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Abstract—Ensemble learning is a useful technique to combine
several models to improve classification performance. Previous
research on speech classification shows the benefit of ensemble
learning over single models; however, there is no systematic
evaluation on the accommodating single model performance in
ensemble learning for speech classification. There is also no
detailed report on the usefulness of ensemble learning over
task-specific acoustic feature. We evaluate performance-weighted
ensemble learning by taking into account the previous single
model performance for speech classification tasks, including
speech emotion recognition, laughter type classification, gender
prediction and age prediction. We compare different weighting
schemes based on unweighted and weighted accuracies, in which
we also reported our results using these metrics. Results on
six tasks and eleven datasets show diverse findings on the
effectiveness of performance-weighted ensemble learning over
other ensemble methods and single models.

Index Terms—speech classification, ensemble learning,
performance-weighted ensemble learning, acoustic feature

I. INTRODUCTION

Speech classification is an emerging task in speech process-
ing with various applications such as speaker identification,
gender prediction, intent classification, and speech emotion
recognition. Speech classification is a subset of audio signal
classification (ASC) or audio classification that focuses on
classifying audio segments. The aim of speech classification
is to predict the class label of an utterance based on acoustic
features extracted from the audio signal.

Classical audio classification classically was performed us-
ing Hidden Markov Models (HMM), k-means clustering, and
neural nets [1]. Among many aspects, which features will
be relevant for the tasks is an important decision. Classifier
is another important factor; in [2], the authors showed the
benefit of CNN-based architecture for audio classification over
a simple fully connected network.

Recent development of deep learning moved the way of
speech classification to simpler approach using neural net-
works. An acoustic features are still required to represent the
audio signal, or the system could directly extract information
from raw acoustic signals. Self-supervised learning now is
the de-facto acoustic feature extractor which leads to state-of-
the-art (SOTA) performance in many tasks including speech
emotion recognition [3], speaker identification/recognition,
speaker verification, and intent classification [4]. In finetuning,

the model usually takes the raw audio input to predict the class
label.

Ensemble learning has been shown to improve the perfor-
mance of speech classification tasks by combining predictions
from multiple classifiers. Using classical feature extractor like
zero crossing rate and MFCC, utilizing ensemble learning
would significantly improve speech emotion recognition [5]
and audio classification [6]. In this paper, we propose a
performance-weighted ensemble learning method for speech
classification where the predictions are weighted based on the
performance of individual classifiers. The weights can be from
accuracy, F1-score or other evaluation metrics. In this case, we
evaluated unweighted and weighted accuracies (UA and WA).
The weighted predictions are then summed to obtain the final
prediction. This approach leverages the strengths of individual
classifiers while mitigating their weaknesses.

The contribution of this paper is four-folds relative to the
previous study [7]. First, we run the ensemble of audmodel
and wavlm which is missing in the previous experiments.
Second, we propose a new ensemble learning method called
performance-weighted ensemble learning and evaluate two
variants of performance-weighted values based on unweighted
and weighted accuracies. Third, we re-run EvilLaughter ex-
periments for unimodal by varying feature scaler and kernel
type to further improve the baseline for unimodal prediction.
Finally, we added age classification with the EmoDB dataset
to evaluate the usefulness of task-specific acoustic feature over
the ensemble methods.

II. METHODS

Ensemble learning has been widely adopted as a way to
improve predictive performance by combining multiple mod-
els, usually from different modalities. Although, combining
several modalities from different inputs is also possible as will
be shown in this paper. We introduce a performance-weighted
ensemble that assigns weights to individual models based on
their performance on the previous validation data. This fusion
method is similar to [8] but for classification. The weights
could be from unweighted accuracy or weighted accuracy in 0-
1 scale. The illustration and pseudocode are provided in Figure
1 and Table I respectively.

Suppose we have three different models with predictions
and performances (Fig. 1). The performances are designated
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Fig. 1. Illustrative example of performance-weighted ensemble predictions
with three models.

as weights. The weights are normalized according the total
weights. This normalized weight then is multiplied to each
class probability of each model and summed together to get
the final ensemble prediction. The final prediction is the class
with the highest probability.

III. EXPERIMENTS

A. Tasks and Datasets

We evaluated the proposed performance-weighted ensemble
learning on five tasks and ten datasets. The tasks are speech
emotion recognition (SER), non-verbal emotion recognition
(NVER), gender prediction (GP), speaker recognition (SR),
and laughter classification (LC). The datasets are IEMOCAP
[9], EMNS [10], TurEV [11], KBES [12], Polish [13], TTH
[14], VIVAE [15], JNV [16], RAVDESS [17], and EvilLaugh-
ter [18] datasets. Details of the dataset configuration can be
referred to the previous study [7]. We added EmoDB [19] for
age classification task in this study. Based on the distribution
of the age (Figure 2), we grouped the data into two categories:
under 30 and 30es.

B. Acoustic Features

We evaluated ensemble of the same classifier with different
features. The classifier is SVM for classification with C value
of 1.0 and RBF kernel, except for laughter classification which
uses linear kernel. We evaluated the following model fusions
for performance-weighted ensemble:

• aud+hub: combination of two SVM models from aud-
model [20] hubert-large-ll60k [21] features.

• hub+wav: combination of two SVM models from hubert-
large-ll60k and wavlm-large [22] features.

Fig. 2. Distribution of age in duration (top) and samples (bottom) in EmoDB

• aud+wav: combination of two SVM models from aud-
model and wavlm features.

• aud+hub+wav: combination of three SVM models from
audmodel, hubert-large-ll60k, and wavlm-large features.

• os+praat: combination of two SVM models from
OpenSMILE [23] with eGeMAPSv02 feature set [24] and
praat [25]–[27] features.

• agender+os/praat: combination two SVM models from
agender feature [28] and os or praat features.

• os+praat+agender: combination of three SVM models
from OpenSmile, praat, and agender [28] features.

The dimension (size) of aud, hub, wav, and agender features
are 1024. For os and praat, the dimensions are 88 and 39
respectively.

C. Evaluation Metrics

We reported unweighted accuracy (UA) and weighted accu-
racy (WA) to measure the performance of ensemble learning,
as well as individual model performance for comparison for
LC and AC-EmoDB. Others individual performances can be



TABLE I
PSEUDOCODE CODE FOR PERFORMANCE-WEIGHTED ENSEMBLE METHOD

FUNCTION performance_weighted_ensemble(ensemble_preds_ls, labels, weights):
Initialize empty lists: final_predictions, final_confidences

ASSERT all weights are between 0 and 1
ASSERT number of weights equals number of models

Normalize weights:
total_weight = sum of all weights
FOR EACH weight:

weight = weight / total_weight

FOR EACH idx in indices of first prediction dataframe:
Initialize dictionary class_probabilities with labels as keys and 0 as values

FOR EACH df, weight in zip(ensemble_preds_ls, weights):
GET row from df at idx
FOR EACH label in labels:

class_probabilities[label] += row[label] * weight

predicted_class = label with maximum value in class_probabilities
APPEND predicted_class to final_predictions
APPEND maximum value from class_probabilities to final_confidences

RETURN final_predictions (and optionally final_confidences if needed)

traced back in the previous study [7]. WA treats all classes
equally while UA accounts for class imbalance by calculating
average accuracy per class.

IV. RESULTS AND DISCUSSION

We present our result in Table II which summarize the
performance of mean, uncertainty-based, and performance-
weighted ensemble learning on the ten datasets. The most
notables results are that the performance-weighted ensemble
learning achieves new state-of-the-art results (underlined) on
SER-IEMOCAP, SER-TurEV, and GP-RAVDESS datasets.
The performance-weighted ensemble learning also achieves
comparable results to the uncertainty-based ensemble learning
on other datasets. All SOTA are achieved using ensemble
learning of two feature sets, suggesting task-specific feature
fusion is important for ensemble learning.

Note that for TurEV dataset the new state-of-the-result
results are obtained by the ensemble of audmodel and hubert
features. Although this result is lower than the reported UA
(76%) in the reference paper [11], we argue that our results are
more reliable since we use speaker-independent criteria. There
is no information regarding the speaker independence in the
previous study that leads to assumption that speaker-dependent
evaluation might have been used.

We also conducted two paired sample tests to claim the
significant different about two means between UA-weighted
and WA-weighted ensemble learning. The results show that
the p− values for UA-weighted and WA-weighted are more
than 0.05 (P for one tail are 0.41 and 0.10 for UA and
WA), meaning the difference is not significant. However,
the variance of WA-weighted is smaller than UA-weighted,

indicating WA-weighted may produce more stable predictions
across datasets.

For EvilLaughter dataset (LC), we re-run baseline models
using os and praat with some modifications from the previous
study [7]. First, both features use SVM model with linear
kernel instead of RBF. Second, we did not scale the feature
for os as it degrades the performance. The unimodal model
with os and SVM achieves new state-of-the-result with UA of
76.5 and WA of 73.9%. However, the ensemble model still
cannot outperform the unimodal model similar to the previous
study [7].

The similar negative ensemble results were also observed
for AC-EmoDB dataset. The single model result achieves
higher score with 60% and 67% of UA and WA for agender
features. Combination of os, praat, and agender could not
surpass the UA of single agender model. This result suggests
that for some datasets, specific feature tuned for specific task
may more important than ensemble of multiple features.

V. CONCLUSIONS

In this paper, we presented performance-weighted
ensemble learning for speech classification. Evaluation using
unweighted accuracy and weighted accuracy as weights did
not show significant different, meaning both can be used
alternately. The results showed comparable performances to
previous studies using uncertainty-based ensemble learning
and achieved state-of-the-art results on IEMOCAP and
TurEV datasets for unimodal speech emotion recognition and
RAVDESS dataset for gender prediction. We also reported
new results on laughter type classification, although this high
score is achieved without ensemble learning. The best result



TABLE II
ENSEMBLE PERFORMANCE COMPARISON. BOLD: HIGHER THAN THE BEST SINGLE MODEL. UNDERLINE: NEW HIGHEST. UNCERTAINTY IS OBTAINED

FROM THE HIGHEST SCORE AMONG FOUR VARIANTS IN THE PREVIOUS STUDY [7], EXCEPT FOR AUD+WAV WHICH USED UW

Task-dataset, features Mean Uncertainty UA-weighted WA-weighted
UA WA UA WA UA WA UA WA

SER-IEMOCAP
aud+hub 75.4 74.3 75.5 75.8 75.6 74.5 75.6 74.5
hub+wav 72.1 71.8 72.4 74.4 72.3 72.0 72.3 72.0
aud+wav 76.9 75.8 76.9 75.8 77.0 75.9 76.8 75.8
aud+hub+wav 75.4 74.8 76.2 75.2 75.7 75.0 75.5 74.9
SER-EMNS
aud+hub 50.4 55.7 51.2 56.4 50.4 55.7 50.8 56.4
hub+wav 57.4 62.4 57.0 62.4 42.3 47.7 42.3 47.7
aud+wav 57.4 62.4 57.0 62.4 56.9 56.4 51.9 57.7
aud+hub+wav 49.8 55.0 50.6 56.4 50.6 56.4 50.6 56.4
SER-TurEV
aud+hub 58.2 58.2 58.8 58.8 60.7 60.7 60.7 60.7
hub+wav 46.3 46.3 47.6 47.6 47.0 47.0 47.0 47.0
aud+wav 57.3 57.3 58.5 58.5 57.9 57.9 57.9 57.9
aud+hub+wav 56.1 56.1 57.9 57.9 56.7 56.7 56.7 56.7
SER-KBES
aud+hub 79.2 82.9 79.2 82.9 75.8 78.1 79.2 82.9
hub+wav 79.2 81.9 79.2 81.9 79.2 75.8 79.2 81.9
aud+wav 79.2 81.9 79.2 81.9 79.2 81.9 79.2 81.9
aud+hub+wav 77.5 81.0 78.3 81.9 77.5 81.0 77.5 81.0
SER-Polish
aud+hub 67.8 67.8 67.8 67.8 66.7 66.7 66.7 66.7
hub+wav 67.8 67.8 67.8 67.8 66.7 66.7 66.7 66.7
aud+wav 65.6 65.6 64.4 64.4 65.6 65.6 65.6 65.6
aud+hub+wav 67.8 67.8 68.9 68.9 68.9 68.9 68.9 68.9
SER-TTH
aud+hub 45.6 80.7 45.6 80.6 45.6 80.7 45.6 80.7
hub+wav 44.1 79.9 44.6 79.9 44.1 79.9 44.1 79.9
aud+wav 46.5 81.2 46.4 81.1 46.5 81.3 46.5 81.2
aud+hub+wav 44.9 80.4 45.6 80.6 44.9 80.4 44.9 80.4
NVER-VIVAE
aud+hub 68.6 68.2 68.6 68.2 69.3 68.9 69.3 68.9
hub+wav 64.9 64.2 67.9 67.5 69.3 68.9 64.9 64.2
aud+wav 68.2 67.5 68.2 67.5 68.2 67.5 68.8 68.2
aud+hub+wav 68.2 67.5 69.5 68.9 68.2 67.5 68.2 67.5
NVER-JNV
aud+hub 83.1 82.4 84.4 85.3 83.1 82.4 83.1 82.4
hub+wav 75.6 70.6 79.5 79.4 78.2 76.5 78.2 76.5
aud+wav 78.2 76.5 78.2 76.5 78.2 76. 78.2 76.5
aud+hub+wav 78.2 76.5 83.1 82.4 78.2 76.5 78.2 76.5
GP-RAVDESS
os+praat 94.4 94.4 94.4 94.4 99.3 99.3 99.3 99.3
SR-RAVDESS
os+praat 100 100 100 100 100 100 100 100
LC-Laughter
os+praat 69.4 65.2 69.4 65.2 69.4 65.2 73.0 69.6
AC-EmoDB
os+praat 47.7 64.1 47.7 64.1 46.9 42.8 47.5 63.6
praat+agender 48.4 63.2 48.4 63.2 48.4 64.1 48.4 63.2
os+agender 47.0 60.2 46.7 59.7 46.7 59.7 47.0 60.2
os+praat+agender 49.1 67.1 46.0 62.3 48.6 65.4 49.1 67.1

for age classification is also obtained from single model with
agender feature which is specially tuned for age and gender
recognition.

Future research could be focused on the following
aspects: (1) investigating the effectiveness of performance-
weighted ensemble learning on other tasks and datasets, (2)
exploring other weighting schemes for performance-weighted
ensemble learning, and (3) evaluating the performance of
ensemble learning on other modalities such as text and image.
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