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Abstract—Deep learning has become a widely utilized
approach for a variety of applications. Some networks, such as
Multilayer Perceptrons (MLPs), apply input feature data to
compute regression and classification results. In recent years,
many architectures, such as transformers, incorporate MLPs
for backend computations and achieve notable success across a
range of applications. In 2024, a novel network architecture,
named the Kolmogorov-Arnold Network (KAN), has been
introduced. Like MLPs, KANs share similarities in structure,
but are grounded in the Kolmogorov-Arnold representation
theorem. Unlike MLPs, which apply fixed activation functions
at each neuron, KANs use trainable activation functions directly,
making the model require fewer network layers and neurons for
training. In addition, we conducted a comparative analysis using
other models such as the radial basis function (RBF) network.
This analysis aims to the training performance and compare the
efficiency of KANs and MLPs on commonly used machine
learning datasets. The results show that KANs outperform
MLPs in regression and classification tasks.
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I. INTRODUCTION

Deep learning techniques are now applied to a variety of
tasks, and basic tasks such as classification and regression
problems can typically be addressed by constructing neural
network frameworks to model data and make appropriate
prediction. In tasks involving different features as inputs,
regression problems that output a value and classification
problems that output a category vector, often utilize machine
learning algorithms such as random forest for classification or
regression, and support vector machines (SVM) [1] etc. for
classification or regression. In neural networks constructed
through deep learning, MLPs are commonly used to fit the
input features to the output results [2], [3], and can be applied
to both classification and regression tasks. Moreover, radial
basis function (RBF) Networks [4] can achieve similar results.
When dealing with image-based data, while networks like
MLPs can be used to perform tasks, they do not outperform
convolution neural networks (CNNs), which are designed for
tasks involving image inputs.

In recent years, neural network frameworks have been
developed based on different mathematical principle,
modeling technique, and computational foundation. In deep
learning, parameters can be set to a trainable state, allowing
gradient calculation through error estimation and updating the
model accordingly. The Ilatest network architecture,
Kolmogorov-Arnold Networks (KANs) [5], constructs its
model theory based on mathematical theorems, and models
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the network structure using B-spline functions, among other
methods.

In 2024, Liu et al. proposed KANs [5] and found that they
performed exceptionally well in multi-input and continuous
polynomial function tasks and outperform traditional models
in solving Partial Differential Equations (PDEs). When
training on new data, MLPs often suffer from catastrophic
forgetting, where they lose previously learned knowledge. In
contrast, KANs do not exhibit such forgetting after training.
The results from various experiments indicate that KAN
networks hold significant potential. Therefore, this study aims
to apply KANSs to basic deep learning datasets and compare
their performance with MLP networks. Additionally, since
KANSs have more hyperparameters to configure, this research
also seeks to conduct verify the impact of these parameter
settings on KAN network training via ablation studies.

In regression tasks, commonly used algorithms e.g. the
SVM, the MLP, the RBF, simple Linear Regression (LR) [6],
and Random Forest Regression. According to [7], MLP has
been employed to predict the efficiency of water desalination,
using the Adam optimizer to fine-tune the neural network
parameters. Additionally, some studies have used algorithm
like the RBF and the MLP to recognize complex relationships
between haloketones and water quality [8], predicting
outcomes based on specific input features such as pH,
temperature, and the concentration of certain chemical ions.

In classification tasks, common algorithms include
Decision Tree Classification [9] and A-Nearest Neighbors
(KNN) [10]. However, deep neural networks like MLP remain
the preferred approach for classification and prediction. For
example, MLP has been applied to detect and classify DDoS
attacks [11], where an the Auto-Encoder [12] is used for
feature extraction, and the extracted features are feed into the
MLP to enable effective automatic feature learning. Another
common application of the MLP is in disease diagnosis [13].

II. THE PROPOSED METHOD

A. The Training Data

In this study, we used several machine learning datasets to
conduct preliminary evaluations and validate the initial
performance of the models. Specifically, we used 4
classification datasets and 4 regression datasets to compare the
models' performance. The 4 classification datasets include the
IRIS dataset, the MNIST dataset, the Fashion-MNIST dataset,
and the CIFAR-10 dataset. The regression datasets consist of
the Boston Housing dataset, the California Housing dataset,
the Concrete dataset, and the ENB2012 dataset.



B. Models’ Detail

The RBF Network is a specialized artificial neural network
designed for tasks such as regression, classification, and
function approximation. It comprises three layers: an input
layer, an RBF layer, and an output layer. The RBF layer
typically uses a Gaussian function (1) as its activation function,
with trainable parameters § and c. This layer calculates the
Euclidean distance between the input features and c,
multiplies the result by —f, and applies a logarithm to produce
its output. The output layer usually consists of a fully
connected layer.

rbf (llinput — c|l) = exp(=B x llinput —c|. (D

The concept of the KAN is similar to that of the MLP, but
in KAN networks, the linear output layers are removed, and
instead, the nonlinear outputs are treated as trainable
parameters. This approach allows the activation functions to
be learnable and updated during training. Because KAN is
based on the Kolmogorov-Arnold theorem (KA theorem).
This theorem states that for any continuous function f of
multiple variables, it can be represented as a finite sum of
nested functions of single variables. In other words, any
continuous function of multiple variables can be expressed as
a finite sum of single-variable functions through addition.
Specifically, f can be represented as shown in equation (2).
This indicates that f'takes an # dimensional input and projects
it onto the real domain R, where the values of all dimensions
are within the range [0,1]. Equation (3) represents the inner
functions, which have a domain of [0,1] and a range of real
numbers R. Equation (4) represents the outer function, which
has both its domain and range in the real numbers R. Thus, the
Kolmogorov-Arnold theorem can be expressed through two
layers of nested functions as shown in (5). Here,
f(xy, x5, ..., x,) is a multivariable function with n inputs.
Each outer function takes as input the sum of # inner functions,
and the result of 2n+1 outer functions is summed to express a
multivariable continuous function.

f:[01]" > R, @
$qp: [0,1] > R, 3)
PR - R, 4)
FOO) = Ot X, ) = B2 D (T ()
()

The KAN can offer a more effective fitting for most real-
world applications, as these applications are often nonlinear
and involve multiple inputs. Specifically, the KAN layer
involves several calculations, including residual function and
B-spline calculations. In this study, the residual function used
is the SiLU function (5), which is also the default function
employed by the model. The input x, after being processed
through the residual function, undergoes interpolation
calculations using the B-spline function. The output of the B-
spline function is then weighted by the output of the residual
function. Finally, a mask is used to control the final output,
and the results are aggregated to produce the final output
vector.

SILUG) = - (5)

In the model design, we have structured the KAN network
into two configurations: a single KAN layer (KAN-1) and a

two KAN layers (KAN-2). For the MLP, we have
configurations with 1 layer, 2 layers, and 4 layers of fully
connected layers, denoted as MLP-1, MLP-2, and MLP-4,
respectively.

For regression datasets, we investigated the model's
training performance under conditions with standardization.
Standardization was performed using the Min-Max Scaler
method for each feature. This method projects the original
features into the [0,1] range, aligning with the assumptions of
the KA theorem.

After preprocessing the data, it is trained using six
different network models. In the study, the Adam optimizer is
employed for parameter updates, the £, and £, are 0.9 and
0.999, respectively. The learning rate in classification task is
0.0003; in regression task is 0.001; training epochs in
classification is 15; in regression is 500; batch size is 64.

C. Evaluating model

In this paper, each of the six network models is trained 20
times on each dataset. After each training, we will evaluate
model via testing dataset and calculate some metrics, like the
average values of the Mean Squared Error (MSE) and R? score
(for regression tasks) or accuracy (for classification tasks).

To verify whether there are significant performance
differences between the models, we used the Kruskal-Wallis
H test to calculate the p-value. Additionally, we performed the
Tukey Honestly Significant Difference (HSD) test to compare
pairs of models and determine if there are significant
differences between them. The Kruskal-Wallis H test is used
to compare the median differences between two or more
groups of data, and it is particularly suitable when the data
don’t follow a normal distribution or when variances are not
equal. The equation of Kruskal-Wallis H is shown in (6),
where N represents the total number of evaluation values
(accuracy or MSE) across all training results. R; is the sum of
ranks for the i model, and #; is the number of evaluation
values for the i model. Since each model is trained and
evaluated 20 times, so #; equals 20. The Kruskal-Wallis H test
begins by ranking all evaluation values from all models in
ascending order, starting from 1. The sum of the ranks for
evaluation values within each model is denoted as R;. This
sum is then used to compute the test statistic. The Tukey HSD
test is a post-hoc multiple comparison test often used
following analysis of variance (ANOVA). It compares the
performance of each pair of models and determines whether
the differences between their performances are statistically
significant. The equation of Tukey HSD as shown in (7),
q(a,m,N —m) represents a distribution based on the
Studentized range statistic, where « is the significance level,
set to 0.05 in this study. The term N —m is used in the
ANOVA context to calculate the degrees of freedom for the
variability between two models. The critical value can be
obtained from the distribution tables. MS,, represents the
within-group mean square, calculated as the sum of squares of
all evaluation values divided by the degrees of freedom.

12 6 R_l-z_
= NAD =1y, 3(N+ 1), (6)
HSD = q(a, m,N — m) % (M



R2 Value

R? Value

R? Value

R? Value

Mean-R? of BOSTON Dataset

R? Value

0.010

-0.005

-0.010

=0.015

0.0190

0.0185

0.0180

0.0175

00170

Mean-R? of CALIFORNIA Dataset

— k=3

—_— k=

— k=10
— k=20

2 3 4 5 6 7 0 20 Ed

Hyper Parameter Num
(b)
Mean-R? of ENB2012 Dataset

2 3 4 5 6 7 10 20 50
Hyper Parameter Num

(d)

Figure 1. Grid searching result in classification dataset of KAN-1.
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Figure 2. Grid searching result in classification dataset of KAN-2.
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Figure 3. Grid searching result in regression dataset of KAN-2bn.

D. Ablation Experiment

In this study, we also investigated the training outcomes of
KAN-1 and KAN-2 under different parameter combinations.
We employed a simpler grid search to validate the results of
training KANs with various parameter settings. Additionally,
we tried the impact of adding a Batch Normalization (BN)
layer between the two KAN layers in KAN-2, resulting in a
new configuration called KAN-2bn. We aimed to determine
whether KAN-2bn improves the stability of model training
under different parameter combinations. The experimental
parameters range of num is [2, 3, 4, 5, 6, 7, 10, 20, 50], and
range of kis [2, 3, 4, 5, 10, 20].

We analysis the effects of these parameters on KAN
network training using ANOVA. In this study, we treated the
hyperparameters as a factor and employed ANOVA to assess
the significance of different num and k hyperparameter
settings on regression results. In ANOVA, we compute the F-
value to determine the impact of these hyperparameters on the
results, specifically r; represents the actual R? values where the
R? value is defined as:

5 :l_zi(yz' _f;)z
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Vi, ¥ » fi, are the ground truth, the mean of the ground truth,
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and the predicted result, respectively; 7; represents the
predicted R? values from the ordinary least squares model [ 14];
7 is the average of these R? values; N is the total number of
data points; and k; denotes the number of levels for these
hyperparameter factors. Finally, the F-value (10) is obtained

by dividing these two results. The F-value indicates the
influence of the hyperparameter factor on the variation of the
results. A larger F-value signifies a greater impact of the factor
on the outcome.

k 32
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We calculate the p-value to assess the significance of

hyperparameter factors on results. A p-value smaller than 0.01

indicates a significant impact. Using the F-distribution, the p-

value is derived by computing the cumulative distribution
function (CDF) of the F-statistic (11).

p=1—P(F < ANOVAp).

ANOVA;. =

(11)

III. EXPEROMENTAL RESULTS AND DISCUSSION

In this paper, we repeated training of KAN, MLP, MLR,
and RBF networks on classification and regression tasks
across various datasets. We compared the training results
comprehensively. Additionally, we performed an ablation
study on different KAN networks and examined the impact of
hyperparameters in the KAN layer.

A. 3.1 Model Performance Comparison

The experiments show that KAN-1 excels in classification
tasks when sufficient data is available. On the IRIS dataset,
however, the limited data leads to less stable training for
shallower MLPs like KAN-1. In such cases, deeper models
like MLP-4 outperform KAN-1 by better capturing data
relationships. RBF networks underperform due to their
inability to handle spatially correlated data effectively.



TABLE I. THE RESULTS OF CLASSIFICATION TASKS

Dataset Name Model Name Acc Mean
KAN-1 0.366667
KAN-2 0.366667

IRIS MLP-1 0.335833
MLP-2 0.334583

RBF 0.333333
KAN-1 0.935085

KAN-2 0.89604

MNIST MLP-1 0.92027

MLP-2 0.9213

RBF 0.1135

KAN-1 0.860905

KAN-2 0.84289
F’:/ISI’\I;IS?,N MLP-1 0.841635
MLP-2 0.844065

RBF 0.1

KAN-1 0.40345

KAN-2 0.40867

CIFAR 10 MLP-1 0.39942
MLP-2 0.406685

RBF 0.1

TABLE II. THE RESULTS OF REGRESSION TASKS

Dataset Name Model Name R* Mean
KAN-1 0.012455
KAN-2 0.006805
BOSTON MLP-1 0.01137
MLP-2 0.011695
RBF -0.98845
KAN-1 0.00746
KAN-2 0.009005
CALIFORNIA MLP-1 0.006865
MLP-2 0.00742
RBF -0.99644
KAN-1 0.0166
KAN-2 0.01649
CONCRETE MLP-1 0.012465
MLP-2 0.01247
RBF -1.04160
KAN-1 0.01867
KAN-2 0.01789
ENB2012 MLP-1 0.01765
MLP-2 0.01779
RBF -0.98931

TABLE 11 presents the results of the regression tasks,
demonstrating that KAN outperforms other network in this
domain. However, a notable drawback is that KAN requires
longer training time and a larger number of trainable
parameters compared to other networks with the same number
of units. It is also essential to standardize the input data to the
range [0, 1] to ensure proper training of the KAN.

TABLE III presents the statistical results of the Tukey HSD
test, which compares the performance of each pair of models.
From the table, it is evident that the performance gap between
KAN and RBF is considerable. In certain tasks, KAN also
exhibits significant performance differences compared to
MLP. However, when comparing similar architectures, the
performance gap between KAN and MLP is not statistically
significant. This gap can be further minimized through fine-
tuning the parameters of the KAN network to improve training
outcomes. Additionally, preliminary ablation experiments
were conducted to investigate the impact of KAN layer
hyperparameter settings on network performance.

According to the Kolmogorov-Arnold theorem, KAN
networks can achieve impressive results even with fewer
layers. Future work could focus on developing deeper KAN
architectures or integrating them with CNNs to benchmark
against traditional CNNs.

TABLE III. THE RESULT OF REGRESSION TASKS

Task type Classification Regression
Model Name p-value p-value
KAN-1 KAN-2 0.9983 0.9765
KAN-1 MLP-1 0.9678 0.9959
KAN-1 MLP-2 0.9932 0.9999
KAN-1 MLP-4 0.0003 0.9999
KAN-1 RBF 0.0 0.0027
KAN-2 MLP-1 0.9969 0.8716
KAN-2 MLP-2 0.9999 0.9503
KAN-2  MLP-4 0.0001 0.9915
KAN-2 RBF 0.0 0.0004
MLP-1 MLP-2 0.9995 0.9993
MLP-1 RBF 0.0 0.0083
MLP-1 MLP-4 0.0 0.9861
MLP-2 MLP-4 0.0001 0.9987
MLP-2 RBF 0.0 0.0041
MLP-4 RBF 0.0 0.0017
Kruskal-Wallis H 196.42 96.524
test

TABLE IV. THE RESULT OF REGRESSION TASKS

Parameter name F-value P-value
KAN-1 num 0.441362  0.894705
KAN-1 k 0.377792  0.863429
KAN-1 num & k 0.113273 1.0
KAN-2 num 0.105907  0.998985
KAN-2 k 6.679846  0.000011
KAN-2 num & k 0.068042 1.0
KAN-2bn num 1.549844  0.143952
KAN-2bn k& 0.323008  0.898593
KAN-2bn num & k 0.405667  0.999372

B. Ablation Experiment Results of KANs

This study includes ablation experiments on KANSs, using
grid search to evaluate training outcomes under various
parameter combinations. The results indicate that a lower k&
value in KAN-1 leads to higher R? while increasing num
further improves R% up to a point where excessive num
reduces performance, the result as shown in Figure 1.
However, the impact of these hyperparameters is not
significant, especially for larger datasets like California,
where Figure 2 shown that tuning relationships become
unclear. Similar trends are observed for KAN-2. Figure 3
shows that KAN-2bn get more drastic variations. Overall, the
influence of num and k on training is minimal. Future research
could focus on tuning other hyperparameters, such as learning
rate, architecture, and epochs, alongside optimization
algorithms for improved results.

TABLE IV further analyzes num and k, showing their
varying effects across architectures. In KAN-1, both
parameters have high F-values but p-values above 0.001,
indicating limited significance. For KAN-2, k exhibits a larger
F-value and a p-value below 0.001, suggesting its adjustment
may have a more pronounced effect.

IV. CONCLUSION

This study adopts KANs, which was proposed in 2024, in
classification and regression. We compared the KAN to MLP
and RBF networks in classification and regression tasks and
aimed to identify significant differences. The results show that
KANSs can outperform MLPs. Ablation studies and ANOVA
analyses reveal that the impact of hyperparameters varies
across architectures, datasets, and tasks, highlighting the need
for careful tuning in specific contexts. The underlying KA-
theorem suggests potential applications of KAN principles to



advanced models like CNNs and RNNs, warranting further
exploration.
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