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Abstract—Deep learning has become a widely utilized 
approach for a variety of applications. Some networks, such as 
Multilayer Perceptrons (MLPs), apply input feature data to 
compute regression and classification results. In recent years, 
many architectures, such as transformers, incorporate MLPs 
for backend computations and achieve notable success across a 
range of applications. In 2024, a novel network architecture, 
named the Kolmogorov-Arnold Network (KAN), has been 
introduced. Like MLPs, KANs share similarities in structure, 
but are grounded in the Kolmogorov-Arnold representation 
theorem. Unlike MLPs, which apply fixed activation functions 
at each neuron, KANs use trainable activation functions directly, 
making the model require fewer network layers and neurons for 
training. In addition, we conducted a comparative analysis using 
other models such as the radial basis function (RBF) network. 
This analysis aims to the training performance and compare the 
efficiency of KANs and MLPs on commonly used machine 
learning datasets. The results show that KANs outperform 
MLPs in regression and classification tasks.   
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I. INTRODUCTION 

Deep learning techniques are now applied to a variety of 
tasks, and basic tasks such as classification and regression 
problems can typically be addressed by constructing neural 
network frameworks to model data and make appropriate 
prediction. In tasks involving different features as inputs, 
regression problems that output a value and classification 
problems that output a category vector, often utilize machine 
learning algorithms such as random forest for classification or 
regression, and support vector machines (SVM) [1] etc. for 
classification or regression. In neural networks constructed 
through deep learning, MLPs are commonly used to fit the 
input features to the output results [2], [3], and can be applied 
to both classification and regression tasks. Moreover, radial 
basis function (RBF) Networks [4] can achieve similar results. 
When dealing with image-based data, while networks like 
MLPs can be used to perform tasks, they do not outperform 
convolution neural networks (CNNs), which are designed for 
tasks involving image inputs. 

In recent years, neural network frameworks have been 
developed based on different mathematical principle, 
modeling technique, and computational foundation. In deep 
learning, parameters can be set to a trainable state, allowing 
gradient calculation through error estimation and updating the 
model accordingly. The latest network architecture, 
Kolmogorov-Arnold Networks (KANs) [5], constructs its 
model theory based on mathematical theorems, and models 

the network structure using B-spline functions, among other 
methods.  

In 2024, Liu et al. proposed KANs [5] and found that they 
performed exceptionally well in multi-input and continuous 
polynomial function tasks and outperform traditional models 
in solving Partial Differential Equations (PDEs). When 
training on new data, MLPs often suffer from catastrophic 
forgetting, where they lose previously learned knowledge. In 
contrast, KANs do not exhibit such forgetting after training. 
The results from various experiments indicate that KAN 
networks hold significant potential. Therefore, this study aims 
to apply KANs to basic deep learning datasets and compare 
their performance with MLP networks. Additionally, since 
KANs have more hyperparameters to configure, this research 
also seeks to conduct verify the impact of these parameter 
settings on KAN network training via ablation studies. 

In regression tasks, commonly used algorithms e.g. the 
SVM, the MLP, the RBF, simple Linear Regression (LR) [6], 
and Random Forest Regression. According to [7], MLP has 
been employed to predict the efficiency of water desalination, 
using the Adam optimizer to fine-tune the neural network 
parameters. Additionally, some studies have used algorithm 
like the RBF and the MLP to recognize complex relationships 
between haloketones and water quality [8], predicting 
outcomes based on specific input features such as pH, 
temperature, and the concentration of certain chemical ions. 

In classification tasks, common algorithms include 
Decision Tree Classification [9] and k-Nearest Neighbors 
(kNN) [10]. However, deep neural networks like MLP remain 
the preferred approach for classification and prediction. For 
example, MLP has been applied to detect and classify DDoS 
attacks [11], where an the Auto-Encoder [12] is used for 
feature extraction, and the extracted features are feed into the 
MLP to enable effective automatic feature learning. Another 
common application of the MLP is in disease diagnosis [13]. 

II. THE PROPOSED METHOD 

A. The Training Data 

In this study, we used several machine learning datasets to 
conduct preliminary evaluations and validate the initial 
performance of the models. Specifically, we used 4 
classification datasets and 4 regression datasets to compare the 
models' performance. The 4 classification datasets include the 
IRIS dataset, the MNIST dataset, the Fashion-MNIST dataset, 
and the CIFAR-10 dataset. The regression datasets consist of 
the Boston Housing dataset, the California Housing dataset, 
the Concrete dataset, and the ENB2012 dataset. 



B. Models’ Detail 

The RBF Network is a specialized artificial neural network 
designed for tasks such as regression, classification, and 
function approximation. It comprises three layers: an input 
layer, an RBF layer, and an output layer. The RBF layer 
typically uses a Gaussian function (1) as its activation function, 
with trainable parameters β and c. This layer calculates the 
Euclidean distance between the input features and c, 
multiplies the result by −β, and applies a logarithm to produce 
its output. The output layer usually consists of a fully 
connected layer.         

      𝑟𝑏𝑓ሺ‖𝑖𝑛𝑝𝑢𝑡 െ 𝑐‖ሻ ൌ 𝑒𝑥𝑝ሺെ𝛽 ൈ ‖𝑖𝑛𝑝𝑢𝑡 െ 𝑐‖ሻ. (1)

The concept of the KAN is similar to that of the MLP, but 
in KAN networks, the linear output layers are removed, and 
instead, the nonlinear outputs are treated as trainable 
parameters. This approach allows the activation functions to 
be learnable and updated during training. Because KAN is 
based on the Kolmogorov-Arnold theorem (KA theorem). 
This theorem states that for any continuous function f of 
multiple variables, it can be represented as a finite sum of 
nested functions of single variables. In other words, any 
continuous function of multiple variables can be expressed as 
a finite sum of single-variable functions through addition. 
Specifically, f can be represented as shown in equation (2). 
This indicates that f takes an n dimensional input and projects 
it onto the real domain ℝ, where the values of all dimensions 
are within the range [0,1]. Equation (3) represents the inner 
functions, which have a domain of [0,1] and a range of real 
numbers ℝ. Equation (4) represents the outer function, which 
has both its domain and range in the real numbers ℝ. Thus, the 
Kolmogorov-Arnold theorem can be expressed through two 
layers of nested functions as shown in (5). Here, 
𝑓ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ  is a multivariable function with n inputs. 
Each outer function takes as input the sum of n inner functions, 
and the result of 2n+1 outer functions is summed to express a 
multivariable continuous function. 

𝑓: ሾ0,1ሿ୬ → ℝ, (2)

𝜙୯,୮: ሾ0,1ሿ → ℝ, (3)

Φ୯: ℝ → ℝ, (4)

      𝑓ሺ𝑥ሻ ൌ 𝑓ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ ∑ Φ௤൫∑ 𝜙௤,௣൫𝑥௣൯௡
௣ୀଵ ൯ଶ௡ାଵ

௤ୀଵ .    

                    (5) 

The KAN can offer a more effective fitting for most real-
world applications, as these applications are often nonlinear 
and involve multiple inputs. Specifically, the KAN layer 
involves several calculations, including residual function and 
B-spline calculations. In this study, the residual function used 
is the SiLU function (5), which is also the default function 
employed by the model. The input x, after being processed 
through the residual function, undergoes interpolation 
calculations using the B-spline function. The output of the B-
spline function is then weighted by the output of the residual 
function. Finally, a mask is used to control the final output, 
and the results are aggregated to produce the final output 
vector.     

𝑆𝑖𝐿𝑈ሺ𝑥ሻ ൌ 
௫

ଵା௘షೣ .     (5)

In the model design, we have structured the KAN network 
into two configurations: a single KAN layer (KAN-1) and a 

two KAN layers (KAN-2). For the MLP, we have 
configurations with 1 layer, 2 layers, and 4 layers of fully 
connected layers, denoted as MLP-1, MLP-2, and MLP-4, 
respectively. 

For regression datasets, we investigated the model's 
training performance under conditions with standardization. 
Standardization was performed using the Min-Max Scaler 
method for each feature. This method projects the original 
features into the [0,1] range, aligning with the assumptions of 
the KA theorem. 

After preprocessing the data, it is trained using six 
different network models. In the study, the Adam optimizer is 
employed for parameter updates, the β1 and β2 are 0.9 and 
0.999, respectively. The learning rate in classification task is 
0.0003; in regression task is 0.001; training epochs in 
classification is 15; in regression is 500; batch size is 64.  

C. Evaluating model 

In this paper, each of the six network models is trained 20 
times on each dataset. After each training, we will evaluate 
model via testing dataset and calculate some metrics, like the 
average values of the Mean Squared Error (MSE) and R² score 
(for regression tasks) or accuracy (for classification tasks).  

To verify whether there are significant performance 
differences between the models, we used the Kruskal-Wallis 
H test to calculate the p-value. Additionally, we performed the 
Tukey Honestly Significant Difference (HSD) test to compare 
pairs of models and determine if there are significant 
differences between them. The Kruskal-Wallis H test is used 
to compare the median differences between two or more 
groups of data, and it is particularly suitable when the data 
don’t follow a normal distribution or when variances are not 
equal. The equation of Kruskal-Wallis H is shown in (6), 
where N represents the total number of evaluation values 
(accuracy or MSE) across all training results. Ri is the sum of 
ranks for the ith model, and ni is the number of evaluation 
values for the ith model. Since each model is trained and 
evaluated 20 times, so ni equals 20. The Kruskal-Wallis H test 
begins by ranking all evaluation values from all models in 
ascending order, starting from 1. The sum of the ranks for 
evaluation values within each model is denoted as Ri. This 
sum is then used to compute the test statistic. The Tukey HSD 
test is a post-hoc multiple comparison test often used 
following analysis of variance (ANOVA). It compares the 
performance of each pair of models and determines whether 
the differences between their performances are statistically 
significant. The equation of Tukey HSD as shown in (7), 
𝑞ሺ𝛼, 𝑚, 𝑁 െ 𝑚ሻ  represents a distribution based on the 
Studentized range statistic, where 𝛼 is the significance level, 
set to 0.05 in this study. The term 𝑁 െ 𝑚  is used in the 
ANOVA context to calculate the degrees of freedom for the 
variability between two models. The critical value can be 
obtained from the distribution tables. MS௪  represents the 
within-group mean square, calculated as the sum of squares of 
all evaluation values divided by the degrees of freedom. 

𝐻 ൌ
ଵଶ

ேሺேାଵሻ
∑ ோ೔

మ

௡೔
െ 3ሺ𝑁 ൅ 1ሻ଺

௜ୀଵ , (6)

𝐻𝑆𝐷 ൌ 𝑞ሺα, m, N െ mሻටMSೢ

௡
. (7)
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Figure 1. Grid searching result in classification dataset of KAN-1. 
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Figure 2. Grid searching result in classification dataset of KAN-2. 



D. Ablation Experiment 

In this study, we also investigated the training outcomes of 
KAN-1 and KAN-2 under different parameter combinations. 
We employed a simpler grid search to validate the results of 
training KANs with various parameter settings. Additionally, 
we tried the impact of adding a Batch Normalization (BN) 
layer between the two KAN layers in KAN-2, resulting in a 
new configuration called KAN-2bn. We aimed to determine 
whether KAN-2bn improves the stability of model training 
under different parameter combinations. The experimental 
parameters range of num is [2, 3, 4, 5, 6, 7, 10, 20, 50], and 
range of k is [2, 3, 4, 5, 10, 20].  

We analysis the effects of these parameters on KAN 
network training using ANOVA. In this study, we treated the 
hyperparameters as a factor and employed ANOVA to assess 
the significance of different num and k hyperparameter 
settings on regression results. In ANOVA, we compute the F-
value to determine the impact of these hyperparameters on the 
results, specifically ri represents the actual R² values where the 
R2 value is defined as:  

                                
2

2
2

( )
1

( )
i ii

ii

y f
R

y y


 





,        (9)                       

yi, y , fi, are the ground truth, the mean of the ground truth, 
and the predicted result, respectively; 𝑟ఫഥ  represents the 
predicted R² values from the ordinary least squares model [14]; 
𝑟̅ is the average of these R² values; N is the total number of 
data points; and kh denotes the number of levels for these 
hyperparameter factors. Finally, the F-value  (10) is obtained 

by dividing these two results. The F-value indicates the 
influence of the hyperparameter factor on the variation of the 
results. A larger F-value signifies a greater impact of the factor 
on the outcome.     

𝐴𝑁𝑂𝑉𝐴ி. ൌ
∑ ௡ೕ൫௥ണഥ ି௥̅൯

మೖ೓
ೕసభ

௞೓ିଵ

ேି௞೓

ௌௌೝ
. 

 
(10)

We calculate the p-value to assess the significance of 
hyperparameter factors on results. A p-value smaller than 0.01 
indicates a significant impact. Using the F-distribution, the p-
value is derived by computing the cumulative distribution 
function (CDF) of the F-statistic (11).              

                   𝑝 ൌ 1 െ 𝑃ሺ𝐹 ൑ 𝐴𝑁𝑂𝑉𝐴ிሻ. (11)

III. EXPEROMENTAL RESULTS AND DISCUSSION 

In this paper, we repeated training of KAN, MLP, MLR, 
and RBF networks on classification and regression tasks 
across various datasets. We compared the training results 
comprehensively. Additionally, we performed an ablation 
study on different KAN networks and examined the impact of 
hyperparameters in the KAN layer. 

A. 3.1 Model Performance Comparison 

The experiments show that KAN-1 excels in classification 
tasks when sufficient data is available. On the IRIS dataset, 
however, the limited data leads to less stable training for 
shallower MLPs like KAN-1. In such cases, deeper models 
like MLP-4 outperform KAN-1 by better capturing data 
relationships. RBF networks underperform due to their 
inability to handle spatially correlated data effectively.  
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Figure 3. Grid searching result in regression dataset of KAN-2bn. 



TABLE I. THE RESULTS OF CLASSIFICATION TASKS 
Dataset Name Model Name Acc Mean 

IRIS 

KAN-1 0.366667
KAN-2 0.366667
MLP-1 0.335833
MLP-2 0.334583

RBF 0.333333

MNIST 

KAN-1 0.935085
KAN-2 0.89604
MLP-1 0.92027
MLP-2 0.9213 

RBF 0.1135 

FASHION 
MNIST 

KAN-1 0.860905
KAN-2 0.84289
MLP-1 0.841635
MLP-2 0.844065

RBF 0.1 

CIFAR 10 

KAN-1 0.40345
KAN-2 0.40867
MLP-1 0.39942
MLP-2 0.406685

RBF 0.1 
 

TABLE II. THE RESULTS OF REGRESSION TASKS 
Dataset Name Model Name R2 Mean 

BOSTON 

KAN-1 0.012455
KAN-2 0.006805
MLP-1 0.01137
MLP-2 0.011695

RBF -0.98845

CALIFORNIA 

KAN-1 0.00746
KAN-2 0.009005
MLP-1 0.006865
MLP-2 0.00742

RBF -0.99644

CONCRETE 

KAN-1 0.0166 
KAN-2 0.01649
MLP-1 0.012465
MLP-2 0.01247

RBF -1.04160

ENB2012 

KAN-1 0.01867
KAN-2 0.01789
MLP-1 0.01765
MLP-2 0.01779

RBF -0.98931

 

TABLE II presents the results of the regression tasks, 
demonstrating that KAN outperforms other network in this 
domain. However, a notable drawback is that KAN requires 
longer training time and a larger number of trainable 
parameters compared to other networks with the same number 
of units. It is also essential to standardize the input data to the 
range [0, 1] to ensure proper training of the KAN. 

TABLE III presents the statistical results of the Tukey HSD 
test, which compares the performance of each pair of models. 
From the table, it is evident that the performance gap between 
KAN and RBF is considerable. In certain tasks, KAN also 
exhibits significant performance differences compared to 
MLP. However, when comparing similar architectures, the 
performance gap between KAN and MLP is not statistically 
significant. This gap can be further minimized through fine-
tuning the parameters of the KAN network to improve training 
outcomes. Additionally, preliminary ablation experiments 
were conducted to investigate the impact of KAN layer 
hyperparameter settings on network performance. 

According to the Kolmogorov-Arnold theorem, KAN 
networks can achieve impressive results even with fewer 
layers. Future work could focus on developing deeper KAN 
architectures or integrating them with CNNs to benchmark 
against traditional CNNs. 

TABLE III. THE RESULT OF REGRESSION TASKS 
Task type Classification Regression 

Model Name p-value p-value 
KAN-1 KAN-2 0.9983 0.9765
KAN-1 MLP-1 0.9678 0.9959
KAN-1 MLP-2 0.9932 0.9999
KAN-1 MLP-4 0.0003 0.9999
KAN-1 RBF 0.0 0.0027
KAN-2 MLP-1 0.9969 

0.9999 
0.0001 

0.0 
0.9995 

0.0 
0.0 

0.0001 
0.0 
0.0 

0.8716 
0.9503 
0.9915 
0.0004 
0.9993 
0.0083 
0.9861 
0.9987 
0.0041

KAN-2 MLP-2
KAN-2 MLP-4
KAN-2 RBF
MLP-1 MLP-2
MLP-1 RBF
MLP-1 MLP-4
MLP-2 MLP-4
MLP-2 RBF
MLP-4 RBF 0.0017
Kruskal-Wallis H 

test
196.42 96.524 

 

TABLE IV. THE RESULT OF REGRESSION TASKS 
Parameter name F-value P-value

KAN-1 num 0.441362 0.894705
KAN-1 k 0.377792 0.863429

KAN-1 num & k 0.113273 1.0
KAN-2 num 0.105907 0.998985

KAN-2 k 6.679846 0.000011
KAN-2 num & k 0.068042 1.0
KAN-2bn num 1.549844 0.143952

KAN-2bn k 0.323008 0.898593
KAN-2bn num & k 0.405667 0.999372

 

B. Ablation Experiment Results of KANs 

This study includes ablation experiments on KANs, using 
grid search to evaluate training outcomes under various 
parameter combinations. The results indicate that a lower k 
value in KAN-1 leads to higher R2, while increasing num 
further improves R2, up to a point where excessive num 
reduces performance, the result as shown in Figure 1. 
However, the impact of these hyperparameters is not 
significant, especially for larger datasets like California, 
where Figure 2 shown that tuning relationships become 
unclear. Similar trends are observed for KAN-2. Figure 3 
shows that KAN-2bn get more drastic variations. Overall, the 
influence of num and k on training is minimal. Future research 
could focus on tuning other hyperparameters, such as learning 
rate, architecture, and epochs, alongside optimization 
algorithms for improved results. 

TABLE IV further analyzes num and k, showing their 
varying effects across architectures. In KAN-1, both 
parameters have high F-values but p-values above 0.001, 
indicating limited significance. For KAN-2, k exhibits a larger 
F-value and a p-value below 0.001, suggesting its adjustment 
may have a more pronounced effect. 

IV. CONCLUSION 

This study adopts KANs, which was proposed in 2024, in 
classification and regression. We compared the KAN to MLP 
and RBF networks in classification and regression tasks and 
aimed to identify significant differences. The results show that 
KANs can outperform MLPs. Ablation studies and ANOVA 
analyses reveal that the impact of hyperparameters varies 
across architectures, datasets, and tasks, highlighting the need 
for careful tuning in specific contexts. The underlying KA-
theorem suggests potential applications of KAN principles to 



advanced models like CNNs and RNNs, warranting further 
exploration. 
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