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Abstract—Online learning-based optimization represents a
novel approach that integrates the principles of federated learn-
ing and online learning to effectively handle dynamic data
distributions and continuous learning scenarios. This paper
offers a comprehensive survey of the latest developments in
online federated learning, focusing on optimizing communication
efficiency in federated learning environments through online
learning techniques. We delve into foundational concepts, key
methodologies, challenges, and diverse applications of this emerg-
ing field.

Index Terms—Federated Learning, Online Learning, Online
Federated learning.

I. INTRODUCTION

Federated Learning (FL) and Online Learning are two crit-
ical paradigms in modern distributed machine learning. Each
addresses distinct challenges in data privacy, adaptability, and
real-world applicability. Their integration forms the foundation
of Online Federated Learning (OFL), which combines the
strengths of both approaches [1]–[4].

Federated Learning is a decentralized machine learning
framework that enables multiple devices or clients to collab-
oratively train a shared model without exposing their local
data. By keeping data on-device, FL preserves user privacy
and adheres to data governance regulations [4]–[6]. This
approach is particularly beneficial in privacy-sensitive domains
like healthcare, finance, and personal device applications.
The central server aggregates locally trained models from
clients to construct a global model, typically using algorithms
like FedAvg [7]. However, traditional FL operates under the
assumption of static, stationary data distributions, limiting its
applicability in dynamic environments [2].

In many real-world applications, data distributions are not
only non-stationary but also vary significantly over time due to
external factors such as user behavior, environmental changes,
and evolving application requirements [8]. For instance, in

autonomous vehicles, data related to traffic patterns, weather
conditions, and road hazards change continuously. Similarly,
wearable health devices must adapt to variations in user
activity and physiological states. These scenarios highlight the
limitations of static FL and underscore the need for a more
flexible approach that can accommodate changing data patterns
and maintain robust performance over time [9].

Online Learning is a paradigm that allows models to
learn incrementally from a continuous stream of data. Instead
of training on a fixed dataset, models update as new data
arrives, making this approach well-suited for non-stationary
and time-sensitive environments [10]. Online learning excels
in applications where rapid adaptation is critical, such as
stock market prediction, anomaly detection, and personalized
recommendation systems. However, its focus on single-device
learning often overlooks privacy and scalability, which are
essential in distributed systems [11].

The objectives of this study are threefold:

• To provide a comprehensive understanding of online
federated learning, including its fundamental principles
and integration strategies.

• To analyze key challenges and methodologies, such as
communication optimization, privacy protection, and ro-
bustness to dynamic data.

• To examine practical applications across various domains
and propose future directions for research and develop-
ment.

The combination of these two paradigms addresses their
individual limitations while leveraging their strengths. By
incorporating online learning principles into FL, it becomes
possible to adapt to dynamic, non-stationary data environments
while maintaining the privacy-preserving and distributed na-
ture of FL. This integration, termed Online Federated Learn-
ing, enables:

• Adaptability: Models that continuously evolve with new



data.
• Privacy-Preservation: Training without exposing raw

data.
• Efficiency: Optimized communication and computational

resources.
This paper aims to explore the methodologies, challenges,

and applications of Online Federated Learning, with a partic-
ular focus on optimizing communication efficiency, handling
non-IID data, and ensuring robust privacy protection.

II. LITERATURE REVIEW

A. Integration of Online Learning and Federated Learning

The integration of online learning and federated learning
represents a significant advancement in distributed machine
learning [12], [10]. Traditional FL operates in iterative rounds,
where clients locally train models using static data and send
updates to a central server for aggregation. This approach
works well in controlled environments but struggles with dy-
namic data streams, where frequent updates and non-stationary
distributions are common [2].

Online federated learning (OFL) modifies this paradigm by
incorporating online learning principles, enabling incremental
updates to the global model. This continuous learning ap-
proach allows models to adapt to changes in real-time without
requiring retraining from scratch [9]. However, achieving this
adaptability while maintaining the core benefits of FL—such
as data privacy and communication efficiency—requires care-
ful consideration of several factors:

• Dynamic Aggregation: Unlike traditional FL, where ag-
gregation occurs at fixed intervals, OFL necessitates adap-
tive aggregation methods. These methods must account
for client availability, data heterogeneity, and the tempo-
ral relevance of updates. Techniques such as weighted
averaging and time-sensitive aggregation are commonly
employed to enhance the relevance of updates [13].

• Client Selection: Effective client selection is critical
to reducing communication overhead while maximizing
model performance. Clients with significant updates or
those representing diverse data distributions should be
prioritized. Adaptive algorithms, such as reinforcement
learning-based selection, have shown promise in optimiz-
ing this process [11].

• Scalability: As the number of participating clients in-
creases, managing communication and computation de-
mands becomes challenging. Hierarchical FL architec-
tures, where local aggregations occur before global up-
dates, provide a scalable solution for large-scale deploy-
ments [14].

This integration also demands robust solutions for handling
non-IID data distributions, a common characteristic in FL
environments. Clients often generate data reflecting unique
local patterns, which can lead to biased global models if not
addressed. Meta-learning approaches, personalized models,
and adaptive learning rates are among the strategies employed
to mitigate this issue.

B. Communication Efficiency, Privacy, and Robustness

Communication overhead is a major challenge in OFL,
particularly in resource-constrained environments [12], [14]
.Frequent model updates can strain network resources and
impact latency-sensitive applications. Strategies to enhance
communication efficiency include:

• Gradient Compression: Techniques like sparsification
and quantization reduce the size of model updates,
minimizing transmission costs. These methods balance
communication savings with potential impacts on model
accuracy [14].

• Periodic Updates: Aggregating updates at defined in-
tervals, rather than continuously, reduces communication
frequency. Adaptive thresholds can further optimize this
process by aggregating only when significant updates are
available. [10]

• Federated Averaging Variants: Modifications to the
FedAvg algorithm, such as FedProx and FedNova, ad-
dress inefficiencies in handling heterogeneous data and
communication intervals. [7]

While FL inherently enhances privacy by keeping data local,
the continuous interactions in OFL introduce new vulnerabil-
ities [6]. For instance, frequent updates increase the risk of
model inversion attacks, where adversaries reconstruct private
data from shared gradients. Advanced techniques are needed
to address these risks:

• Secure Aggregation: Encrypting updates ensures that
individual contributions remain confidential [4]. Proto-
cols like secure multi-party computation (SMPC) provide
robust protection against data leakage.

• Differential Privacy: By adding noise to model updates,
differential privacy guarantees that individual data points
cannot be inferred from the aggregated model. This ap-
proach balances privacy and utility, ensuring meaningful
contributions to the model while safeguarding client data
[4].

OFL must also contend with robustness issues arising
from non-IID data, adversarial attacks, and unreliable clients.
Techniques such as robust optimization, anomaly detection,
and adversarial training improve model stability and relia-
bility. Additionally, reinforcement learning can be integrated
to adaptively adjust learning parameters, further enhancing
robustness.

III. CONCLUSION

Online learning-based federated learning represents a
paradigm shift in distributed machine learning, addressing the
limitations of traditional FL in dynamic environments. By in-
tegrating online learning principles, OFL achieves adaptability,
efficiency, and privacy preservation in scenarios involving non-
stationary and heterogeneous data.

Despite its potential, several challenges remain. Enhancing
communication efficiency, developing robust privacy protec-
tions, and ensuring scalability are critical areas for future
research. Specific directions include:



• Dynamic Aggregation Mechanisms: Tailored aggrega-
tion strategies that adapt to client-specific data and update
patterns.

• Scalable Architectures: Hierarchical or decentralized
models to manage large-scale deployments effectively.

• Enhanced Privacy Measures: Combining cryptographic
techniques with advanced differential privacy mecha-
nisms to address emerging vulnerabilities.

• Application-Specific Customization: Developing
domain-specific adaptations of OFL for applications
such as healthcare, autonomous systems, and industrial
IoT.

These advancements will not only enhance the performance
and reliability of OFL but also broaden its applicability across
diverse and critical domains. By addressing these challenges,
OFL can unlock new opportunities in distributed learning and
pave the way for more intelligent and responsive systems.
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