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Abstract—With the rapid development of smart construction, 
the proliferation of sensors and smart devices on construction sites 
has introduced significant challenges in data processing and 
communication. Conventional cloud computing struggles to 
handle the real-time demands of construction data, and existing 
MEC deployment methods often neglect energy efficiency and the 
complexities of multi-story sites. This work proposes a 
mathematical model for 5G MEC deployment, addressing 
installation, connectivity, and energy consumption, and solves it 
using a hybrid algorithm combining simplified harmony search 
(SHS) and variable neighborhood search (VNS). By leveraging 
SHS for global exploration and VNS for efficient local 
optimization, the approach effectively tackles the NP-hard 
problem of 5G MEC server and base station placement. 
Experimental results on real-world construction scenarios 
validate its superiority in computational efficiency, energy savings, 
and cost reduction, establishing it as a viable solution for 
optimizing 5G MEC deployment in smart construction sites. 

Keywords—Smart construction, edge computing, MEC 
deployment, 5G mobile communication network, metaheuristic 
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I. INTRODUCTION  
Conventional construction site management often relies on 

manual methods, leading to inefficiencies, quality issues, cost 
overruns, and safety risks. Labor shortages and stagnant 
productivity further underscore the need for technological 
solutions. Smart construction integrates advanced technologies 
like robotics, sensors, machine learning, and 5G to create 
intelligent, efficient frameworks that enhance safety and 
operations. Task-specific robots for bricklaying, welding, 
bolting, and demolition improve productivity and reduce 
hazards. The growing use of sensors and smart devices generates 
vast data, surpassing traditional cloud processing limits. 5G and 
multi-access edge computing (MEC) address this by enabling 
real-time data analysis at the network edge, reducing cloud 
dependency, and ensuring low-latency communication. These 
advancements support applications like unmanned aerial vehicle 
(UAV) operations, equipment monitoring, and environmental 
sensing, optimizing construction in complex environments [1]. 

This work is motivated by three main factors. First, existing 
research on MEC server deployment has predominantly focused 
on energy savings, total costs, and access delay optimization, 
often neglecting the energy consumption of MEC servers 
themselves. Task offloading to edge nodes shifts energy 
demands to these nodes, making it critical to minimize their 

energy consumption while maintaining an optimal balance 
between connection quality and operational costs. Furthermore, 
conventional energy-saving strategies designed for cloud data 
centers [2] are not directly applicable to MEC systems. Second, 
multi-story construction sites introduce significant complexity 
to 5G and MEC deployments, necessitating solutions that 
effectively address equipment mobility and real-time data 
processing requirements. Finally, while 5G technology holds 
considerable promise for enhancing monitoring and automation 
in construction, limited research exists on deploying 5G and 
MEC in complex, multi-layered construction environments. 
Although 5G deployment has been studied in other domains, 
including smart cities and IoT applications (e.g., green planning 
in smart cities [3], high-density 5G algorithms [4], and device 
layouts in fog computing [5]), comprehensive optimization of 
multidimensional 5G MEC systems for construction sites 
remains largely unexplored. 

This work proposes an optimization framework that 
integrates the simplified harmony search (SHS) algorithm [6] 
with the variable neighborhood search (VNS) algorithm for the 
efficient deployment of 5G MEC systems in smart construction 
sites. The framework considers key factors such as installation, 
connectivity, and energy consumption. Similar to previous 
studies on server deployment, the task of deploying 5G edge 
computing servers and small cells in construction sites has been 
proven to be NP-hard [7]. In the proposed approach, SHS 
functions as the primary optimization method, while VNS 
enhances its local search capabilities, improving the efficiency 
of regional solution exploration [8]. SHS stands out for its 
straightforward application to various engineering optimization 
problems by tuning parameters like memory size, iteration count, 
harmonic memory consideration rate (Ch), and pitch adjustment 
rate (Cp), making it experimentally feasible. Although SHS is 
effective in solving complex optimization problems, its regional 
search capabilities are significantly enhanced through the 
integration of VNS. The VNS algorithm improves SHS’s 
efficiency in obtaining region-optimal solutions by leveraging 
varied neighborhood structures [9]. The algorithm is evaluated 
through experiments, demonstrating its effectiveness in real-
world MEC deployment scenarios on construction sites. 

The main contribution of this work is to develop a cost-
effective 5G MEC deployment framework for multi-story 
construction sites, combining integer programming and a hybrid 
SHS-VNS algorithm to optimize server and small cell placement 
while addressing the unique spatial complexities and constraints 
of such environments. 
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II. vSYSTEM ARCHITECTURE 
This work considers the placement of a 5G MEC system for 

a multi-story smart construction site, which consists of the 
following main components: private cloud computing center, 
gateway, MEC server, 5G picocells and femtocells, and 
intelligent edge device and equipment (IED) (Fig. 1). IEDs in 
this work refer to electronic terminal equipment integrated with 
sensors, such as smart construction machines (SCMs), UAVs, 
and construction site sensors (CRSs). IEDs can promptly 
address issues, filter collected data, standardize formats, and 
integrate data into a software system before transmitting it to the 
MEC server for temporary storage and processing. When the 
MEC server’s capacity is exceeded or long-term storage is 
needed, data is relayed to the cloud computing center through a 
gateway for processing and historical analysis. 

III. PROBLEM SETTING 
This work investigates the deployment of 5G MEC systems 

in smart construction sites, with the goal of establishing an 
optimization model that minimizes the total cost of equipment 
deployment and operation while satisfying practical application 
requirements. The smart construction site is represented as an 𝑚×𝑛 grid coordinate system, where the positions and quantities 
of intelligent edge devices (IEDs) are fixed and predetermined. 
These IEDs comprise smart construction machines (SCMs), 
unmanned aerial vehicles (UAVs), and construction site sensors 
(CRSs). For these fixed-location IEDs, the work focuses on 
optimizing the deployment locations of MEC servers, Picocells, 
and Femtocells, as well as ensuring efficient network 
connectivity among the devices. 

To enhance modeling scientific and reduce problem 
complexity, this work based on the system architecture 
described in references [10] with extensions and improvements. 

Potential deployment locations for MEC servers, Picocells, and 
Femtocells are predefined, and optimization algorithms are 
employed to decide whether to deploy devices at these locations. 
The optimization process considers a series of practical system 
constraints, including connectivity, capacity, latency, distance, 
and connection constraints. 

In terms of connectivity, the model stipulates that IEDs must 
connect to at least one Picocell or Femtocell located on the same 
floor, and these small cells must establish connections with at 
least one MEC server. Additionally, MEC servers are required 
to maintain reliable connectivity with cloud computing centers. 
Regarding capacity, the transmission demand from IEDs to base 
stations must not exceed the base stations' maximum 
transmission capabilities, and the transmission demand from 
base stations to MEC servers must remain within the 
computational capacities of the servers. For latency, both 
wireless connections (IEDs to base stations) and wired 
connections (base stations to MEC servers) must satisfy the 
maximum allowable latency between IEDs and MEC servers. 
Distance constraints ensure that wireless connections between 
IEDs and base stations do not exceed the coverage range of the 
base stations, while wired connections between MEC servers 
and base stations must remain within permissible distances. 
Furthermore, the number of connections for each base station 
and MEC server must not exceed their capacity constraints, and 
all deployment and connection decision variables are binary. 

The objective of this optimization is to minimize the overall 
deployment and operational costs of the 5G MEC network by 
strategically selecting device deployment locations and network 
connection paths under the specified constraints. The cost model 
comprehensively considers the procurement, deployment, and 
operational costs of devices, as well as the expenses of 
connection paths such as fiber optic cabling. 

Fig. 1. The architecture of a 5G MEC system for a smart construction site. 



 

 

IV. PROPOSED ALGORITHM 

A. Solution encoding 
During the improvisation process, the best harmony 

solutions found so far are stored in harmony memory (HM), 
which is composed of hms harmonies denoted as {X1, X2, …, 
Xq, …, Xhms}. Each harmony Xq represents a solution consisting 
of the decision variables for deployment of the three types of 
devices, encoded as Xq = (χq1, χq2, …, χqμ) → (α1, α2, …, α|M| | 
β1, β2, …, β|P| | γ1, γ2, …, γ|F|), in which note χqh is a number 
within range [0, 1] for each h ∈ {1, 2, …, μ}; μ = |M| + |P| + |F|; 
each note χqh corresponds to one of the binary decision variables 
αm, βn, and γf for deploying an MEC server, a picocell, and a 
femtocell are deployed at locations m, n, and l, respectively (i.e., 
if χqh < 0.5, the corresponding decision variable is one; 
otherwise, zero). 

B. Cost evaluation 
Given a harmony Xq = (χq1, χq2, …, χqμ) = (α1, α2, …, α|M| | 

β1, β2, …, β|P| | γ1, γ2, …, γ|F|), the deployment of three types of 
devices can be determined; and simultaneously, the decision 
variable xij determines the connectivity between each pair of 
devices i and j. Then, the cost of this harmony is evaluated as 
the objective function in Equation (1), in addition to the cost 
associated with penalizing violations of constraints below: 
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where Ω serves as the penalty cost for violations, which is a 
significantly large value; ηlink, ηcapacity, ηlatency, ηworkload, ηover, and 
ηconnection denote the number of violating constraints for device 
connection, device computation and transmission capacity , 
maximum delay time , coverage range, and maximum 
connections respectively. Through this penalty scheme, the 
proposed SHSVNS can obtain feasible solutions without penalty 
costs after a large number of iterations.  

C. Proposed SHSVNS 
The classical HS algorithm employs a two-stage process to 

determine new solutions based on the judgement of two random 
numbers with two parameters. Unlike the HS algorithm, the 
SHS algorithm utilizes a one-stage process based on a single 
random number falling within three ranges divided by two 
parameters Ch and Cp for greater simplicity and efficiency. To 
enhance the local search capabilities, this work further integrates 
the SHS algorithm with VNS, which systematically explores the 
neighborhood structure by alternating between various 
neighborhoods of the current solution. This proposed SHSVNS 
is outlined in Algorithm 1. 

V. SIMULATION RESULTS AND ANALYSIS 

A. Experimental setup and settings 
The simulation targets a medium-sized construction site in 

the interim construction phase with an area, and was used to 
validate the effectiveness of SHSVNS in a diverse and dynamic 
construction environment. The parameters of the simulation are 
set below. The site internally contains 15 MEC server locations, 
30 picocell locations and 70 femtocell locations. To measure the 

system cost, we introduce the concept of generic cost unit (gcu), 
where the fiber unit cost cf = 50. The deployment costs of an 
MEC server, a picocell and a femtocell are cM = 800, cP = 600, 
and cF = 100, respectively. The penalty unit cost Ω is set to 106. 
The data transmission rate (bps) is set to skn= skf   =1000, snm = 
1000, sfm = 5000. The coverage areas of MEC server, picocell 
and femtocell are RM = 70m, RP = 100m, RF = 10m, respectively. 
The upper constraints of data processing capacity of MEC server, 
picocell, and femtocell are M

mH  = 105, P
nH = 3 × 104, and F

fH  
= 104, respectively. The maximum delay time (ms) is set as DP,M 
= DP,M = DF,M = 50, DE,P = DE,F = 80. The highest number of 
devices that can be supported by MEC servers, picocells, and 
femtocells in the site are set to NM = 2, NP = 20, NF = 30, 
respectively; and the maximum data transfer requirement for 
each IED is ωk = 2000. 



 

 

To verify the performance of SHSVNS, this work compares 
it with the classical genetic algorithm (GA) and the SHS. The 
parameters of the three algorithms are tested in several 
experiments and adjusted to the optimal settings: hms = 20, Ch 
= 0.3, Cp = 0.7, bw = 0.5, Imax = 16 for SHSVNS, hms = 50, Ch 
= 0.8, Cp = 0.8, bw = 0.5 for SHS, and GA is set as follows:50 
chromosomes, single-point crossover rate = 0.7, mutation rate = 
0.1. Experiments show that after 1000 iterations, all three 
algorithms have converged significantly, and the solution 
quality shows not significant improvement, so the maximum 
number of iterations is set to 1000. 

B. Experimental analysis 
The experiment conducted in this section is to deploy a 5G 

MEC system in the smart construction site. According to the 
specific needs of the construction site, the potential candidate 
positions of three types of IEDs are predetermined, which are 
represented by black, pink, and cyan dots, respectively, in Fig. 
2. With the above candidate locations, the placement of the 5G 
MEC system in the construction site using the proposed 
SHSVNS is illustrated in Fig. 2, in which MEC servers, 
picocells, and femtocells are represented by solid red diamonds, 
blue pentagons, and orange pentagons, respectively, installed in 
the construction site. The result of this deployment consists of 7 
MEC servers, 11 picocells, and 3 femtocells located on different 
floors, with the yellow connections denoting devices connected 
to the second floor and the brown connections denoting devices 
connected to the third floor. Therefore, the installed cost of the 
MEC server is 7 × 800 = 5600 gcu, the installed cost of the 
Picocell is 11 × 600 = 6600 gcu, and the installed cost of the 
Femtocell is 3 × 100 = 300 gcu. The sum of the link and energy 
costs is 20,120 gcu.  

 
Fig. 2. Result of deploying a 5G MEC system in a smart construction site using 
the SHSVNS. 

The total cost Ctotal and its subdivisions for the three 
algorithms (SHSVNS, GA, and SHS) in the 5G MEC system 
deployment are shown in Fig. 3, including the link and energy 
cost (Clink + Cenergy), installation cost (Cinstall). From the results, 

the total cost of SHSVNS is considerably lower than the other 
two algorithms, suggesting that it has a significant advantage in 
cost optimization. SHSVNS not only controls the installation 
cost efficiently, but also keeps the link and energy cost at a low 
level. In contrast, GA has the highest total cost and all three cost 
components are much higher than SHSVNS and SHS. SHS has 
the second highest total cost, but its installation cost and link and 
energy costs are still higher than those of SHSVNS. 

 
Fig. 3. Different types of costs simulated by different algorithms. 

VI. CONCLUSION 
A hybrid SHSVNS algorithm combining SHS and VNS has 

been proposed for 5G MEC deployment in smart multi-story 
construction sites. It leverages SHS's global search and VNS's 
local search, demonstrating advantages in efficiency, energy use, 
and cost reduction. Experiments highlight its effectiveness in 
handling multi-story deployment challenges and complex 
environments, with potential for broader smart city applications. 
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