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Abstract—This paper explores the application of artificial
intelligence in the diagnosis of cancer, specifically in making a
distinction between malignant and benign cells based on neural
network models. Traditional diagnostic methods include biopsies
and imaging, which are generally invasive, time-consuming, and
expensive. A dataset from the University of Wisconsin was
applied to train and test two machine learning models: a custom
neural network and a Multi-Layer Perceptron (MLP) classi-
fier implemented in scikit-learn. The Sigmoid-Relu-Relu-
Sigmoid custom neural network attained an accuracy of 92.11%
with an F1 score of 0.91 and an AUC of 0.94, thereby showing a
good trade-off between accuracy and generalization. By contrast,
the MLP classifier, trained on a subset of top predictive features,
achieved a comparable accuracy of 92.0% with an F1 score of
0.88 and an AUC of 0.90, providing a computationally friendly
alternative. Analysis revealed that features representing extreme
tumor characteristics, such as radius worst and texture worst,
contributed significantly to model performance, underscoring the
importance of capturing aggressive tumor properties in cancer
diagnosis.

Index Terms—Cancer Detection, Artificial Intelligence, Ma-
chine Learning, Malignant Cells, Benign Cells, Deep Learning,
Diagnostic Model, Healthcare Innovation

I. INTRODUCTION

Artificial intelligence (AI) has become a transformational
force in many fields, from finance and manufacturing to
healthcare. Coined in the mid-20th century, AI was initially
an academic exercise to design algorithms that could simulate
human thought. Those early systems were mostly rule-based,
relying on symbolic logic and programmed decision trees to
solve well-structured problems. In the last couple of decades,
though, AI has grown phenomenally to include machine
learning, deep learning, and other advanced computational
techniques. These advances have enabled machines not only to
process huge amounts of data but also to learn from it, making
possible pattern recognition, predictive modeling, and au-
tonomous decision-making at scales previously unimaginable
[15]. Today, AI can handle the analysis of multi-dimensional
complicated data, which has been of great use in medicine for
diagnostics, treatment personalization, and disease monitoring.

AI in healthcare began in the 1970s, with the first focus
being on decision support systems that used rule-based logic
to help doctors and nurses assess symptoms and make tentative
diagnoses. By the 1990s, machine learning techniques became

very popular, enabling one to apply AI in medical imaging
and analyze diagnostic images with greater accuracy and
objectivity, based on data [15]. These systems helped much in
the diagnosis of diseases like cancer, cardiovascular diseases,
and neurological disorders. This trend has recently been taken
further by deep learning, which has enabled AI systems to
process large quantities of medical data and identify subtle
patterns that are potentially hard for human experts to find.
Through the development of neural network architectures, es-
pecially convolutional neural networks (CNNs), AI has turned
out highly effective at analyzing visual data, attaining levels
of diagnostic accuracy that rival those of human specialists.

Applications of AI are considered to be among the most
promising to come out in oncology, which provides early
detection and diagnosis of cancer. Cancer has been one of
the leading causes of death in the world, and the results of
treatment are closely associated with the stage of detection.
The characteristic feature of cancer is uncontrolled growth of
transformed cells, which may further metastasize to other parts
of the body, causing further complications. The traditional
methods of cancer diagnosis—biopsies, imaging tests, and
blood tests—are reliable but often come with drawbacks.
Although they may be accurate, biopsies are invasive, and the
analysis by pathologists is time-consuming. Imaging methods,
on the other hand, such as CT scans and MRIs, are not invasive
but can be quite expensive and require specialized equipment.
Further, these methods are usually not very sensitive during
the earliest stages of cancer, when intervention would be most
beneficial.

AI can offer perhaps revolutionary alternatives in the area
of cancer diagnostics by applying machine learning models,
which are trained to recognize cancerous cells with great pre-
cision. Most especially, CNN-based models analyze medical
images to distinguish malignant from benign cells—a task
that normally requires laborious analysis by trained specialists.
Such speed and accuracy in image analysis give a bearing on
AI systems that could have large implications for improving
early cancer detection, reducing the need for invasive pro-
cedures, and making diagnostics more accessible and cost-
effective [14]. Moreover, AI systems can continue to improve
over time through learning from new data—potentially adapt-
ing to detect a wide range of cancers and their rare variants.



While AI has tremendous potential in transforming the
diagnosis of cancer, there are a few challenges and ethical
issues that need to be resolved. In particular, reliability and
transparency must be guaranteed in AI models, as medical
diagnosis requires a high degree of trust and precision. Ethical
concerns related to data privacy must be handled compe-
tently while using large datasets that may contain sensitive
information about patients. Moreover, deep learning models
are not always interpretable making it difficult to understand
the rationale behind an AI-generated diagnosis for medical
professionals [16]. Resolving these issues is of importance in
integrating AI systems into the routine practice of healthcare.

In this paper, we will explore and investigate how AI, partic-
ularly deep learning models, can be developed for improving
diagnostics in cancer. The present study, therefore, focuses on
deep learning techniques applied to distinguish malignant from
benign cells.

II. CURRENT METHODS

Diagnosis of cancer traditionally involves a variety of
medical procedures designed to identify malignant cells and
establish the presence and extent of cancer growth. These
methods have various advantages and disadvantages, often
complementing each other to improve diagnostic accuracy.
Although highly effective, these procedures are typically in-
vasive, costly, and time-consuming, prompting a search for
alternative solutions.

A. Blood Tests

Certain cancers may be detected through blood tests, which
measure specific markers or substances in the blood that may
indicate cancerous activity. For instance, elevated prostate-
specific antigen (PSA) levels can signal prostate cancer, and
other proteins may indicate leukemias and lymphomas [2].
Blood tests are less invasive than biopsies and imaging,
making them valuable screening tools. They also yield rapid
preliminary results, guiding further diagnostic actions.

Despite their advantages, blood tests are not as definitive as
biopsies and imaging tests, sometimes yielding false positives
or negatives. Moreover, most cancers do not produce unique
blood markers, limiting the utility of blood tests for detection.
Therefore, while blood tests can be initial indicators, they
usually require confirmation through additional diagnostic
tools to ensure accuracy.

B. Biopsies

Biopsies are considered the most accurate method to di-
agnose cancer because they enable direct examination of
potentially cancerous tissue. A biopsy involves removing a
small piece from a suspicious area, which a pathologist then
examines under a microscope to check for cancerous cells.
Biopsies include types like needle biopsy, where a thin needle
is used to obtain tissue; surgical biopsy, which involves
surgically removing a larger sample; and endoscopic biopsy,
where a flexible tube accesses organs [1]. The biopsy needle
is often guided by imaging techniques such as ultrasound

or computed tomography (CT) to precisely locate suspicious
tissue and improve accuracy [5].

While reliable, biopsies have limitations. The procedure is
invasive, leading to potential complications such as bleeding
or infection. Additionally, analyzing biopsy specimens is time-
consuming, often requiring specialized expertise, which may
increase costs and delay diagnosis. In areas with limited access
to medical resources, the need for trained pathologists makes
biopsies less accessible to certain populations.

C. Imaging Tests

Imaging tests are essential in cancer detection as they
provide detailed internal views of the body, potentially identi-
fying abnormal growths or tumors. Common imaging methods
include X-rays, CT scans, MRIs, and PET scans, which
produce high-resolution images of organs and tissues, enabling
physicians to detect areas needing further investigation. CT
scans and MRIs, in particular, are effective for visualizing soft
tissues, often used to diagnose cancers in organs like the lungs,
brain, and liver [18].

However, imaging tests also have limitations. Many involve
radiation exposure, which can be harmful, especially with
repeated use, posing a risk to sensitive populations. Although
helpful for identifying abnormal growths, imaging tests cannot
always differentiate between benign and malignant tissues, of-
ten requiring additional follow-up biopsies or tests to confirm
malignancy.

III. LITERATURE REVIEW

A. The Role of AI in Cancer Detection

The use of artificial intelligence in cancer diagnostics repre-
sents a transformative step toward identifying cancerous cells
faster, more precisely, and non-invasively. AI technologies,
particularly machine learning (ML) and deep learning (DL),
enable health professionals to automate complex diagnostic
tasks, reduce human error, and increase early detection rates.
This review addresses recent developments in AI-driven cancer
detection, particularly in deep learning models, and discusses
the challenges of integrating AI into clinical settings.

B. Deep Learning in Medical Imaging

Deep learning, especially through convolutional neural net-
works (CNNs), is effective in medical imaging for cancer
diagnosis. CNNs process image data by recognizing com-
plex visual patterns and features, making them well-suited
to analyzing radiology and histopathology images used in
cancer diagnostics [13]. Studies demonstrate that CNNs of-
ten outperform humans in specific diagnostic tasks, such as
distinguishing between benign and malignant cells in breast,
lung, and skin cancers [14]. This ability is especially valuable
for early cancer detection, where subtle changes in tissue
architecture can critically impact patient outcomes.

For example, deep learning models trained on large datasets
of mammograms or lung CT scans exhibit accuracy in early
tumor detection. These AI models analyze radiographic fea-
tures, including shape, texture, and growth patterns, aiding



radiologists in prioritizing cases for further analysis. Contin-
uous exposure to new data allows such models to improve
diagnostic power over time, increasing accuracy and reliability
[14].

C. AI-Based Histopathology and Image Classification

AI has also shown promise in histopathology. Tradition-
ally, pathologists analyze tissue slides, a labor-intensive and
subjective task. Currently, AI systems trained on labeled
histopathology images can classify cells as benign or ma-
lignant, potentially reducing diagnostic time and improving
consistency [16]. Additionally, AI can analyze complex multi-
dimensional data, providing a more comprehensive view of
tissue health and improving diagnostic accuracy by combining
traditional and AI-based histopathology techniques [17].

D. A Novel Scalable and Transparent Approach to AI-Based
Cancer Diagnostics

This study pioneers a novel approach to AI-based cancer
diagnostics by prioritizing simpler architectures, such as the
Multi-Layer Perceptron (MLP), over the deep convolutional
neural networks (CNNs) that dominate existing literature.
While CNNs, as demonstrated by Gupta et al. [13], have
achieved remarkable success in processing complex medical
images for cancer diagnosis, they are often constrained by sig-
nificant computational demands, requiring advanced hardware
and substantial energy resources. This can limit their practical
deployment in resource-limited settings such as rural clinics
or hospitals in developing regions. In contrast, the MLP-
based model in this study is designed to balance accuracy
and efficiency, making it a highly scalable and deployable
alternative without compromising diagnostic reliability.

The effectiveness of MLP architectures in this context
challenges the prevailing notion that only deep learning models
can achieve state-of-the-art performance in medical diagnos-
tics. While CNNs have been widely accepted as the gold
standard for tasks like medical image classification, their
real-world applicability remains a topic of debate due to
the need for extensive datasets and computational power. By
achieving a comparable diagnostic accuracy of over 92% with
an MLP—alongside an F1 score of 0.88 and an AUC of
0.90—this study provides strong evidence that simpler models
can deliver clinically acceptable results. In the medical field,
where diagnostic accuracy above 90% is often considered
sufficient for initial screenings, the MLP’s performance meets
the threshold for practical utility, particularly when the trade-
offs in computational efficiency are factored in. This opens the
door to broader adoption of AI diagnostics in settings where
advanced computational infrastructure is unavailable.

A critical strength of this study lies in its emphasis on scala-
bility and transparency, two attributes that are often overlooked
in the rush to develop ever more complex AI models. The
transparency of the MLP model, facilitated through simplified
feature engineering and performance visualization tools like
ROC curves and confusion matrices, addresses the ”black
box” problem highlighted by Lee et al. [16]. In clinical

practice, interpretability is not just a desirable attribute—it
is essential for gaining the trust of medical professionals
and ensuring compliance with ethical standards. By providing
clear, interpretable outputs, this study bridges the gap between
AI research and clinical application, enabling clinicians to
understand and validate the model’s decision-making process.

Furthermore, this work addresses a critical challenge in
medical AI: generalizability. Johnson et al. [14] emphasize
the importance of benchmarking AI models across diverse
datasets and clinical scenarios to ensure robust performance.
This study’s comparative analysis of a custom neural network
and an MLP demonstrates the latter’s adaptability to real-
world constraints while maintaining diagnostic efficacy. The
inclusion of tangible performance metrics such as accuracy,
F1 score, and AUC ensures rigorous validation and positions
this work as a benchmark for future studies aiming to balance
simplicity and effectiveness.

IV. DATASET

The dataset for this study was obtained from the Depart-
ment of Computer Science and Surgery at the University
of Wisconsin. It consists of digitized fine needle aspiration
(FNA) samples of breast masses, totaling 569 samples: 212
malignant and 357 benign. Each sample includes 32 features
summarizing cell morphology, such as radius, texture, perime-
ter, area, and smoothness. For each feature, three values were
calculated—mean, standard error, and “worst” or “extreme”
mean—capturing variability in cell characteristics.

Key attributes, such as compactness, concavity, symmetry,
and fractal dimension, are critical for distinguishing between
malignant and benign cells. Features labeled as “worst,” such
as radius worst and texture worst, represent the largest or
most extreme values observed for these characteristics within
a tumor sample. Specifically, radius worst captures the maxi-
mum radius (distance from the center to the perimeter), while
texture worst represents the most irregular or coarse texture
observed in the cell nuclei. These features provide insights
into aggressive tumor behavior associated with malignancy.

Permutation importance analysis was conducted to evaluate
the contribution of each feature to model performance. The
analysis involved systematically assessing how shuffling the
values of individual features impacted model accuracy. Fea-
tures like radius worst and texture worst showed the greatest
impact, highlighting their critical role in distinguishing malig-
nant from benign samples. This method ensured an unbiased
evaluation of feature relevance and enhanced the model’s
interpretability and performance.

The dataset was used without additional pre-processing.
The University of Wisconsin dataset is well-curated, with no
missing values or inconsistencies, making further cleaning
or normalization unnecessary. Features such as radius mean,
texture mean, and radius worst were directly utilized in their
provided form for training and testing the models. The dataset
was split into training (80%) and testing (20%) subsets to
evaluate performance.



TABLE I: Dataset Attribute Summary

Attribute Mean Range Median
Radius 14.127 21.129 14.25
Texture 19.290 29.57 20.68

Perimeter 91.969 144.71 94.74
Area 654.889 2357.5 644.8

Smoothness 0.096 0.111 0.1031
Compactness 0.104 0.326 0.1262

V. METHODOLOGY

This study investigates two machine learning models for
classifying breast cancer cells as malignant or benign: a
custom neural network and a secondary model implemented
with scikit-learn’s MLPClassifier. Both models were trained
and evaluated on a dataset of cell morphological character-
istics and optimized to improve classification accuracy. The
following sections outline the data preparation steps, model
architectures, optimization techniques, and evaluation metrics,
providing a detailed account of each model’s configuration and
performance.

A. Custom Neural Network Model

TABLE II: Model Accuracy Based on Activation Functions in
Layers

Epoch 1st Layer 2nd Layer 3rd Layer 4th Layer Accuracy
20 R R R R 58.77%
20 S S S S 96.61%
20 S S R R 41.23%
20 S S S R 58.77%
20 S R R S 92.11%
20 R S S S 94.74%
20 S S S R 58.77%
20 S T T S 97.37%
20 S R R S 93.86%

The first model implemented was a custom neural network
designed and trained using TensorFlow, with the architecture
structured to capture complex patterns across the full feature
set. The network consists of an input layer, three hidden layers,
and a single output layer. The input layer accepts 32 features,
representing each sample’s morphological characteristics.

The first hidden layer comprises 256 neurons with a Sig-
moid activation function, chosen for its ability to capture
non-linear relationships between features. The subsequent two
hidden layers each contain 256 neurons with Relu activation
functions. Relu was selected for its efficiency and its capability
to mitigate the vanishing gradient problem, a common issue in
deep networks. The output layer contains a single neuron with
a Sigmoid activation function, producing a probability score
that reflects the likelihood of a sample being malignant. Fur-
thermore, we tested various different configurations of neural
networks to find the optimal. The custom neural network was
trained using the Adam optimizer, an adaptive optimization
algorithm that adjusts the learning rates based on the gradients,

leading to faster convergence. Table II displays the various
results after 20 Epochs.

Ultimately, we chose the model SRRS, which had a 92.11%
accuracy. Although having a lower accuracy rate as compared
to other models, we chose those models to prevent overconfi-
dence. After training, the custom neural network was evaluated
on the test set using multiple metrics: accuracy, F1 score, and
the area under the ROC curve (AUC). Its F1 score was 0.91,
showing a strong balance between precision and recall, which
is critical in medical diagnostics where both false positives and
false negatives are costly. The AUC was 0.94, highlighting the
model’s strong discriminatory power in distinguishing between
malignant and benign samples.

B. MLPClassifier Model

To complement the custom neural network, a second model
was implemented using scikit-learn’s MLPClassifier, a type
of multi-layer perceptron suited for basic neural network
classification tasks. For the MLP model, a subset of fea-
tures—perimeter mean, compactness mean, concavity mean,
and texture mean—was chosen based on their high relevance
to malignancy. By focusing on these specific features, we
aimed to streamline the model, making it less computationally
intensive while retaining classification accuracy.

The MLP architecture features a single hidden layer with
100 neurons, utilizing the Relu activation function. This
function is effective in neural networks for reducing com-
putational complexity while maintaining robust classification
performance. The output layer consists of one neuron with a
Sigmoid activation function, producing probabilities for binary
classification.

As with the custom neural network, the Adam optimizer
was employed to dynamically adjust learning rates, enabling
faster convergence. Hyperparameters, including the number of
neurons and the learning rate, were carefully tuned to max-
imize performance while minimizing the risk of overfitting.
This tuning allowed the MLP model to achieve an optimal
balance between complexity and accuracy.

The MLP classifier’s performance was evaluated on the test
set using accuracy, F1 score, and AUC. The MLP classifier
achieved an accuracy of 92.0%, comparable to the custom
neural network. It obtained an F1 score of 0.88, reflecting
its effective handling of both precision and recall. The AUC
for the MLP model was 0.90, indicating solid discriminatory
ability, though slightly lower than that of the custom neural
network. The simpler architecture of the MLP classifier made
it suitable for applications where computational efficiency is
prioritized, while still maintaining strong classification perfor-
mance.

VI. RESULTS & DISCUSSION

A. Performance Comparison

The performance metrics of both the Custom Neural Net-
work and MLPClassifier models are summarized in Table
III. The Custom Neural Network slightly outperformed the



MLPClassifier in terms of F1 score and AUC, indicating better
overall classification performance.

TABLE III: Comparison of Model Performance Metrics

Model Accuracy F1 Score AUC
Custom Neural Network 92.11% 0.91 0.94

MLPClassifier 92.0% 0.88 0.90

B. Confusion Matrices

The confusion matrices for both models, as shown in Fig. 1,
provide a visual representation of the classification results. In
the case of the Custom Neural Network, the model achieved
329 true negatives (TN) and 195 true positives (TP), with
22 false positives (FP) and 17 false negatives (FN). The
MLPClassifier yielded similar results, with 328 true negatives,
186 true positives, 29 false positives, and 26 false negatives.
These findings indicate that while both models are effective
in distinguishing between malignant and benign cells, the
Custom Neural Network demonstrated a slightly better balance
in reducing both false positives and false negatives. See Figure
1 for detailed visualization.
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Fig. 1: Confusion Matrices for Custom Neural Network and
MLPClassifier (Cleaned-Up Labels)

C. ROC Analysis

The ROC curves for both models illustrate the trade-off
between the true positive rate (sensitivity) and false positive
rate (1-specificity) across different threshold settings. As seen
in Fig. 2, the Custom Neural Network has a slightly higher
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Fig. 2: ROC Curves for Custom Neural Network and MLP-
Classifier

AUC compared to the MLPClassifier, indicating better overall
performance.

While deep learning models such as CNNs have achieved
higher accuracy on cancer diagnostics tasks, they often come
with trade-offs in computational complexity and interpretabil-
ity. The Breast Cancer Wisconsin dataset, while widely rec-
ognized and well-curated, has inherent limitations in size and
diversity. The dataset predominantly represents samples from
a specific geographic and clinical setting, which may not fully
capture the variability in tumor characteristics across different
populations. These constraints could impact the generalizabil-
ity of the findings, particularly when applied to real-world,
diverse clinical scenarios.

This study highlights that MLPs, though less complex, offer



a balance between accuracy and scalability, making them more
suitable for deployment in resource-constrained environments.
Future work could explore hybrid models that combine the
efficiency of MLPs with the feature extraction capabilities of
CNNs to further enhance performance. Additionally, testing
the model on larger and more diverse datasets, as well as
incorporating multimodal data such as genetic markers and
patient demographics, could address these limitations and
improve robustness.

VII. REAL-WORLD APPLICATIONS

The AI model developed in this project holds significant
potential for real-world applications in healthcare and oncol-
ogy. By enabling early cancer detection, it improves survival
rates through timely and accurate diagnoses, allowing for less
aggressive treatments and better patient outcomes. The model
supports radiologists by distinguishing between malignant and
benign cells, streamlining workflows, and enhancing diagnos-
tic efficiency.

In resource-constrained settings, this cost-effective, scalable
model bridges gaps in healthcare access by assisting with
initial assessments, reducing reliance on invasive diagnostics
like biopsies. Its simplicity makes it ideal for clinics lacking
advanced equipment, enabling quicker, less expensive screen-
ings and conserving medical resources.

Scalable deployment across hospitals and clinics could sup-
port large-scale screening initiatives, especially in underserved
areas with limited specialists. By empowering non-specialized
staff, the model facilitates broader cancer detection efforts
while ensuring high-risk cases are referred to specialists.

Challenges remain in integrating AI into clinical practice,
particularly in ensuring model interpretability and testing on
diverse datasets to enhance generalizability. Transparent tools
like explainable AI (XAI) can foster clinician trust, making
this model a practical solution for improving global cancer
diagnostics. Additionally, ensuring robust privacy safeguards is
critical to protect sensitive patient data during the development
and deployment of AI systems. Addressing these challenges
will not only improve clinical adoption but also ensure equi-
table and ethical use of AI in healthcare settings.

VIII. FUTURE RESEARCH

Future research on this AI diagnostic model could focus
on broadening its applicability to encompass a wider range
of cancer types and diagnostic contexts. While the current
model is primarily tailored to breast cancer cells, extending its
capabilities to other cancers, such as lung, prostate, and skin
cancers, would significantly enhance its versatility and impact.
Achieving this expansion would likely require modifications to
the model architecture to account for unique cellular structures
and morphological characteristics specific to each cancer type.
Additionally, incorporating multimodal data sources—such
as genetic information, patient demographics, and molecular
profiles—could further enhance the model’s accuracy and
provide a more comprehensive understanding of each patient’s
health, enabling more personalized and precise diagnostic

outcomes. Furthermore, integrating this model into real-time
hospital systems using cloud or edge computing solutions
could facilitate immediate access to diagnostic support in
clinical settings.

IX. CONCLUSION

Both the custom neural network and the MLPClassifier
demonstrate strong performance in distinguishing malignant
from benign cells, with the custom neural network showing
a slight edge in accuracy, F1 score, and AUC. This suggests
that while both models are viable, the custom neural network
may be preferable in applications that demand high accuracy,
whereas the MLPClassifier offers a practical, computationally
efficient alternative for resource-constrained settings. Ethi-
cal considerations, however, remain critical. The dataset’s
limited diversity raises concerns about generalizability, and
robust privacy safeguards are essential to protect patient data.
Incorporating explainable AI techniques can also enhance
transparency, fostering clinician trust and facilitating clinical
adoption. Addressing these challenges will ensure that AI-
driven solutions are both equitable and impactful in healthcare.
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