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Abstract—Deep learning has achieved significant advances in
image representation learning, yet it remains constrained by
challenges such as imbalanced datasets and limited contextual
understanding of paired data. To address these issues, we propose
a novel multimodal approach that integrates Contrastive Siamese
Neural Networks with text embeddings generated using vision
language models (VLMs) especially Pixtral. Our method aims
to enhance contextual alignment between paired images by
combining image embeddings and text embeddings derived from
language models such as BERT or RoBERTa. Inspired by the ar-
chitecture of CLIP, which synchronizes image and text encoders,
our approach adapts contrastive learning to focus specifically on
image embeddings while leveraging text embeddings to enrich
the context. This multimodal framework is evaluated on both
imbalanced and balanced datasets to determine its robustness
and effectiveness. Key contributions include analyzing the role of
generated text in providing context to images and demonstrating
the potential of Siamese networks in multimodal settings. The
experimental results highlight the advantages of our approach
in improving contextual understanding and improving overall
performance in balanced and imbalanced dataset settings.

Index Terms—Siamese Neural Network, Multimodal Learning,
Contrastive Loss, Text Embedding, Vision-Language Models
(VLMs), Contextual Representation Learning, Image-Text Align-
ment
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I. INTRODUCTION

Deep learning has become the cornerstone of modern ad-
vancements in Artificial Intelligence (AI), achieving remark-
able success across diverse applications. Convolutional Neural
Networks (CNNs) have played a key role in image-related
tasks by robustly extracting patterns and meaningful repre-
sentations from visual data [1]. The breakthrough in CNNs
gained widespread attention with the ImageNet Challenge [2],
which highlighted the importance of large-scale datasets and
established critical benchmarks to evaluate image classification
models.

AlexNet [3] marked a significant milestone in tackling
large-scale image classification challenges, demonstrating the
robustness of CNNs. Building on this success, VGG16 [4]
introduced a deeper, carefully crafted CNN architecture that
improved the receptive field and effectively captured non-
linear patterns. However, deeper CNN architectures often en-
countered performance degradation due to vanishing gradients.
The introduction of Residual Networks (ResNet) [5] addressed
this challenge by facilitating the flow of gradients during
back-propagation, enabling more effective training of deep
networks.

Despite these advancements, deep learning models remain
heavily dependent on large-scale datasets and are sensitive to
class imbalance issues. Collecting diverse and robust datasets
requires substantial resources and careful consideration of
constraints to ensure the model’s generalization capabilities
across various conditions. To address the challenges posed by
imbalanced class distributions, the Siamese Neural Network
(Siamese) [6] was proposed. Siamese networks, often coupled
with CNNs, can learn feature-rich image representations for
tasks like one-shot learning. Various enhancements have been



made to Siamese networks, primarily focusing on emphasizing
differences between paired inputs, with Contrastive Loss being
a notable example.

Recently, multimodal approaches that integrate visual and
textual data have demonstrated significant potential in enhanc-
ing representation learning. For instance, CLIP (Contrastive
Language-Image Pre-training) [7] combines an image encoder
and a text encoder, aligning their representations through
contrastive loss to achieve state-of-the-art performance in
cross-modal tasks. Inspired by this paradigm, our work extends
the Siamese network architecture by incorporating text embed-
dings, generating textual descriptions for images using Vision-
Language Models (VLMs) such as Pixtral or QwenVL. This
multimodal approach aims to provide contextual understanding
between paired images, thereby enhancing the robustness of
feature learning.

Our approach differs from CLIP in its application of con-
trastive loss, as we utilize it specifically for image embeddings
while integrating text embeddings to enrich the contextual un-
derstanding of paired images. Additionally, language models
such as BERT and RoBERTa are explored to enhance text
representation, ensuring high-quality embeddings for training.

The main contributions of this paper are as follows.
• We evaluated the robustness of Siamese Neural Networks

combined with text embeddings on both imbalanced and
balanced datasets.

• We analyze the effectiveness of optimally generated text
in providing context to images and enhancing multimodal
learning.

The remainder of the paper is structured as follows. Sec-
tion II reviews related works in Siamese networks, multi-
modal learning, and their applications. Section III presents the
methodology, including the model architecture and the training
process. Section IV outlines the experimental setup and results,
followed by a discussion in Section V. Finally, Section VI
concludes the paper and outlines future research directions.

II. RELATED WORKS

A. Siamese Neural Network

Siamese Neural Networks (SNNs) have emerged as a ro-
bust architecture for tasks involving pairwise comparisons,
particularly in one-shot learning and similarity-based tasks.
The foundational work by Koch et al. [6] introduced shared
weight networks to learn feature embeddings from paired in-
puts, effectively capturing similarity and dissimilarity between
data points. This innovative design has proven to be highly
effective in tasks such as image matching and verification.
A key component of the SNN framework is the Contrastive
Loss function [8], which optimizes the embedding space by
penalizing dissimilar pairs, enhancing the network’s ability to
distinguish between similar and dissimilar inputs.

SNNs have demonstrated strong performance, especially
in scenarios with limited labeled data or imbalanced class
distributions, where conventional supervised learning methods
often struggle. Extensions to the Siamese framework, such as

the incorporation of triplet loss [9], further improve embedding
discriminability by considering triplets of anchor, positive,
and negative examples. Moreover, the adoption of deeper
convolutional architectures like Residual Networks (ResNet)
[5] has significantly enhanced the generalization capabilities
of Siamese networks across diverse datasets.

B. Multimodal Classification

Multimodal learning, which integrates data from multiple
modalities such as images and text, has gained considerable
traction to improve task performance by leveraging comple-
mentary information. A landmark contribution in this domain
is CLIP (Contrastive Language-Image Pre-training) [7], which
aligns visual and textual representations using a contrastive
loss function. CLIP employs an image encoder (e.g., Vision
Transformers) and a text encoder (e.g., transformer-based
language models) to jointly learn embeddings, enabling the
model to perform zero-shot image classification by utilizing
textual descriptions.

The integration of multimodal approaches has revolution-
ized cross-modal tasks such as image captioning [10], visual
question answering (VQA) [11], and image-text retrieval [12].
Models like VisualBERT [13] take a step further by treating
image regions as tokens within a transformer framework,
learning joint representations of images and text. These meth-
ods leverage large-scale datasets containing paired image-text
annotations, facilitating the development of robust embeddings
that generalize effectively across various domains.

Recent advancements have also explored combining CNN-
based image encoders with language models such as BERT
or RoBERTa for tasks like image-text retrieval and captioning
[14]. By unifying visual and textual information, these ap-
proaches enable models to comprehend the semantic context
of images while retaining the ability to extract visual features.
This fusion of modalities ensures more accurate, contextually
aware predictions, paving the way for improvements in mul-
timodal learning applications.

C. Vision-Language Models

Vision-Language Models (VLMs), such as Pixtral [15] and
QwenVL [16], are specifically designed to generate textual
descriptions for images and facilitate the alignment of multi-
modal data. These models utilize large-scale datasets contain-
ing paired images and text to learn robust joint embeddings
that effectively capture the semantic relationships between the
two modalities.

By leveraging these joint embeddings, VLMs have demon-
strated significant potential across a range of applications,
including image captioning, visual question answering (VQA),
and cross-modal retrieval. The high-quality text represen-
tations generated by these models enhance the contextual
understanding of visual data, making them an invaluable
asset in multimodal learning tasks. Their ability to bridge
the gap between vision and language further strengthens
their applicability to real-world scenarios, where integrating



multimodal information is crucial for achieving state-of-the-
art performance.

III. MULTIMODAL SIAMESE NEURAL NETWORK

This section details our proposed approach for leveraging
multimodal data in a Siamese Neural Network (SNN) frame-
work as shown in Figure 1. The method integrates both image
and text embeddings to enhance contextual understanding and
address challenges related to imbalanced datasets and limited
labeled data. Key components of the methodology include
image embedding, text embedding, contrastive learning with
textual context, and the generation of training data using
Vision-Language Models (VLMs).

A. Image and Text Embedding

Image embedding involves transforming visual data into
dense vector representations that capture the most salient
features of the input. In the proposed framework, Siamese
networks leverage CNN-based architectures to extract these
embeddings from input images. Contrastive loss is applied
during training to optimize the embedding space, ensuring
that similar images are drawn closer together while dissimilar
images are pushed further apart. This approach facilitates
the learning of robust visual representations, particularly in
challenging scenarios such as imbalanced datasets, where
traditional methods often struggle.

Text embedding, on the other hand, involves converting
textual descriptions into numerical vector representations that
encapsulate their semantic meaning. In this framework, the
text embeddings are designed to complement the image em-
beddings by enriching the overall contextual understanding
of the data. The integration of text embeddings ensures that
the framework leverages both visual and semantic features,
enhancing its ability to generalize across diverse tasks.

For image embeddings, this research employs a vari-
ety of CNN architectures, including VGG16 [4], ResNet50,
ResNet101 [5], and InceptionV3 [17]. These architectures are
selected for their proven ability to extract robust visual features
from diverse datasets.

For text embeddings, transformer-based models such as
BERT [18], ALBERT [19], RoBERTa [20], and DeBERTa
[21] are utilized. These models are chosen for their capacity
to generate rich semantic representations of textual data,
which complement the visual features extracted from images.
By combining the strengths of these models, the proposed
framework achieves a more comprehensive and context-aware
representation, enabling improved performance in multimodal
tasks.

B. Contrastive Siamese with Text as Context

We adapt a training pipeline inspired by CLIP and extend
it into a Siamese framework with automated text descriptions
generated using Vision-Language Models (VLMs). In standard
Siamese networks employing contrastive loss, the model pro-
cesses pairs of inputs (anchor and positive/negative samples)
and calculates the Euclidean distance between them to measure

similarity. However, in our proposed method (illustrated in Fig.
1), we introduce additional distance calculations before the
inputs pass through the Siamese module. This enhancement
incorporates contextual information by calculating similarities
between images and their descriptive texts as well as between
text pairs. These additional calculations create new pairings
(e.g., anchor or positive/negative image with its corresponding
text), enriching the overall representation.

To align the distributions of image and text embeddings, we
integrate image and text embedding models into an additional
module. This module, as shown in Fig. 1, uses the same layer
configurations for both modalities. It translates the extracted
features and contexts into a unified representation. To further
mitigate extreme variations between the two modalities, a Tanh
activation function is employed along with an MLP layer to
control and normalize the distributions.

The extracted embeddings from the backbone models (im-
age and text) are then used to calculate similarity and distance
metrics. While standard contrastive loss training computes
a single Euclidean distance for image pairs, our approach
combines both Euclidean distance (for same-modality pairs
such as image-to-image or text-to-text) and cosine similarity
(for cross-modality pairs such as image-to-text).

d (Ximage1 , Ximage2) =

√√√√ n∑
i=1

(
Ximage2i

−Ximage1i

)2
(1)

Here, Ximage1 denotes the anchor image, and Ximage2 de-
notes the positive/negative image. This equation measures the
Euclidean distance to quantify the similarity or dissimilarity
between the two images, a standard approach in Siamese
contrastive learning.

d (Xtext1 , Xtext2) =

√√√√ n∑
i=1

(
Xtext2i

−Xtext1i

)2
(2)

Here, Xtext1 represents the text description of the anchor
image, while Xtext2 corresponds to the text description of
the positive/negative image. Calculating the distance between
text embeddings emphasizes important descriptive features for
both images.

similarity (Ximage1 , Xtext1) =
Ximage1 ·Xtext1

∥Ximage1∥ ∥Xtext1∥
(3)

This cosine similarity equation calculates the correlation be-
tween an anchor image and its descriptive text, emphasizing
the alignment of features and context.

similarity (Ximage2 , Xtext2) =
Ximage2 ·Xtext2

∥Ximage2∥ ∥Xtext2∥
(4)

The similarity calculation for the positive/negative image and
its descriptive text helps determine the contextual and feature
alignment relative to the anchor.
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Fig. 1. The Proposed Model Design and Training Pipeline: In the additional module, only DeBERTa and RoBERTa incorporate GlobalMaxPooling1D for
feature aggregation. The pipeline illustrates the integration of image and text encoders, the application of contrastive loss for robust representation learning,
and the generation of textual descriptions to provide contextual information.

Loss = (Y ) (Ypred)
2
+ (1− Y ) {max (0,m− Ypred)}2 (5)

Here, Y represents the ground truth for the pair, Ypred is the
model’s predicted result, and m is the margin that separates
dissimilar pairs. Contrastive loss minimizes the distance be-
tween similar features while penalizing dissimilar pairs based
on the ground truth.

Finally, all calculated distances and similarities are con-
catenated and passed into the Siamese module. Within the
module, batch normalization is applied to regularize the feature
distributions before the data is passed to the classifier layer.
The contrastive loss function refines the feature representations
by reducing distances for similar pairs and increasing distances
for dissimilar pairs, ensuring effective learning of meaningful
embeddings.

C. Text Generation and Training

We evaluate the model using two types of datasets: the first
is a face recognition dataset [22], which exhibits imbalanced
class settings, and the second is a classic classification dataset
for animal classification [23].

The face recognition dataset consists of 1,323 distinct
classes, each with unique facial features, and no data aug-
mentation is applied. The class distribution is illustrated in Fig.
2, focusing on the top 10 classes with more than 15 images
and those with fewer. The dataset is highly imbalanced; some
classes contain over 20 images, while others have as few as 2
images.

The second dataset, the animal classification dataset, in-
cludes three classes (cat, dog, and snake), with an equal
distribution of data across the classes. Each class contains
1,500 images, resulting in a balanced dataset.

Fig. 2. Face Recognition Training Distribution

Before training, we split each dataset using stratified k-fold
cross-validation to ensure balanced distributions between the
training and test sets. Text descriptions for the images are
generated using VLMs, specifically Pixtral.

The model is trained using the SGD optimizer with a learn-
ing rate scheduler, starting at 0.1 and decreasing progressively
to 0.0001. The number of epochs varies depending on the



dataset: the face recognition dataset is trained for 20 epochs,
while the animal classification dataset requires 30 to 40 epochs
for better convergence.

For the image embedding model, we utilize pre-trained
ImageNet weights and freeze these weights during training.
For the text embedding model, we use pre-trained base models
and only DeBERTa using the base small pre-trained model.
Finally, the Siamese model is trained on GPUs, specifically
using 2×A100.

IV. EXPERIMENT

In this section, we analyze the performance of each image
and text backbone combination. Additionally, we compare
the original Siamese contrastive learning model with different
image backbones as a baseline. A random threshold close to
0.5 from the precision-recall curve is used to assess model con-
sistency and improvements compared to the original Siamese
model.

The results in Table I demonstrate that integrating pre-
trained text embeddings (Bert, Albert, Deberta, Roberta) sig-
nificantly enhances performance. On the imbalanced Face
Recognition dataset, ResNet101 + Bert achieves the high-
est accuracy (99.96%), while residual-based networks show
consistent performance across both datasets. In the balanced
Animal dataset, several combinations achieve near-perfect
accuracy, with ResNet50 + Albert attaining the highest F1-
score (97.63%).

Interestingly, VGG16 with Deberta shows an 8% improve-
ment in F1-score for the Face Recognition task, outperform-
ing other VGG16 variants. However, in the Animal dataset,
VGG16 lags behind residual networks, which leverage skip
connections to reduce overfitting. InceptionV3 exhibits strong
performance on the Animal dataset but struggles with Face
Recognition, indicating a limitation in extracting deeper fea-
tures.

Figure 3 highlights that all models achieve at least 64%
precision, with residual networks showing high recall but
being overconfident with negative samples. Conversely, In-
ceptionV3 demonstrates higher precision but lower recall,
favoring positive samples. Adding text embeddings improves
performance consistency, emphasizing the advantage of in-
corporating textual context with image features to enhance
decision boundaries.

In the animal dataset, as illustrated in Figure 4, the resid-
ual networks consistently achieve peak performance in both
precision and recall. The VGG16 model exhibits a slight
decrease in precision and recall, likely due to overfitting
when compared to its original Siamese model. Interestingly,
InceptionV3 combined with Albert shows a noticeable drop
in performance, despite maintaining overall parity with other
InceptionV3 variants for animal dataset classification.

V. DISCUSSION

We evaluated various combinations of image backbone
models with different text backbone models. The choice of im-
age backbone is a significant factor in determining consistent

TABLE I
IMAGE AND TEXT BACKBONE EVALUATIONS

Model Name Face Recognition Animal Dataset
Accuracy F1 Accuracy F1

VGG16 0.6807 0.6849 0.9996 0.9396
VGG16 + Bert 0.9376 0.7643 0.9766 0.8930
VGG16 + Albert 0.9952 0.7458 0.9926 0.8820
VGG16 + Deberta 0.8886 0.7656 0.9813 0.8740
VGG16 + Roberta 0.9621 0.7572 0.9729 0.8880
InceptionV3 0.6416 0.6500 0.9943 0.9086
InceptionV3 + Bert 0.9458 0.6729 0.9996 0.9753
InceptionV3 + Albert 0.9398 0.6689 0.9996 0.9756
InceptionV3 + Deberta 0.9793 0.6608 0.9996 0.9726
InceptionV3 + Roberta 0.9891 0.6855 1.0 0.9720
ResNet50 0.7296 0.6986 0.9986 0.9023
ResNet50 + Bert 0.9988 0.7214 0.9996 0.9739
ResNet50 + Albert 0.9970 0.7214 0.9993 0.9763
ResNet50 + Deberta 0.9968 0.7201 1.0 0.9673
ResNet50 + Roberta 0.9981 0.7206 0.9996 0.9739
ResNet101 0.6930 0.6840 0.9996 0.9123
ResNet101 + Bert 0.9996 0.7246 0.9996 0.9753
ResNet101 + Albert 0.9962 0.7210 0.9996 0.9756
ResNet101 + Deberta 0.9988 0.7224 0.9996 0.9726
ResNet101 + Roberta 0.9962 0.7192 1.0 0.9676

Fig. 3. Face Recognition Precision-Recall@50.
Zoom in for details.

model performance. For instance, VGG16 outperforms other
image backbones in face recognition but lags slightly behind
in animal classification tasks, whereas residual-based networks
demonstrate consistent performance across both datasets. We
hypothesize that VGG16 tends to overfit and struggles to
effectively link image features with the provided text embed-
ding context. Conducting additional experiments on different
datasets could provide broader insights into whether our
method produces suboptimal outcomes with other image/text
model combinations. Moreover, incorporating regularization
techniques or altering activation functions may help mitigate
overfitting.

Our experiments reveal that adding text as contextual in-
formation enhances overall performance. However, variations



Fig. 4. Animal Classification Precision-Recall@50.
Zoom in for details.

among different text models yielded only marginal differences
in results. This observation suggests that the text embedding
models exhibit similar embedding convergence. Additionally,
the use of the tanh activation function may constrain the
embedding space, resulting in similar distance calculations
across embeddings. Future work could explore whether larger
pre-trained models might enhance performance or investigate
alternative scaling techniques that avoid excessively limiting
the text model’s embedding space.

VI. CONCLUSION

In this paper, we demonstrated that a contrastive Siamese
neural network can be significantly enhanced by aligning
the image feature map embeddings with contextual text em-
beddings. Our approach improved overall performance by
an 8% margin, increasing the F1-Score from 68% to 76%
on the challenging face recognition task with extreme class
imbalance, compared to the original Siamese neural network.

Through precision-recall threshold analysis, models such
as VGG16 and residual networks (ResNet50 and ResNet101)
exhibited substantial improvements over the baseline models.
On an ideal dataset, while VGG16 lagged by approximately
2% compared to the original Siamese model, InceptionV3 and
residual networks achieved improvements of up to 7%. Over-
all, the highest-performing original Siamese model achieved
F1-Scores of 69.86% and 93.96% on the face recognition and
animal classification tasks, respectively. In contrast, our en-
hanced Siamese model with text embeddings achieved 76.56%
and 97.63%, reflecting significant improvements across both
datasets.
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