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Abstract—With the ever-growing demand for ultra-high-speed
data transmission and low-latency communication, Terahertz
(THz) systems have become the most critical enablers in appli-
cations like virtual reality, autonomous driving, and massive IoT
networks. However, these systems face challenges in signal prop-
agation, interference management, and real-time beamforming.
This paper presents a novel framework integrating Quantum AI
and Deep Reinforcement Learning (DRL) for real-time adaptive
beamforming in THz communication. Our method dynamically
adjusts beamforming parameters using DRL to maximize signal
strength and minimize interference while leveraging Quantum
AI for accelerated decision-making in complex environments.
Experimental results demonstrate a 35% improvement in Signal-
to-Noise Ratio (SNR), a 40% reduction in interference, and a
25% increase in network throughput compared to conventional
approaches.

Index Terms—Adaptive Beamforming, Deep Reinforcement
Learning, Interference Mitigation, Network Efficiency, Quantum
AI, Terahertz Communication

I. INTRODUCTION

As wireless communications move towards 6G and beyond,
Terahertz (THz) communication systems have gained attention
for providing ultra-high data rates exceeding those of current
millimeter-wave systems. THz communications, operating be-
tween 0.1–10 THz, are pivotal for applications such as virtual
reality (VR), autonomous driving, ultra-fast wireless backhaul,
and massive IoT [1]. However, high-frequency THz waves
face severe challenges such as high path loss, atmospheric
absorption, and limited penetration depth [2]. Additionally,
dynamic interference in urban environments and user mobility
further complicate the deployment of reliable THz systems.

Beamforming is a powerful technique used in sensor arrays
to focus transmitted energy toward desired [3]. However,
traditional beamforming methods such as minimum variance
distortionless response (MVDR) struggle to adapt to rapidly
changing THz channels. In this paper, we propose a Deep
Reinforcement Learning (DRL)-based adaptive beamforming
framework enhanced with Quantum AI. The DRL agent learns
optimal beamforming strategies in dynamic environments by
interacting with its surroundings, while Quantum AI acceler-
ates the optimization process using quantum parallelism.

II. PROPOSED METHODOLOGY

Our proposed framework integrates Deep Reinforcement
Learning (DRL) and Quantum AI to perform real-time adap-
tive beamforming in THz communication systems. The key
innovation lies in how these two technologies work together:
the DRL agent continuously learns from the environment,
adjusting the beamforming weights in response to interference
and mobility, while Quantum AI accelerates the optimization
of the beamforming parameters, leveraging quantum paral-
lelism to search for solutions across high-dimensional spaces
more efficiently.

A. Deep Reinforcement Learning for Beamforming

The DRL agent is built using the Proximal Policy Optimiza-
tion (PPO) algorithm, which operates in a continuous action
space [4]. The objective of the agent is to maximize signal
quality while minimizing interference, learning to optimize the
beam patterns dynamically as the environment evolves.

1) State Space: The state space of the DRL agent represents
all the environmental variables that influence the performance
of the THz communication system. These include Signal-to-
Noise Ratio (SNR), Interference Suppression Ratio (ISR), path
loss due to obstacles, user mobility, and interference patterns:

S =


SNR(t),
ISR(t),
Ploss(t),
user mobility,
interference patterns

 (1)

The agent’s goal is to use these environmental factors to adjust
the antenna array to provide optimal beamforming for both
signal quality and interference suppression.

2) Action Space: The action space refers to the modifica-
tions the DRL agent can make to the beamforming parameters.
These include adjusting the phase and amplitude of the antenna
array elements:

A = {Phase Shift,Amplitude Adjustment} (2)

The DRL agent explores these actions to optimize the direc-
tionality of the transmitted signals.



3) Reward Function: The reward function is central to the
learning process and incentivizes the DRL agent to improve
SNR while minimizing ISR, latency, and improving through-
put:

R(t) = α·SNR(t)−β·ISR(t)+γ·Throughput(t)−δ·Latency(t)
(3)

The agent receives positive rewards for improving signal
quality and throughput, and penalties for increased interference
and latency.

B. Quantum AI for Optimization
The second part of our framework, Quantum AI, accel-

erates the decision-making process of the DRL agent by
enhancing beamforming optimization. Quantum algorithms
leverage properties like superposition and entanglement, al-
lowing multiple beamforming configurations to be evaluated
simultaneously [5].

1) DRL-Quantum AI Beamforming Algorithm: The integra-
tion of Deep Reinforcement Learning (DRL) and Quantum AI
forms the core of the adaptive beamforming framework. The
process begins with the initialization of the DRL agent and
quantum processor, followed by iterative optimization at each
time step based on real-time feedback. This is illustrated in
Algorithm 1.

Algorithm 1 DRL-Quantum AI Beamforming Algorithm
1: Initialize DRL agent and quantum processor.
2: Load THz communication dataset.
3: Preprocess data for DRL and quantum computation.
4: for each time step do
5: Perform DRL-based beamforming optimization.
6: Use QSVM to classify interference.
7: Optimize beamforming parameters with QNN.
8: Transmit/receive signals.
9: Update dataset with new measurements.

10: end for

2) Quantum Neural Networks (QNN): The QNN plays a
crucial role in rapidly searching for optimal beamforming
configurations. It optimizes the beamforming parameters using
a loss function that minimizes interference while maximizing
signal quality:

L =

N∑
i=1

(SNRi − ISRi)
2 (4)

By leveraging quantum superposition, the QNN evaluates
multiple beam configurations in parallel, reducing the com-
putational overhead typically associated with beamforming
optimization [6].

3) Quantum Support Vector Machine (QSVM): Addition-
ally, the Quantum Support Vector Machine (QSVM) classifies
interference types and predicts optimal responses. By analyz-
ing the interference characteristics in the Hilbert space, the
QSVM enhances the DRL agent’s understanding of interfer-
ence patterns, ensuring effective interference suppression in
complex environments.

III. EXPERIMENTAL SETUP

While the Proposed Methodology describes the theoretical
framework, this section details how the framework was imple-
mented in practice, including the simulation environment and
specific configurations used for evaluation.

A. Simulation Environment

We constructed a dynamic urban THz communication sys-
tem simulation to evaluate the performance of the Quantum
AI-Enhanced DRL framework. The environment was designed
to reflect real-world conditions, such as user mobility and
environmental obstacles that degrade signal quality. The key
parameters of the simulation include:

• Frequency Range: The simulation operates in the THz
band, from 0.3 to 10 THz, which allows for ultra-wide
bandwidth communication.

• Antenna Array: A 128-element phased array was em-
ployed, designed to support narrow-beam transmission
for high path loss compensation.

• Interference Sources: We simulated 15 interference
sources of varying types (e.g., multi-path interference, co-
channel interference), dynamically changing during the
simulation.

• Mobility: Users move at randomized speeds between
1 m/s and 3 m/s, simulating pedestrian and vehicular
mobility patterns in urban environments.

• Path Loss Model: A Free Space Path Loss model was
used for the THz band, given by:

PL = 20 log10

(
4πdf

c

)
(5)

where d is the distance, f is the frequency, and c is the
speed of light.

B. Training Process for DRL

The DRL agent was trained in this dynamic environment
over 10,000 episodes, with each episode simulating a full
communication session. The training parameters include:

• Learning Rate: Set to 0.0003, ensuring stable learning.
• Discount Factor (γ): A value of 0.99 was used to priori-

tize long-term rewards.
• Neural Network Architecture: The policy and value net-

works consisted of three layers of fully connected neurons
with ReLU activations. The input layer had 256 neurons,
and the hidden layers contained 512 and 256 neurons,
respectively.

The agent learned to adjust beamforming weights by in-
teracting with the environment and receiving feedback in the
form of rewards.

C. Quantum AI Implementation

We implemented the Quantum Neural Networks (QNNs)
and QSVM on a 20-qubit quantum processor. These quantum
algorithms were responsible for:

• Optimization Speed: QNNs optimized beamforming pa-
rameters at each time step, reducing the time needed



for optimization by 50% compared to classical methods.
This reduction is achieved through the ability to evaluate
multiple beam configurations simultaneously via quantum
parallelism.

• Interference Classification: The QSVM classified interfer-
ence types into categories (e.g., multi-path interference,
co-channel interference) with 91.6% accuracy, allowing
the DRL agent to respond appropriately with interference
mitigation strategies.

IV. RESULTS

Our simulations demonstrated substantial improvements in
signal quality, interference suppression, and network through-
put using the proposed framework. Below, we present key
performance metrics and discuss the outcomes.

A. Signal-to-Noise Ratio (SNR) Improvement

The DRL-Quantum AI framework achieved a 35% improve-
ment in SNR compared to traditional beamforming techniques
(Fig. 1). The ability of the DRL agent to dynamically adjust the
beamforming weights in response to environmental changes
was crucial to this improvement.

Fig. 1. SNR improvement using DRL-Quantum AI beamforming.

B. Interference Mitigation

The framework reduced interference by 40% compared
to traditional approaches (Fig. 2). The synergy between the
QSVM and DRL allowed the system to identify and mitigate
interference sources effectively.

C. Throughput and Latency Improvements

In addition to improvements in SNR and interference sup-
pression, the Quantum AI-Enhanced DRL framework demon-
strates significant gains in both throughput and latency. These
two metrics are critical for assessing the overall network
efficiency and responsiveness of the system, particularly in
Terahertz (THz) communication systems, where real-time data
transmission and low latency are paramount.

Fig. 2. Interference reduction with DRL-Quantum AI beamforming.

1) Throughput: The framework achieves a 25% improve-
ment in throughput over traditional beamforming methods.
This is primarily due to the adaptive nature of the DRL
agent, which optimizes beamforming parameters in real-time
to maintain high data transmission rates even in the presence
of interference and user mobility.

2) Latency: Latency, defined as the time delay in data
transmission, was reduced by 18%. The incorporation of
Quantum AI accelerates decision-making processes, allowing
the system to adjust beamforming weights more quickly, thus
reducing communication delays. Figure 3 and Table Iillustrates
the improvements in both throughput and latency compared to
traditional and DRL-based beamforming methods.

TABLE I
NETWORK THROUGHPUT AND LATENCY

Method Throughput Latency
Improvement Reduction

Traditional 12% 8%
DRL-Based 20% 15%

Quantum AI-Enhanced 25% 18%

Fig. 3. Comparison of Throughput and Latency Improvements across Beam-
forming Methods.



D. Training Convergence

The training convergence of the DRL agent over 10,000
episodes is shown in Fig. 4. The agent’s performance stabilized
after approximately 5,000 episodes, demonstrating efficient
learning.

Fig. 4. Convergence of the DRL agent over training episodes.

E. Optimization Speedup and Accuracy Analysis

To highlight the computational efficiency and accuracy of
the proposed framework, we conducted an analysis comparing
optimization time and accuracy across three methods: Tra-
ditional, DRL-Only, and Quantum AI-Enhanced DRL. The
results demonstrate significant improvements in both optimiza-
tion speed and accuracy with Quantum AI integration.

Figure 5 illustrates the optimization time (in milliseconds,
log scale) over 1000 iterations for all three methods. The
Quantum AI-Enhanced DRL achieves a reduction in opti-
mization time by approximately 70% compared to traditional
methods. Additionally, the accuracy of the optimized solutions
shows a marked improvement, with Quantum AI-Enhanced
DRL stabilizing at 95% accuracy after fewer iterations com-
pared to the other approaches.

These results underscore the advantages of leveraging Quan-
tum AI for adaptive beamforming in terms of both computa-
tional efficiency and decision-making accuracy, making it a
strong candidate for real-time applications in next-generation
communication systems.

F. Ablation Study

We performed an ablation study to evaluate the contribu-
tions of the DRL and Quantum AI components (Table II).
Removing either component led to a significant degradation
in performance, highlighting the importance of their combined
effect.

V. DISCUSSION

The simulation results presented in this work demonstrate
that our proposed Quantum AI-Enhanced DRL framework
clearly outperforms the traditional methods in dynamic Ter-
ahertz (THz) wireless environments. Real-time adaptation,

Fig. 5. Optimization time (log scale) and accuracy comparison for beam-
forming methods. The Quantum AI-Enhanced DRL outperforms DRL-Only
and Traditional methods in both speed and accuracy.

TABLE II
ABLATION STUDY RESULTS

Configuration SNR Interference Throughput
Improvement Reduction Improvement

Full Framework 35% 40% 25%
Without Quantum AI 25% 20% 18%

Without DRL 15% 18% 10%
Traditional 10% 15% 12%

improved decision-making with speeds enhanced by Quantum
AI, and scalability to future wireless networks are some of the
prime benefits from the proposed framework.

A. Real-Time Adaptation

A major strength of the proposed framework is its ability
to adapt in real time to rapidly changing environments. Tra-
ditional beamforming methods, while effective in static con-
ditions, struggle to maintain optimal performance when faced
with challenges like user mobility and varying interference
patterns. The DRL agent continually learns and updates the
beamforming parameters by interacting with the environment.
This allows the system to dynamically respond to changes
such as user movement or fluctuating interference, ensuring
that signal quality is consistently optimized.

The integration of the Quantum Support Vector Machine
(QSVM) enhances this adaptability by accurately classifying
interference patterns in real-time, which is critical in high-
interference environments [7]. By feeding this information
back into the system, the DRL agent can adjust the beam-
forming strategy more effectively, leading to significant im-
provements in interference suppression.

B. Quantum Speedup and Computational Efficiency

The use of Quantum Neural Networks (QNNs) introduces
a significant reduction in optimization time, accelerating the
overall beamforming process by approximately 30% compared
to classical optimization techniques. This is made possible
through quantum parallelism, where the system evaluates mul-
tiple beamforming configurations simultaneously. The ability
to search high-dimensional solution spaces rapidly reduces



the computational overhead typically associated with adaptive
beamforming.

This speedup is particularly beneficial in applications re-
quiring ultra-low latency, such as autonomous driving, smart
cities, or remote surgery, where real-time responsiveness is
paramount. By combining the DRL agent’s adaptability with
Quantum AI’s speed, the system ensures that optimal per-
formance is maintained even under the most stringent time
constraints.

C. Scalability and Practical Considerations

Another important feature of the framework is its scalability.
As wireless communication systems move towards 6G and
massive IoT networks, the need for highly scalable solutions
that can handle increased traffic and larger antenna arrays
becomes critical. The proposed DRL-Quantum AI framework
can be easily extended to larger antenna arrays, allowing for
more complex beamforming strategies in dense user environ-
ments [8].

However, the practical implementation of Quantum AI in
real-world communication hardware presents certain chal-
lenges. The deployment of quantum processors in commu-
nication systems is still in its infancy, and current quantum
hardware may face limitations in processing power and energy
efficiency [9]. Future research should focus on addressing
these hardware challenges, possibly through hybrid quantum-
classical models that leverage the strengths of both technolo-
gies.

D. Limitations and Future Work

While the proposed framework shows promising results,
there are several areas for future exploration. One limitation of
the current study is the simulation environment, which, while
dynamic, may not fully capture all real-world complexities
such as diffraction, scattering, and large-scale urban obstruc-
tions. Future work should involve testing the framework in
real-world scenarios to validate its performance under diverse
conditions.

Additionally, the current work focuses on single-user sce-
narios. Extending the framework to support multi-user beam-
forming in highly dense environments, where multiple users
are competing for the same resources, is a critical next step.
This would involve developing new strategies for multi-user
interference management and beamforming optimization.

VI. CONCLUSION

This paper presents a novel Quantum AI-Enhanced Deep
Reinforcement Learning (DRL) framework for real-time adap-
tive beamforming in Terahertz (THz) communication systems.
The proposed framework leverages the adaptability of DRL
to learn optimal beamforming strategies dynamically, while
Quantum AI accelerates the optimization process through
quantum parallelism.

Our extensive simulations demonstrate that the framework
achieves significant improvements in Signal-to-Noise Ratio
(SNR), interference suppression, throughput, and latency. The

DRL-Quantum AI system outperforms traditional beamform-
ing methods, achieving a 35% improvement in SNR, a 40%
reduction in interference, and a 25% increase in throughput,
while reducing latency by 18%.

This framework is particularly well-suited for next-
generation 6G and massive IoT networks, where real-time
communication and adaptability are essential. Future work
will focus on addressing the practical deployment of Quantum
AI in communication systems, extending the framework to
multi-user scenarios, and testing its scalability in real-world
environments.

The proposed framework is envisioned to achieve poten-
tially promising solutions for addressing the challenging prob-
lems of high-frequency wireless communications in dynamic
and interference-prone environments with a view to rapid
development of 6G technologies.
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