Severity Prediction Based on Connectivity of
Vulnerability Information via Related Product
Information

Wataru Hiraiwa
Graduate School of Engineering
Kobe University
Kobe-shi, Japan
hiraiwa.wataru @ gsuite.kobe-u.ac.jp

Thin Tharaphe Thein
Graduate School of Engineering
Kobe University
Kobe, 657-8501 Japan
https://orcid.org/0000-0002-1213-0393

Abstract—There is a technique called vulnerability chaining in
which an attacker does not just target a single vulnerability but
combines multiple vulnerabilities to infiltrate a target. Therefore,
when evaluating product safety, it is insufficient to check only
one vulnerability. A search system had been proposed to enable
comprehensive retrieval of information on multiple vulnerabilities
by building an ontology of information related to vulnerabilities
and products. The system obtains information about vulnerabil-
ities and linked products to any desired extent. In this paper,
we propose a method to predict the severity of newly discovered
vulnerabilities using the base CVE scores of software with related
vulnerabilities through the system. Using the constructed severity
prediction model, we confirmed that severity can be predicted
with an accuracy of 55% to 64% for severity classification.

Index Terms—vulnerability chaining, CVE, CVSS, software
supply chain, ontology, random forest

I. INTRODUCTION

Software vulnerabilities are registered as Common Vulner-
abilities and Exposures (CVEs) in a database, each with a
unique CVE-ID. The National Vulnerability Database (NVD)'
receives numerous vulnerability reports annually, as shown in
Figure 1, with an increasing trend. Some cyberattacks exploit
multiple vulnerabilities simultaneously, a technique known as
vulnerability chaining [1], [2].

For example, a government agency attack exploited CVE-
2020-14722 and other vulnerabilities, targeting software devel-
oped by related vendors. Future attacks may combine new and
existing vulnerabilities. Ripple20?, a set of 19 vulnerabilities
in the Treck TCP/IP stack, highlights the risk of severe multi-
vulnerability exploitation.

Thttps://nvd.nist.gov/general
Zhttps:/nvd.nist.gov/vuln/detail/cve-2020- 1472
3https://www.jsof-tech.com/disclosures/ripple20/
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Fig. 1. The number of CVEs published to the NVD.

System administrators must manage vulnerabilities by pre-
dicting exploitation probabilities, applying mitigations, and
utilizing ontology-based systems to assess risks comprehen-
sively [3]-[6]. Research has also explored predicting CVE
severity based on descriptions [7]-[10]. Tsutsui et al. [6]
proposed an ontology-based search system to comprehensively
retrieve vulnerability information by considering related vul-
nerabilities and products. The complexity of software supply
chains and emerging techniques like vulnerability chaining
highlight the necessity of analyzing relationships between
components for accurate impact assessment.

In this study, we propose a model to predict the severity
of vulnerabilities based on the relationships between vulnera-
bilities and related product information. The proposed method
uses a search system constructed with an ontology to collect
CVEs related to the CVE being predicted, and then calculates
11 features from these CVEs. These features are then fed
into a machine learning model, Random Forest, to predict



the severity of the vulnerability. We evaluated the severity
prediction model using CVEs published between 2012 and
2023, confirming that it achieves a prediction accuracy of 55%
to 64% in each severity class.

The proposed method differs from traditional approaches
by not relying on CVE descriptions for severity prediction.
Instead, it predicts severity based on the relationships be-
tween CVEs, where products serve as mediating factors. Al-
though the model’s accuracy is lower compared to traditional
description-based methods, it is advantageous for evaluating
risks arising from connections between vulnerabilities. Addi-
tionally, since it does not depend on CVE descriptions, the
method can also be used for product-specific risk assessment.

II. RESEARCH ON VULNERABILITY SEVERITY
PREDICTION

A. Vulnerability Information

Software vulnerabilities are weaknesses that can be ex-
ploited in cyberattacks. To mitigate risks, it is essential to
utilize publicly shared vulnerability information. Key sources
include the Common Vulnerabilities and Exposures (CVE)*,
managed by Mitre Corporation, and the National Vulnerability
Database (NVD), operated by NIST. CVEs provide unique
identifiers for vulnerabilities, enabling standardized informa-
tion exchange. NVD offers detailed descriptions, including af-
fected products (CPE), vulnerability types (CWE), and severity
scores (CVSS). CVSS, a widely used framework, evaluates
vulnerability severity, with versions v2 and v3 being relevant
to this study due to the analysis period starting in 2012.

B. Studies using vulnerability descriptions to predict severity

The CVSS base score for CVEs published in the NVD is
determined by NVD analysts, so it takes time for the score
to be assigned after the CVE and its related description are
published. Therefore, a method to automatically assess the
vulnerability risk is needed. An approach that mainly uses the
vulnerability description (Description) has been proposed to
estimate the CVSS base score and risk rating using machine
learning [7]-[10].

In [7], a prediction model for the CVSS base score using
Description was proposed. Text mining tools were used to
extract feature vectors, and machine learning algorithms such
as Support Vector Machine (SVM) and Random Forest were
applied to predict the CVSS base score. Furthermore, when the
model is used in combination with a fuzzy system, an accuracy
of 88% has been achieved. In [7], only important information
was extracted through principal component analysis from the
feature vectors generated using the same method as in [8].
They report that the vulnerability risk was predicted using
Extreme Gradient Boosting (XGBoost), acheving an accuracy
of 87%. In [9], an accuracy of 81% was reported when they
predicted the severity of vulnerabilities using the Convolu-
tional Neural Network (CNN). In [10], a multifaceted machine
learning algorithm is used that combines natural language

“https://cve.mitre.org/
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Fig. 2. Breakdown of base scores of CVEs.

processing (NLP), neural networks, and Bayesian optimization
to learn and automatically predict the CVSS base score.

C. Differences between Existing Research and Proposed
Method

In the existing studies described in Section II-B, a machine
learning model is used to predict the severity of CVEs by
extracting words from the Description of CVEs and using
them as feature vectors. In contrast, this study utilizes product
information to search for related CVEs and predicts a base
score based on the scores of relevant CVEs. In other words,
we do not use the information on the vulnerability itself for
machine learning. This means that our method can potentially
offer more accurate predictions in cases where vulnerability
descriptions may be vague, incomplete, or difficult to analyze
manually. Additionally, by collecting related CVEs based on
the product, it can also help predict the potential risk of the
product itself.

III. ANALYSIS OF VULNERABILITY INFORMATION

We analyzed information from the NVD between 2012 and
2023, examining a total of 181,156 CVEs and 124,082 prod-
ucts associated with these CVEs over the 12-year period. To
understand the characteristics of CVE severity, we examined
the distribution of CVE base scores. CVEs with a base score of
0-3.9 were categorized as “LOW,” 4.0-6.9 as “MEDIUM,” 7.0-
8.9 as “HIGH,” and 9.0-10.0 as “CRITICAL.” These results
were summarized in Figure 2.

Our analysis revealed that 15% of CVEs are classified
as CRITICAL and 38% as HIGH, indicating that a total of
53% of CVEs are considered dangerous. Next, we focused on
CVEs associated with multiple products, which were analyzed
separately. Figure 3 shows that of the 62,795 CVEs related
to multiple products, 16% were CRITICAL and 44% were
HIGH, making up a total of 60% of dangerous CVEs. In
contrast, for CVEs linked to a single product (105,432 CVEs),
15% were CRITICAL and 34% were HIGH, leading to a total
of 49% of dangerous CVEs.

Comparing Figure 3 and Figure 4, we observed that CVEs
related to multiple products have a higher proportion of HIGH-
severity classifications. This emphasizes the importance of
considering information from both single and multiple related
products when assessing CVE risk.
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Fig. 3. Breakdown of base scores for CVEs related to multiple products.
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Fig. 4. Breakdown of base scores of CVEs related to a single product.

IV. PROPOSED VULNERABILITY SEVERITY PREDICTION
MODEL

A. Overview of Severity Prediction Model

As described in Section II-B, there is a delay between the
disclosure of a CVE and its associated description and the
determination of the base score. In this study, our objective
was to predict the severity of newly discovered software
vulnerabilities using the relationships in the software supply
chain that contain the vulnerabilities and the CVE base scores
that the software has. The software supply chain relationship
refers to a situation in which multiple software components or
libraries are combined, each coming from different sources.
These relationships reflect the actual software development
environment, where components depend on each other and a
vulnerability in one may affect other components. A random
forest is used to estimate the severity. Random forests are a
popular machine learning algorithm that have been used in
studies in [5], [7]. In this study, we collect relevant CVEs via
product information associated with the CVEs to be used for
severity prediction, create a relationship similar to a software
supply chain, and use the data for learning and prediction.
The dataset is constructed by efficiently extracting data from
a graph database based on the ontology in [6], collecting the
base scores of CVEs related to the CVEs to be predicted, and
calculating various features.

B. Features used in the Predictive Model

This section describes the features used in the prediction
model. In this study, we assume that the base scores of related
CVEs are useful for predicting severity and we calculate the

CVE distance 1 (CO and C1b connected via P1)

Fig. 5. CVE distance.

features accordingly. We define “CVE distance” to succinctly
express the relationship between CVE nodes, and the CVE
distance between CVE node 1 and CVE node 2 is defined as
the number of product nodes on the path from CVE node 1
to CVE node 2. For example, node Cla is CVE nodes with a
CVE distance of 1 from node CO because they pass through
a product node P1. Similarly, C2a is CVE nodes with CVE
distance of 2 from CO because it passes through product nodes
P1 and P2a.

The following 11 CVE features are calculated using the base
scores of the CVEs within a maximum CVE distance of 3.

1) Mean of the variance of the base score for CVEs at CVE
distance 1
2) Mean of the variance of the base score for CVEs at CVE
distance 2
3) Mean of the variance of the base score for CVEs at CVE
distance 3
4) Mean of the variance of the base score for all CVEs up
to the relevant CVE distance 3
5) Mean of the base scores for CVEs at CVE distance 1
6) Mean of the base scores for CVEs at CVE distance 2
7) Mean of the base scores for CVEs at CVE distance 3
8) Mean of the base scores for all CVEs up to the relevant
CVE distance 3
9) Mean of the top 10% to 30% base scores for relevant
CVEs
10) Mean of the bottom 10% to 30% base scores of the
relevant CVEs
11) Mean of the variance excluding the top 10% and bottom
10% of base scores of the relevant CVEs

C. Dataset

The dataset consists of CVEs published over a 12-year
period from 2012 to 2023, excluding those that satisfy the
following conditions:

Condition 1: No CVE nodes exist with a CVE distance
of 1.

There are 200 or more CVE nodes with a
CVE distance of 1 (e.g., CVEs related to
Windows and Linux).

The calculated features are matched; how-
ever, only one feature is selected from the
matched pairs and left in the dataset.

Condition 2:

Condition 3:



Condition 1 is necessary because if there are no CVE nodes
with a CVE distance of 1, all calculated features will have
missing values, resulting in the generation of empty data.
When there are approximately 200 or more CVE nodes with
a CVE distance of 1, CVE nodes connected to a large number
of nodes, such as Windows, Android, and Linux, are included.
In this case, the subgraphs centered on the starting-point CVE
node will have a similar shape, and Condition 2 is necessary
to prevent the calculated features from having nearly identical
values. This is also to prevent the search execution time from
becoming excessively long during dataset creation. Condition
3 is necessary because even if Condition 2 does not apply,
the feature values can be the same if the CVEs from the
same product are used as starting points. If there are no CVE
nodes corresponding to CVE distance 2 or CVE distance 3,
the feature 2, 3, etc. become missing values, which are all
replaced with O

The training dataset consists of CVEs published over an 11-
year period, from 2012 to 2022. A total of 6360 items were
obtained, including 2000 CVEs each from the CRITICAL,
HIGH, and MEDIUM categories, and 360 CVEs from the
LOW category. As a result of excluding CVEs that satisfied the
conditions, there was a small amount of data for vulnerabilities
with low base scores as well as a small number of CVEs that
fell into the LOW category. Similarly, the evaluation dataset
includes CVEs published in 2023. For the evaluation dataset,
we obtained data for 1000 CVEs each from the CRITICAL,
HIGH, and MEDIUM categories, and 170 CVEs from the
LOW category, for a total of 3170 data points.

D. Training of Severity Prediction Models

A severity prediction model was constructed using the train-
ing dataset. The proposed prediction model performs binary
classification for CRITICAL, HIGH, MEDIUM, and LOW
categories, respectively. For each classifier, 2000 items with
positive labels and 2000 items with negative labels are selected
from the other three categories, for a total of 4000 items
in each binary classification. For example, when training a
classifier to infer CRITICAL or NOT, 2000 items belonging to
the CRITICAL category are extracted and assigned a positive
label. Then, a total of 2000 items are extracted from the HIGH,
MEDIUM, and LOW categories and assigned a negative label.
The hyperparameters of the random forest are: max_depth =
40, max_features = ’auto’, and n_estimators = 100.

E. Evaluation Indicators for Severity Prediction Models

In binary classification, if the actual label is positive and
the predicted label is also positive, it is called a True Positive
(TP). If the actual label is positive and the predicted label is
negative, it is called a False Negative (FN). If the actual label is
negative and the predicted label is negative, it is called a True
Negative (TN). If the actual label is negative and the predicted
label is positive, it is called a False Positive (FP). Table I shows
the correctness and incorrectness rates of the classification
results. The following formulas are used to calculate accuracy,

TABLE I
EVALUATING CLASSIFICATION.
Actual
Positive Negative
. Positive TP (True Positive) FP (False Positive)
Predicted
Negative | FN (False Negative) | TN (True Negative)
TABLE 11
EVALUATION RESULT OF EACH MODEL.
CRITICAL | HIGH | MEDIUM | LOW
Accuracy 0.6480 0.5607 0.5529 0.6200
Precision 0.6380 0.6371 0.5569 0.6022
Recall 0.6843 0.2823 0.5176 0.7066
F1 score 0.6603 0.3913 0.5365 0.6503

precision, recall, and the F1 Score, which serve as evaluation
metrics for classification results:

A TP + TN
ccuracy =
Y= TP+ FP+FN+ TN’
.. TP
Precision = ——,
TP + FP
TP
Recall = —,
TP + FN
F1 Score — 2 X Precision x Recall

Precision + Recall

Accuracy indicates the overall correctness of the classifi-
cation results. Precision measures the accuracy of positive
predictions, while recall measures the classifier’s ability to
identify positive examples. The F1 Score is the harmonic mean
of precision and recall, providing a balance between them. The
closer the F1 Score is to 1.0, the better the classification model
performs in both precision and recall.

F. Evaluation of Severity Prediction Models

Table II presents the severity prediction results for each
model using the evaluation dataset. Each column shows the
results of binary classification, with the target category being
the positive examples and the other three categories being the
negative examples. Focusing on the CRITICAL and HIGH
categories, the accuracy for CRITICAL is 64.80%, while the
recall is 68.43%, which is relatively high. This indicates that
the model misses fewer CRITICAL CVEs. On the other hand,
the recall for HIGH is low, at 28.23%.

G. Feature Analysis

In the proposed prediction model, the features are heuristi-
cally defined based on the expectation that the base score of the
relevant CVE is useful to predicting severity. The contribution
of the features to the classification result is evaluated by
examining their importance, which is obtained through a
random forest algorithm. Figure 6 shows the importance of
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Fig. 6. Importance of features.

the features based on the Gini impurity in the constructed
random forest model. The figure indicates that the mean of
the base score (feature 5) and the mean of the variance of the
base score (feature 1) for CVEs at CVE distance 1 exceed 0.1
in relative values, while the mean of the base score (features 6
and 7) and the mean of the variance of the base score (features
2 and 3) for CVEs at CVE distances 2 and 3 are below
0.05. This suggests that the base scores for CVEs with closer
CVE distances contribute more significantly to the prediction
results.

Therefore, we randomly selected 500 CVEs from each
category and created histograms of the mean of the base
scores (features 5 and 6) for CVE distances 1 and 2, as shown
in Figures 7 and 8, respectively. When comparing Figures 7
and 8, in the case where the CVE distance is 2, the mean of
the base score is biased toward the 6.5 to 7.0 interval, and the
differences between categories are smaller. This is thought to
reduce its contribution to the prediction results.

The results of counting the number of relevant CVEs for
each CVE distance are shown in Table III. The number of
CVEs ais classified into three levels (1-10, 11-50, and 51
or more), and the percentage of each level is also calculated.
The results show that for CVEs with CRITICAL severity, the
percentages of 1-10 related CVEs are higher than those of
other categories, at 48%, 21%, and 16% for CVEs at CVE
distances 1, 2, and 3, respectively. In contrast, the percentages
are smaller in the other categories. The greater the number
of related CVEs, the more similar the calculated scores are,
making the data less distinctive. Therefore, it can be inferred
that the prediction accuracy of the CRITICAL category is
nearly 10% higher than that of the other categories.

Therefore, Table IV shows the results of the prediction
model evaluation by limiting the CVEs in the evaluation
dataset to those with 10 or fewer related CVEs. Focusing
on the CRITICAL and HIGH categories, the recall of the
CRITICAL category improved from 68.43% to 73.25%, and
the recall of the HIGH category improved from 28.23% to
32.25%. However, the other scores worsened. In the HIGH
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Fig. 7. Histogram of means of base scores for CVE distance 1.

category, the recall was higher for data for which the features
were calculated from fewer CVEs. Therefore, it was confirmed
that the ratio of the number of relevant CVEs was one of the
factors that increased the prediction accuracy of CRITICAL
compared to the other categories. However, because precision
was lower, the F1 score also decreased. More studies, includ-
ing the addition of other features, are needed to improve the
overall accuracy of the prediction.

H. Refining the Prediction Model

The results in Table II indicate that the recall for predicting
whether a case is HIGH is low. It can be assumed that this
is because a CRITICAL CVE, considered to have similar
characteristics to HIGH due to its high risk, must be classified
as a negative example, which causes a HIGH CVE to also be
misclassified as negative. Therefore, the prediction model is a
combination of three classifiers:

Classifier 1: Whether it is classified as CRITICAL.

Classifier 2: Whether it is classified as HIGH or above.

Classifier 3: Whether it is classified as MEDIUM or above.
Classifier 2 (HIGH+) treats the CRITICAL and HIGH cate-
gories as positive examples and the MEDIUM and LOW cat-
egories as negative examples. Classifier 3 (MEDIUM+) treats
the CRITICAL, HIGH, and MEDIUM categories as positive
examples and the LOW category as a negative example.

Table V shows the evaluation results for each prediction
model. For classifier 2, the recall improved to 59.45%, result-
ing in fewer missed cases. The purpose of using the vulnerabil-
ity severity prediction model in this study is to help prioritize
countermeasures against high severity CVEs, particularly those
classified as CRITICAL or HIGH. The improved prediction
model can be used in the order of Classifier 1, Classifier
2, and Classifier 3 to more effectively prioritize and address
vulnerabilities based on severity.

V. CONCLUSION

The proposed severity prediction model estimates the sever-
ity of a new vulnerability using the base score of a related
CVE. It predicts CVE severity with 55% to 64% accuracy,
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TABLE III
NUMBER OF RELATED CVES PER CVE DISTANCE.
CRITICAL
Number of CVEs distance 1 distance 2 distance 3
1-10 512 | 48% 80 21% 49 16%
11-50 378 | 35% 80 21% 42 13%
51+ 177 | 17% | 227 | 59% 222 71%
All 1066 388 312
HIGH
Number of CVEs distance 1 distance 2 distance 3
1-10 987 | 36% | 216 | 16% 82 7%
11-50 991 | 36% | 204 | 15% 81 7%
51+ 747 | 27% | 953 | 70% | 1014 | 86%
All 2718 1371 1177
MEDIUM
Number of CVEs distance 1 distance 2 distance 3
1-10 789 | 35% | 130 | 12% 186 20%
11-50 725 | 32% | 113 | 10% 67 7%
51+ 739 | 33% | 845 | 78% 692 73%
All 2249 1086 945
LOW
Number of CVEs distance 1 distance 2 distance 3
1-10 62 36% 12 14% 2 3 %
11-50 65 38% 11 13% 3 4 %
51+ 43 25% 63 73% 68 94%
All 170 86 72
TABLE IV

EVALUATION RESULT OF EACH MODEL WHEN THE NUMBER OF RELEVANT
CVES 1S LIMITED TO 10 OR LESS.

CRITICAL | HIGH | MEDIUM | LOW
Accuracy 0.5287 0.4950 0.5300 0.5875
Precision 0.5204 0.4930 0.5315 0.5813
Recall 0.7325 0.3525 0.5050 0.6250
F1 score 0.6085 0.4110 0.5179 0.6024
TABLE V
EVALUATION RESULT OF IMPROVED MODELS.
CRITICAL | HIGH+ | MEDIUM+
Accuracy 0.6480 0.5972 0.6200
Precision 0.6380 0.5977 0.6268
Recall 0.6843 0.5945 0.5933
F1 score 0.6603 0.5961 0.6096

with particularly strong performance for CRITICAL CVEs
(64.80% accuracy and 68.43% precision). The model can help
prioritize vulnerability mitigation efforts, especially for CRIT-
ICAL vulnerabilities. To improve recall for HIGH-severity
classifications, three classifiers were combined, increasing
recall to 59.45% and reducing False Negatives.

A key advantage of the proposed model is its independence
from vulnerability descriptions. Unlike traditional methods
that rely on time-consuming textual information, the model
uses the base score of related CVEs and other features,
allowing it to be deployed even before a full vulnerability
description is available. This makes it valuable in the early
stages of vulnerability detection.

The model predicts severity based on base scores and related
CVEs, enabling efficient evaluation of software security. This
approach allows for predicting the risk of potential vulnerabil-
ities without extensive manual analysis, making it a valuable
tool for proactively assessing software risks.

This study used 11 features in machine learning, but the
relationships between CVEs were not fully utilized. Future
research could improve the model by better incorporating these
relationships, such as using a graph neural network to capture
CVE connections.
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