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Abstract—This study proposes an autonomous charging dock-
ing system for transportation robots using a monocular camera
and ArUco markers. Transportation robots equipped with only a
monocular camera face limitations in accurately measuring the
distance and angle to the charger. To address this issue, a system
was designed to predict depth and angle by training a regression
model on the projected rectangular size changes of three ArUco
markers. The proposed system recorded a depth error of 1.18 cm
and an angle error of 3.11°, demonstrating superior performance
compared to the conventional SolvePnP method (58.54 cm, 6.64°).
In docking tests, it successfully achieved charging docking with
a distance error within 2 cm and an angle error of 3.07°. This
study validates the potential for transportation robots to perform
stable and precise charging docking in various environments.

Index Terms—Monocular Camera, ArUco Marker, Regression
Model

I. INTRODUCTION

Efficient logistics operations are a critical factor in deter-
mining the competitiveness of modern manufacturing, and
various robotic technologies are being introduced to achieve
this goal. An Autonomous Mobile Robot (AMR), as shown in
Fig 1(A), utilizes high-cost sensors such as LiDAR and Depth
Cameras to precisely perceive its surroundings and navigate
paths. Additionally, an AMR can calculate the distance and
angle to a charger using these sensors, enabling automatic
charging docking. However, the high cost of these advanced
sensors presents a limitation, making it difficult to equip all
robots with such capabilities.

As a cost-effective alternative, transportation robots
equipped with a monocular camera, as shown in Fig 1(B),
have been proposed. These robots can follow an AMR and
perform similar functions; however, they face a significant
technical challenge in that monocular cameras alone cannot
provide distance information about the surrounding environ-
ment. This limitation is particularly pronounced when attempt-
ing to automate docking, as essential information such as X-
axis distance (Depth), angle (Thetab), and Y-axis distance
(K) cannot be measured. Figure 1(C) visually illustrates these
critical parameters—X-axis distance, angle, and Y-axis dis-
tance—required during the docking process.

Fig. 1. Differences Between AMR and Transportation Robot for Automatic
Charging: (A) AMR Sensors, (B) Transportation Robot Sensors, (C) Informa-
tion for Automatic Charging

This study proposes a docking system that accurately esti-
mates the distance and angle between a robot and a charger
using a monocular camera and three ArUco markers. The
proposed system is designed based on the characteristic that
the size and deformation pattern of the rectangle surrounding
the ArUco marker change depending on the distance and angle.
Fig. 2 illustrates the overall flowchart of the system.

As shown in Fig. 2(A), the data required for training were
collected using a monocular camera and 2D LiDAR, including
the side lengths of the ArUco marker at various distances and
angles. These data were used to develop an X-axis distance
prediction model and an angle prediction model. The trained
models calculate the X-axis distance and angle by utilizing the
size of the ArUco marker and observed distance information,
which are then used to enable the robot to perform docking.

Additionally, as shown in Fig. 2(B), the size of the rectangle
observed by the monocular camera was used as input data
to design a regression algorithm-based two-step model. This
model first predicts depth and then calculates the angle,
enabling precise docking without relying on expensive LiDAR,
as illustrated in Fig. 2(C).



Fig. 2. Flowchart of the Proposed System

II. COMPARISON BETWEEN EXISTING SYSTEMS AND THE
PROPOSED SYSTEM

A. 3D Pose Estimation Based on SolvePnP Using a Monocu-
lar Camera and an ArUco Marker

A monocular camera and an ArUco marker are widely uti-
lized as cost-effective solutions for estimating the position and
orientation of objects in 3D space. The SolvePnP algorithm is
a key method that leverages these two devices to estimate the
relative position and orientation between the camera and the
marker. The fundamental principle of SolvePnP is illustrated
in Fig. 3. When an ArUco marker is placed perpendicular
to the camera, it is projected as a perfect rectangle in the
image. However, when the marker is tilted, it appears as a
distorted rectangle due to the perspective projection effect.
This distorted shape is analyzed using the coordinates of
the four corners of the marker, which serve as the basis
for calculating the Yaw, Pitch, and Roll angles. Additionally,

SolvePnP utilizes the Z-axis value of the translation vector
to estimate the distance between the camera and the marker.
This enables the accurate acquisition of depth information
using only a monocular camera, making it a cost-effective
alternative to expensive depth cameras or LiDAR. However,
as the distance between the camera and the marker increases,
the projected size of the marker decreases, leading to reduced
resolution and signal-to-noise ratio (SNR), which in turn
lowers the accuracy of pose and distance estimation.

Fig. 3. Depth and Pose Estimation Method Based on SolvePnP Using a
Monocular Camera and ArUco Markers

B. Method for Obtaining the Pose Between the Camera and
the Marker Using a Monocular Camera and an ArUco Marker
in This Study

In this study, a system was implemented to predict the X-
axis distance and angular information to the charger using a
monocular camera and three ArUco markers. ArUco markers,
based on unique patterns, minimize the effects of lighting
changes and background colors, offering advantages that over-
come the limitations of conventional methods [3]. Due to these
characteristics, ArUco markers were adopted in this study.

The proposed system analyzes the side lengths (Top, Bot-
tom, Left, Right) of the rectangle surrounding the ArUco
markers projected onto the monocular camera to estimate the
X-axis distance (Depth) and angle (Thetab) to the charger.
As shown in Fig. 4(A), the side lengths of the rectangle
decrease inversely with the distance (Depth) between the
camera and the charger. Additionally, as illustrated in Fig.
4(B), the deformation pattern of the rectangle changes with
the angle (Thetab) due to the perspective projection effect.
Based on these characteristics, a regression model was trained
on the patterns of changes in distance and angle. Using the
observed side lengths as input data, the model was developed
to predict the X-axis distance (Depth) and angle (Thetab).



Fig. 4. Rectangle Size Changes Around the ArUco Marker by Distance and
Angle: (A) Changes by Distance, (B) Changes by Angle

Predicting angles using only the size of the rectangle is
challenging because the rectangle’s size is influenced by the
interaction between distance and angle. To address this issue,
a method of fixing the distance during angle prediction model
training was introduced. As shown in Fig. 5, the distance was
segmented in 5 cm intervals, and angle data corresponding to
each segment were used for training to focus on analyzing
the changes in rectangle size caused by angle variation. This
approach significantly improves the accuracy of the prediction
model.

Fig. 5. The Process of Fixing Distance to Develop an Angle Prediction Model

In addition to the X-axis distance (Depth, D) and angle

(Thetab) required for charger docking, the Y-axis distance
(K) must also be calculated. As shown in Fig. 6, the Y-
axis distance (K) is computed using the triangulation method,
which requires the pixel distance, depth information (D), and
camera focal length (f) [2]. The triangulation method, when
combined with conventional data-driven approaches, provides
more accurate docking information.

Fig. 6. The Process of Calculating the K Value Using Triangulation

III. DATA ACQUISITION PROCESS AND REGRESSION
MODEL TRAINING RESULTS

To build accurate prediction models for the X-axis distance
(Depth) and angle (Θb), data were collected and trained across
various distances and angles. Manual data collection is time-
consuming and makes it difficult to ensure data consistency,
so an efficient and precise data collection method using a 2D
LiDAR and a monocular camera was implemented. Figure
7(A) visually represents the information obtained from each
sensor: the monocular camera provides the projected image
of the charger, while the LiDAR offers coordinate data to
the charger.To accurately determine the charger’s position by
combining the information from each sensor, it is necessary to
integrate the coordinate systems of the monocular camera and
LiDAR, as shown in Figure 7(B). For this integration, internal
and external parameters are required.

Fig. 7. Characteristics of the Monocular Camera and 2D LiDAR and
Information Required for Coordinate System Unification Between the Two
Sensors:(A) Information obtainable from each sensor, (B) Internal and external
parameters

A. Coordinate System Unification Between the Monocular
Camera and 2D LiDAR

To unify the coordinate systems, the internal and external
parameters of the camera were calculated. Fig. 8(A) shows



the process of extracting internal parameters (focal length,
principal point coordinates, lens distortion coefficients, etc.)
using a checkerboard. Fig. 8(B) illustrates the process of
calculating the transformation relationship (rotation matrix R
and translation vector T) between the LiDAR and the camera
using the SolvePnP algorithm. Through this process, as shown
in Fig. 8(C), LiDAR data were projected onto the monocular
camera image, enabling the data from both sensors to be
interpreted within a unified framework.

Fig. 8. Unifying Coordinate Systems Between Monocular Camera and
2D LiDAR: (A) Internal Parameter Calculation, (B) External Parameter
Calculation, (C) 2D LiDAR Projection onto Image

B. Method for Data Acquisition (X-axis Distance (Depth),
Thetab, Rectangle Side Lengths)

To collect X-axis distance (Depth) and angle (Thetab) data,
a 2D LiDAR was utilized. As shown in Fig. 9(A), the LiDAR
provides the X-axis distance closest to the coordinates of the
center of Marker 2. As illustrated in Fig. 9(B), the angle
(Thetab) is calculated based on the leftmost and rightmost
points of Marker 2’s coordinates. Through this process, as
shown in Fig. 9(C), data on the side lengths (Top, Bottom,
Left, Right) of the ArUco marker were collected. The X-
axis distance (Depth) between the camera and the marker,
the angle (Thetab), the side length information (Top, Bottom,
Left, Right), and the corner coordinates of each ArUco marker
were all stored in a txt file for use in model training.

Fig. 9. Obtaining X-axis Distance, Angle, and Rectangle Side Lengths Using
LiDAR Data: (A) X-axis Distance, (B) Angle, (C) Side Lengths of Rectangles
1, 2, and 3

C. Training and Testing Results of Distance and Angle Pre-
diction Models

Various regression algorithms (Linear Regression [4], Ridge
[5], Lasso [6], Decision Tree [7], Random Forest [8], SVR [9],
Gradient Boosting [10]) were used to train prediction models
for predicting X-axis distance (Depth) and angle (Thetab).
After splitting the data into training and testing sets in an 8:2
ratio, the performance of each algorithm was evaluated, and
the best model was selected.

• X-axis distance (Depth) prediction: The Random Forest
model showed the highest performance, with a Mean
Squared Error (MSE) of 0.0018 and an R² score of
0.9886.

• Angle (Thetab) prediction: For angle prediction, as
shown in Figure 10, the X-axis distance was divided
into 5 cm intervals, and individual models were trained
for each interval. The optimal model varied by distance.
Across all intervals, the models demonstrated stable pre-
diction performance with an average MSE of 1.5185 and
an R² score of 0.915.

Fig. 10. Learning results of the angle (Thetab) prediction model

Based on the evaluation results from the test data, as shown
in Figure 11(A), the X-axis distance (Depth) prediction using
the Random Forest model produced results similar to the actual
values. For angle (Θb) prediction, the optimal model varied
depending on the distance, and predictions were made using
the most suitable model for each range, yielding results close
to the actual values. For example, as shown in Figure 11(B),
predictions were made using Ridge regression for the 190–195
cm range, Random Forest regression for the 85–90 cm range,
Lasso regression for the 25–30 cm range, Gradient Boosting
regression for the 155–160 cm and 170–175 cm ranges, and
Decision Tree regression for the 45–50 cm range, all of which
produced results similar to the actual values.



Fig. 11. Model test results, (A) X-axis distance (Depth) test results, (B) Angle
(Thetab) prediction test results

D. Comparison of performance between the proposed system
and the existing system

The proposed system outperformed the existing SolvePnP
method in both depth and angle prediction.

• X-axis Distance (Depth): The proposed system achieved
an average error of 1.18 cm compared to 58.54 cm for
SolvePnP (Fig. 12(A)).

• Angle (Thetab): The average error was 3.11° for the
proposed system, significantly lower than SolvePnP’s
6.64° (Fig. 12(B)).

This demonstrates the system’s superior accuracy and practi-
cality, maintaining high precision even at long distances.

Fig. 12. Performance Comparison of the Existing and Proposed Systems
Using LiDAR Data: (A) X-axis Distance Prediction, (B) Angle Prediction

IV. DOCKING METHOD AND PROCESS TO THE CHARGER

A. Docking Method Based on the Position of the Charger and
the Robot

The docking process is divided into a total of eight types,
as shown in Fig. 13, depending on the relative position
and orientation of the robot and the charger. These docking
methods are determined by the robot’s angle (Thetab), Y-axis
distance (K), and an auxiliary point (Point A). Point A serves
as an intermediate target point for docking, designed to ensure
that the robot can approach the charging position stably.

Fig. 13. Various Docking Methods Based on the Positions of the Robot and
the Charger

B. Docking Process and Results for Case 1

The docking process for Case 1 is illustrated in Fig. 14 and
consists of the following three stages:

1) Calculate: The values for Depth (distance), Thetab
(angle), and K (Y-axis distance) are calculated, and the
intermediate target point, Point A, is set for docking.

2) Moving1: The robot moves straight to Point A.
3) Moving2: After reaching Point A, the robot rotates by

the calculated Thetab angle.
4) Moving3: Finally, the robot moves straight to the dock-

ing position and completes docking.
The final post-docking state showed an X-axis distance
(Depth) of 19 cm and an angle (Thetab) of 3.07°, confirming
successful docking. With a fixed distance of 17 cm between
the robot’s front and the camera, the actual docking error
was measured as 2 cm. The angular error was only 3.07°,
demonstrating high precision.



Fig. 14. Docking Process and Results for Case 1

V. CONCLUSION

This study proposed a low-cost robotic charging system that
automates docking with a charger by precisely predicting the
X-axis distance (Depth) and angle (Thetab) and calculating
the Y-axis distance (K) using a monocular camera and ArUco
markers. By analyzing the deformation characteristics of the
projected rectangle surrounding the ArUco marker, a model
was developed to estimate depth and angle without the need
for expensive sensors. This demonstrates the feasibility of
enabling transportation robots to autonomously charge without

human intervention using only a monocular camera.
Performance comparison results showed that the proposed

system achieved an average error of 1.18 cm in depth predic-
tion and 3.11° in angle prediction, significantly outperforming
the conventional SolvePnP method (depth: 58.54 cm, angle:
6.64°) in precision. Notably, the proposed system supports var-
ious docking cases, and testing confirmed successful docking
with an accuracy of 2 cm in distance and 3.07° in angle.

This study validates the practicality of a monocular camera-
based docking system and makes a significant contribution
to the adoption of autonomous robots in manufacturing and
logistics. Future research will focus on improving the accuracy
and generalizability of the prediction model by incorporating
more diverse data and scenarios.
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