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Abstract—Practically constrained applications like intelligent
traffic perception and medical imaging often produce very low-
resolution (VLR) images, making the classification of such images
a crucial, yet challenging task. State-of-the-art (SOTA) classifica-
tion networks tend to struggle with VLR images due to the limited
region of interest (ROI) and lack of distinguishable features.
Compared to convolutional neural networks (CNN), capsule
networks (CapsNets) that use pose information for classification
have proved more robust against affine transformations and
adversarial attacks, showing promise in generalizing to VLR
image classification. Existing research on CapsNets has favored
the development of the routing algorithm while overlooking
any modifications to the backbone. We explore a range of
architectures including CNNs, transformers, mixers, and hybrids
as potential replacements for the conventional backbone. We eval-
uate these configurations using the dynamic routing algorithm
on VLR CIFAR-10 data. Our findings reveal that simple changes
to the backbone yield significant improvements: enhancing the
performance of the baseline CapsNet by up to 4.48% while using
32% fewer parameters.

Index Terms—capsule networks, backbone, image classifica-
tion, low-resolution, transformers
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Fig. 1. The original 32 x 32 High-resolution (HR) samples (top) and the
corresponding very low-resolution (VLR) samples (bottom) from the CIFAR-
10 [1] dataset.
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I. INTRODUCTION

Modern deep learning frameworks approach image classifi-
cation by training powerful networks that extract and learn the
spatial features of an image. These include edges, textures, and
shapes that help the model differentiate between classes based
on their representative features. VLR images with an 8 x 8
region of interest (ROI) inherently lack these features as shown
in Fig. 1, causing a significant decline in the performance of
many state-of-the-art (SOTA) models. Despite their practical
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applications in long-distance surveillance, satellite imagery,
remote sensing, and medical imaging, the challenge of VLR
image classification remains largely unaddressed [2], [3].

Before the recent adoption of vision transformers, convolu-
tional neural networks (CNN) were the established benchmark
in image classification. The success of CNNs is in part due
to the pooling layers, which filter spatial information while
preserving the necessary features for classification. In addition
to enhancing the receptive field, pooling helped CNNs achieve
translation invariance by shifting the key features towards the
center of feature maps as the network deepened. However, this
method comes at the expense of losing exact spatial location
information, preventing the network from capturing the spatial
hierarchies of objects. For example, CNN might misclassify
a truck as a car from a different viewpoint, since the loss of
positional information such as the distance between the wheels
hinders its ability to differentiate.

Inspired by inverse graphics, capsule networks (CapsNets)
were introduced to retain pose information in its fundamental
unit, the capsule [4]. A capsule is a group of neurons that
learns to encode both: the features and pose of a detected
object. This allowed CapsNets to preserve the spatial structures
and hierarchies from a visual scene, demonstrating superior
robustness against affine and adversarial transformations. Cap-
sNets are particularly appealing for VLR classification tasks
since image resolution does not affect the pose information of
objects.

II. BACKGROUND

Most existing research on CapsNets has focused on the rout-
ing algorithm; while this is well-founded, previous studies sug-
gest that using a suitable and powerful backbone considerably
enhances both the performance and parameter efficiency of
CapsNets. Phaye et al. [5] replaced the standard convolutional
backbone with dense convolutions leading to better results in
complex datasets. The efficient CapsNet [6] leveraged depth-
wise convolutions as a parameter-efficient alternative in the
backbone. Furthermore, Vu et al. [7] achieved SOTA results
on various vision tasks by using pre-trained backbones. Recent
works have also explored residual CNNs [8], [9], and mixers
[10] as backbones to boost performance in vision tasks.



The primary role of a backbone in CapsNets is to extract
diverse spatial features and optimize the information encoded
in the primary capsule layer. Integrating a suitable backbone
improves the CapsNet’s capacity to process more complex
data. Despite advancements in routing mechanisms [11], [12],
many algorithms still use the underlying concept of routing by
agreement, where capsules are clustered towards abstract class
representations, as implemented in the traditional dynamic
routing algorithm [4]. Therefore, we adopt the dynamic routing
algorithm as a representative method to evaluate different
backbone setups and analyze their effectiveness on VLR
CIFAR-10 images.

III. METHODOLOGY

We start with the baseline dynamic routing CapsNet (DR-
CapsNet) from [4], adjusted for three color channels. DR-
CapsNet features a backbone consisting of two convolutional
layers with 9 x 9 kernels and strides of 1 and 2, respectively.
With the goal of refining VLR classification performance and
reducing model size, we evaluate the effectiveness of a variety
of model configurations.

«Depth-wise convolutions: The poor performance of CapsNets
with complex image data is partly attributed to the limited
representation of primary capsules, i.e., the capsules cannot
encode all the detected entities. Depth-wise convolutions might
form better discrete capsule vectors, that collectively encode
more information. We retain the first convolution layer from
[4] and modify the second layer to use depth-wise convolutions
with similar parameters.

+ResNet-32 backbone: While the DR-CapsNet was designed
for simpler datasets like MNIST [13], a more powerful back-
bone may be better suited for handling the complex spatial
structures in the CIFAR-10 dataset. This test replaces the
baseline backbone with a ResNet-32 [14], excluding its final
layers.

eDenseNet-BC-100 backbone: This configuration evaluates a
DenseNet-BC-100 backbone [15], used with a growth rate of
12 and a compression factor of 0.5. The output feature maps
are processed by a 3 x 3 convolutional layer with a stride
and padding of 1 to adjust the number of feature maps before
reshaping them into the primary capsules. This ensures that
the number of capsules formed remains consistent with those
in other methods.

«2D convolutional patches: Inspired by the vision transformer
(ViT) [16], this approach utilizes two convolutional layers with
a kernel size and stride of 2 to extract non-overlapping patches.
The first convolutional layer consists of 64 filters, followed
by the second layer with 16 filters. Each patch corresponds
to a 4 x 4 receptive field, which is subsequently encoded into
a high-dimensional (depth-16) primary capsule. This method
aims to enhance the CapsNet’s ability to represent complex
backgrounds, potentially improving the overall performance.

«ViT style embeddings: To explore the impact of patch
embeddings used in a ViT, we extract 4 x4 patches, flatten, and
project them to a depth of 16 using a linear layer. This way,
a patch is encoded as a single primary capsule with a depth

of 16. We rely on the dynamic routing algorithm to organize
and route these embeddings.

«ViT backbone: This method adopts the ViT architecture,
excluding the MLP head, to replace the conventional back-
bone. Specifically, the ViT backbone comprises six multi-
head attention (MHA) layers with each MHA layer featuring
eight attention heads. The tokens generated by the ViT are
used as the primary capsules of the CapsNet. The attention
mechanism captures long-distance dependencies. Therefore,
we expect these tokens to contain more semantic information,
potentially improving performance on high-dimensional VLR
CIFAR-10 data.

«ConvMixer backbone: The ConvMixer [17] has proven to
be a conceptually simple yet powerful network, outperforming
the ViTs on image classification benchmarks. ConvMixer uses
depthwise and pointwise convolutions to mix information
spatially and channel-wise, respectively. For our study, we
employ a ConvMixer with a depth of 8, 256 filters, a kernel
size of 5, and a patch size of 4. Given its effectiveness
as a backbone in capsule autoencoders [10], we evaluate
its performance on VLR image classification. Furthermore,
we investigate another approach by replacing the depthwise
and pointwise convolutions with standard 2D convolutions for
mixing. Since capsules are high-dimensional vector represen-
tations of features, it is consistent to use entire vectors during
mixing, rather than discretely as in the original ConvMixer.

+«Combined residual and mixer backbone: This configura-
tion integrates a simple residual layer with three residual
blocks—each containing 64 channels and strides of 1, 2, and
2, respectively—for initial feature extraction, followed by a
ConvMixer. The residual layer efficiently generates feature
maps, while the ConvMixer mixes the extracted information
to capture long-distance dependencies. The mixed features
are then transformed into the primary capsule layer. This
hybrid approach leverages the strengths of both architectures
to enhance performance.

TABLE I
THE COMMON HYPERPARAMETERS USED IN TRAINING THE CAPSNETS ON
VLR CIFAR-10 DATA.

Parameter Value
Optimizer Adam [18]
Initial learning rate 0.001
Weight decay 0.95
Batch size 100
Epochs 100
Routing iterations 3
Weight of margin loss 1
Weight of reconstruction loss 0.0005

IV. EXPERIMENTS

The training hyperparameters for the CapsNets are sum-
marized in Table I. Note that the squash activation function
from the DR-CapsNet was unchanged. The CNNs in Table II
are trained using an Adam optimizer with an initial learning
rate of 0.0001 except for VGG-19 [19] which uses an SGD



TABLE II
CLASSIFICATION RESULTS FOR VARIOUS BACKBONE MODIFICATIONS ON VLR CIFAR-10. THE CAPSULE PARAMETERS, TOP-1 ACCURACY, AND
PARAMETER COUNTS ARE RECORDED FOR EACH METHOD. METHODS WITH FEWER PRIMARY CAPSULES ARE ASSIGNED A HIGHER CAPSULE DEPTH FOR
BETTER PERFORMANCE.

Primary caps

Backbone model Class caps depth Params (M) Test Acc.
# Caps Depth
VGG-19* [19] - - - 21.07 72.65
CNNs DenseNet-201%* [15] - - - 20.82 68.31
EfficientNet-B7* [20] - - - 67 71.05
DR-CapsNet [4] 2048 8 16 11.75 68.05
Conv Depth-wise conv 2048 8 16 6.46 65.30
Backbones ResNet-32 128 8 16 4.39 69.35
DenseNet-BC-100 2048 8 16 7.94 72.53
Transformer 2D conv patches 64 16 32 4.17 60.16
Backbones VIiT style embeddings 64 16 32 4.17 54.31
ViT 64 16 32 422 62.97
Mixer ConvMixer 2048 8 16 6.99 71.05
Backbones ConvMixer with 512 g 16 504 68.35
2D conv
Hybrid Combined 'r651dual 2048 3 16 712 70.82
Backbone and mixer

* denotes transfer Tearned.
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Fig. 2. The convergence plots for the tested backbone configurations illustrate both, the training and validation performance, over 100 epochs on the VLR
CIFAR-10 dataset. Note that the validation accuracy is computed from a subset of the training data and differs from the test accuracy reported in Table II.

optimizer with a learning rate of 0.001 and a momentum of
0.9. Pre-trained weights from ImageNet-1k [21] were assigned
at the start of training for the CNNs. An input image resolution
of 48 x 48 was used with CNNs since they do not function
well with smaller images. The top-1 classification accuracy
is reported in Table II along with the parameter count for
each method. All experiments are conducted using an NVIDIA
RTX-4090 GPU and each CapsNet was trained from scratch
for fair testing.

A. Dataset and Augmentation

CIFAR-10 dataset consist of 32 x 32 natural color im-
ages belonging to 10 classes. This dataset was chosen since
it represents a more practical and complex real-world data
distribution. During training and testing, we down-sample the
images to 8 x 8 before up-sampling back to 32x 32 (48 x 48 for
CNNs) using bilinear interpolation to generate VLR images.
We also apply data augmentations in the form of translations,

random rotations in the range of 10 degrees, and random
horizontal flips.

B. Classification Results

The tested SOTA CNNs show significant performance
degradation on VLR images compared to their HR benchmarks
[19], [15], [20]. In contrast, the tested CapsNets are more
parameter efficient and demonstrate competitive or greater
performance against these complex CNNs, with the baseline
DR-CapsNet achieving a classification accuracy of 68.05%.
Among the evaluated backbones, DenseNet-BC-100 displays
the highest accuracy at 72.53% while being 32.4% more
parameter efficient compared to the DR-CapsNet. In terms of
parameter efficiency, using 2D convolutional patches stands
out with just 4.17M parameters, 64.5% fewer than the baseline.
However, this efficiency is achieved at the cost of a notable
7.89% drop in accuracy.

Between the convolutional backbones, ResNet-32 yields an
accuracy of 69.35% with a significantly lower parameter count



of just 4.39M, while using depth-wise convolutions halve the
parameter count with a 2.75% drop in performance over the
DR-CapsNet. From a high-level outlook, the mixer-type back-
bones enhance performance with fewer parameters, whereas
the transformer-style backbones underperform, despite having
a greater capsule depth in both the primary and class capsule
layers. The best result with a transformer-type backbone was
obtained using a ViT itself, which only reached 62.97%.
Among the mixer-type configurations, both approaches im-
prove the accuracy with a notable reduction in parameters.
Particularly, the ConvMixer achieves a performance of 71.05%
with just 6.99M parameters. Lastly, the hybrid backbone
modification records an accuracy of 70.82%, slightly below
the ConvMixer, with a marginally higher parameter cost.

In summary, we have presented a comparative analysis of
various backbone architectures, highlighting their potential to
improve classification accuracy at a lower cost of parameters.
All models were trained for 100 epochs rather than until full
convergence; however, based on Fig. 2, it is reasonable to
assume that most models had sufficiently converged. Nev-
ertheless, several modifications have outperformed the DR-
CapsNet, emphasizing the impact of a good backbone choice
in CapsNets.

V. CONCLUSION AND FUTURE WORKS

In conclusion, our study highlights the role of a well-
designed backbone in a CapsNet to achieve SOTA perfor-
mance in VLR image classification. We explore the impacts of
several popular architectures as backbones used in conjunction
with the dynamic routing algorithm. The findings demonstrate
that selecting a compatible backbone significantly enhances
classification performance while reducing the parameter com-
plexity, both crucial for surpassing existing benchmarks.

The dynamic routing algorithm performs a form of unsu-
pervised clustering, but more advanced approaches like atten-
tion mechanisms, have already been integrated into CapsNets
[8], [22]. While this work focuses solely on the backbone,
combining novel routing mechanisms with suitable backbones
may certainly improve the CapsNets’ ability to handle more
complex data, presenting a promising direction for future
research.
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