance differences
between SLC and QLC, data can be placed and migrated
reasonably to improve system IO performance, such as
read bandwidth and latency.

With above two principles, we select several key patterns
with significant impact on the performance, such as request
size, request type, access count of request and the location of
the requested page. In addition, the remaining capacities of the
SLC and QLC are observed to improve the usage efficiency
of the resource.

C. Threshold based IO scheduling

With the observed IO patterns, we design a threshold based
method to schedule IO dynamically. In this part, we make the
IO scheduling strategies with respect of the IO types, such as
READ and WRITE. In general, the IO is categorized as small
if the IO size is smaller than 4KB, and the size of large IO is

bigger than 4MB. For the write IO, request size, request type,
access count of request and the location of the requested page

For the write IO scheduling
1) For the write IO larger than 4MB, the request is sched-

uled into QLC SSD to improve the IO efficiency and
save the cache space;

2) For the write IO smaller than 4KB, the request is
responded by SLC SSD as the cache to enhance the
IO performance and reduce erase count in QLC SSD.

For the read IO scheduling
1) Due to the small read performance between QLC and

SLC SSD, the read request larger than 4MB is scheduled
into SLC or QLC SSD where the data belongs to;

2) For read IO smaller than 4KB, the request is responded
by the data owner device from the start. If the data
owner is the QLC SSD, the access count is recorded and
compared with the preset threshold. If the access count
during certain period is larger than the threshold, the data
is mitigated to the SLC to improve the performance.

D. Reinforcement learning based strategy

In this part, a reinforcement learning based strategy is
designed for the IO size between 4KB and 4MB. The strategy
aims to learn an optimal policy through interaction with the
environment, maximizing cumulative rewards. The RL method
involves two parts, agent (strategy) and environment (storage
system).

In this paper, the agent observes the current state in the
environment and taking an action in response of the IO
request. Through repeated interactions, it refines its policy
to maximize long-term rewards. RL methods mainly include
policy iteration and value updates, like Q-learning and policy
gradients, helping the agent eventually reach an optimal policy
for effective decision-making. We formulate the RL-based
strategy with Reward, State and Action designs.

1) Reward: We define the reward of each interactions as
the function of the response latency for the IO request. The
detail definition for the reward is shown as follows.

R =

{
1/Lr no migration between SSDs
max{0,1/Lr−Rp} data migration appears

where Lr, Rp and R represent the last served request latency,
migration penalty and interaction reward, respectively. The
definition of migration can be found in part of Action design.
We select Rp to be equal to 0.001 Le or 0.001 Lm (Le is the
time spent in evicting pages from the fast storage to the slow
storage, and Lm is the time spent in move pages from the slow
storage to the fast storage).

2) State: At each time-step, we collect the state features for
a particular read/write request with an observation vector. We
perform feature selection to determine the best state features
with the concluded two principles in section A. As such, the
observation vector is composed of request size, and they are
listed in problem formulation of Section III B.



Algorithm 1 RL-based data placement algorithm
Input: State space state = s1,s2,r1,w1,r2,w2,r′1,w

′
1,r
′
2,w
′
2,

1: action space action = Rslc,RQLC,Meviction,Mmigration
2: online-workload P = C,a,A,B
3: offline-patterns Po f f line = C,a,A,B
Output: IO response action Rslc or RQLC, data placement

strategy Meviction or Mmigration
4: Extract the online workload patterns P
5: Compare P with the offline-patterns Po f f line
6: for IO count ∈ C do
7: Process the IO request with the write or read manager
8: if IO is READ then
9: Process with the read manager

10: IO is responded by the data owner
11: elseIO is WRITE
12: Process with the write manager
13: Case1: IOsize < T 1

write
14: SLC SSD responds
15: Case2: IOsize > T 2

write
16: QLC SSD responds
17: Case3: T 1

write ≥ IOsize ≤ T 2
write

18: Fix the solution of min(L)
end if

19: Predict the next IO with learned features
end for

20: Update the State space state
21: return IO response action, data placement strategy.

3) Action: In the HSS, data can be moved between QLC
and SLC SSDs, and the procedures are eviction and migration.
When the space on the SLC SSD is insufficient, infrequently
used data should be evicted to the QLC SSD. Conversely,
if migrating data from the QLC SSD to the SLC SSD can
improve latency performance, it should be moved accordingly.
In a HSS, two possible actions are: placing data in the fast
device or the slow device.

In final part, we present the RL-based data placement
algorithm in Algorithm 1 .

V. PERFORMANCE EVALUATION

A. Experiment settings

We evaluate the proposed method with real storage sys-
tem, and the storage layer is composed of KIOXIA K-
FL61HUL800G and self-developed QLC SSDs (16T). The
HSS devices present themselves as a unified flat block device,
offering the operating system a contiguous logical block
address (LBA) space. To handle I/O requests efficiently, we
developed a lightweight custom block driver interface that
orchestrates operations with the underlying storage devices.
Table II outlines the system specifications, highlighting the key
characteristics of the two storage devices utilized in setup.

B. Real world workloads

We utilize five distinct block-I/O traces from the MSRC
benchmark suite, collected from real-world enterprise environ-

TABLE II
SYSTEM SPECIFICATION

System Configuration
Intel(R) Xeon(R) Gold 6330@2.00GHz CPU*2,
Ethernet Controller X710 for 10GbE SFP+*2,
32 GiB RDIMM DDR4 2666 MHz*16

Storage Devices Specifications

SLC SSD (SCM) 800GB, PCIe 4.0 NVMe, SLC,
R/W: 6.2/6.2 GB/s, random R/W: 1480K/ 360K IOPS

QLC SSD 15.36TB, PCIe 4.0 NVMe, QLC,
R/W: 6.98/1.18 GB/s, random R/W: 1341K/ 13.2K IOPS

ments. Additionally, we carefully select five traces exhibiting
varied I/O-access patterns, as summarized below, to analyze
various workloads characterized by differing IO patterns, lev-
els of randomness and data hotness. This approach ensures
comprehensive insights into varying workload behaviors.

TABLE III
WORKLOAD FEATURES

Workloads Write
%

Read
%

Avg.request
size

Avg.access
count

No.of unique
requests

hm 1 4.7 95.3 15.2 44.5 6265
web 1 45.9 54.1 29.6 1.2 6095
wdev 2 99.9 0.1 8.0 17.7 4270
usr 0 59.6 40.4 22.8 19.7 2138
pro j 2 12.4 87.6 42.4 2.9 27967

C. Baseline approaches
To demonstrate the performance of the proposed approach,

We compare our method with three similar HSS data place-
ment techniques, Sibyl [2], RNN-HSS [9] and LRU.
• LRU: It manages data placement by tracking access

frequency. Frequently used data is retained in faster
storage (SLC SSD), while less-accessed data is moved to
slower, high-capacity storage (QLC SSD). This approach
optimizes performance by reducing latency for active
workloads.

• RNN-HSS: In RNN-HSS [9], Doudali et al. come up
with a method of Kleio, which is a a hybrid memory
page scheduler combining lightweight, history-based data
tiering with intelligent placement decisions powered by
deep neural networks.

• Sibyl: In Sibyl [2], Singh et al. propose a data place-
ment method for HSS that dynamically distributes data
across different storage tiers, using machine learning to
optimize access patterns and improve performance and
cost efficiency.

There are also many other similar methods, such as cold
data eviction [10], history-based page selection [11]. In [2],
the authors have already demonstrated that the Sibyl has better
performance compared to these methods. So, we will not
repeat it to do the comparison in our experiment.

D. Performance Evaluation Metrics
We assess the proposed method using two metrics: average

request latency and throughput (IOPS).
1) Average request latency: It refers to the mean latency of

all storage read/write operations in a workload.
2) Request throughput: measures the throughput of storage

requests in terms of the number of completed I/O
operations per second within the workload.



E. Experiment Results

In this part, we compare the proposed method with other
three state of art works, LRU, RNN-HSS and Sibyl, and
demonstrate the efficiency of our method.

TABLE V shows the average request latency of four meth-
ods. We can see that our method owns better performance
than LRU and RNN-HSS with all workloads. This is because
that the proposed method can extract and predict the IO
patterns accurately. In addition, the process of IO dynamic
classification is more efficient in the resource limited storage
system.

As for sibyl, the performance of our proposed method is
better than it in most scenarios except for the workload of
web 1. The reason is that the sibyl is more effective under
the workload feature of low access count. LRU adopts the
traditional bidirectional linked list for the data placement
which is relies on simple and static rules for tracking usage,
and its performance is worse than other three methods. In
contrast, RNN-HSS, Sibyl and our method can extract and
predict the features and access patterns of workload, and they
can dynamically optimize the IO performance with the smart
data placement strategy.

TABLE IV
AVERAGE REQUEST LATENCY (µS)

Method hm 1 web 1 wdev 2 usr 0 proj 2
LRU 121.4 83.5 72.3 78.6 110.4
RNN-HSS 98.1 76.3 69.7 68.2 103.3
Sibyl 106.9 57.4 61.7 51.3 101.4
Ours 93.6 61.7 56.4 46.9 94.5

We also summarize the throughput performance for all
methods on various workloads in Fig.3. It shows that our
proposed method achieves the best throughput performance.

In summary, our proposed IO patterns-aware and dynamic
scheduling based data placement strategy achieves the better
performance of latency and throughput than other three state-
of-art methods.

VI. CONCLUSION

In this paper, we have proposed the IO patterns-aware and
dynamic scheduling based data placement strategy for HSS.
Specifically, we first analyze the IO patterns and the different
specifications for SLC and QLC SSDs. In order to alleviate
the complexity of RF-based method, a threshold based IO
scheduling method is designed. Finally, we have proposed a

0

5

10

15

20

25

hm_1 web_1 wdev_2 usr_0 proj_2

LRU RNN-HSS Sibyl Ours

Fig. 3. Request throughput (kIOPS)

reinforcement learning based IO patterns extraction and pre-
diction to analyze the online workloads, and optimize the data
placement strategy. Experiments conducted on real storage
system and workloads demonstrate that our IO patterns-aware
and dynamic scheduling based data placement strategy can
reduce the global system access latency while achieves better
throughput.

ACKNOWLEDGMENT

This work is partially supported by Shandong Natural
Science Foundation (NO.ZR2024QF154).

REFERENCES

[1] Y. Song, W.-H. Kim, S. K. Monga, C. Min, and Y. I. Eom, “Prism: Op-
timizing key-value store for modern heterogeneous storage devices,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
2023, pp. 588–602.

[2] G. Singh, R. Nadig, J. Park, R. Bera, N. Hajinazar, D. Novo, J. Gómez-
Luna, S. Stuijk, H. Corporaal, and O. Mutlu, “Sibyl: Adaptive and
extensible data placement in hybrid storage systems using online re-
inforcement learning,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 320–336.

[3] K. Wu, Z. Guo, G. Hu, K. Tu, R. Alagappan, R. Sen, K. Park, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “The storage hierarchy is
not a hierarchy: Optimizing caching on modern storage devices with
orthus,” in 19th USENIX Conference on File and Storage Technologies
(FAST 21), 2021, pp. 307–323.

[4] A. Raina, J. Lu, A. Cidon, and M. J. Freedman, “Efficient compactions
between storage tiers with prismdb,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2023, pp. 179–193.

[5] J. Ren, X. Chen, Y. Tan, D. Liu, M. Duan, L. Liang, and L. Qiao,
“Archivist: A machine learning assisted data placement mechanism for
hybrid storage systems,” in 2019 IEEE 37th International Conference
on Computer Design (ICCD). IEEE, 2019, pp. 676–679.

[6] R. Stoica, R. Pletka, N. Ioannou, N. Papandreou, S. Tomic, and
H. Pozidis, “Understanding the design trade-offs of hybrid flash con-
trollers,” in 2019 IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2019, pp. 152–164.

[7] L. Luo, D. Yu, Y. Lv, and L. Shi, “Critical data backup with hybrid
flash-based consumer devices,” ACM Transactions on Architecture and
Code Optimization, vol. 21, no. 1, pp. 1–23, 2023.

[8] C. Wang, D. Wang, Y. Chai, C. Wang, and D. Sun, “Larger cheaper
but faster: Ssd-smr hybrid storage boosted by a new smr-oriented cache
framework,” in Proc. IEEE Symp. Mass Storage Syst. Technol.(MSST),
2017.

[9] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska, “Kleio: A hybrid memory page scheduler with machine
intelligence,” in Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, 2019, pp. 37–
48.

[10] C. Matsui, C. Sun, and K. Takeuchi, “Design of hybrid ssds with storage
class memory and nand flash memory,” Proceedings of the IEEE, vol.
105, no. 9, pp. 1812–1821, 2017.

[11] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2015, pp. 126–136.


