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Abstract—To improve the applicability and performance of
graph neural networks (GNNs); graph convolution networks
(GCNs) and graph attention networks (GATs) have shown
promising ways forward. However, lack of generalizability has
been a major bottleneck for their widespread applications. To
overcome this limitation of GNNs, we propose a regularization
scheme for GAT, termed as GATreg. We use a novel loss function
to achieve the optimal performance of GATreg. The proposed
model has been analyzed using 3 benchmark datasets: Cora,
Citeseer, and Pubmed. Our results show prominent improvements
of classification accuracy, around 3%, compared to vanilla models
and have the potential to be analyzed for further enhancements.
Additionally, GATs can be explored to improve the reasoning
ability of multi-modal large language models (LLMs), particu-
larly to eliminate hallucinations. They can also be used for the
quantum information theory-based analysis of GATs, for which
this work analyzes recent literature.

Index Terms—graph attention networks (GATs), graph con-
volutional networks (GCNs), graph regularization, multi-modal
large language models, quantum information theory

I. INTRODUCTION

Graph Neural Networks (GNNs) operate on graph-
structured data such as node features, edge features, and even
global graph characteristics, making them versatile for dif-
ferent applications. GNNs leverage a message-passing frame-
work, where nodes aggregate information from their neighbors
to update their representations. This is particularly useful for
semi-supervised graph node classification, which finds a wide
range of applications in notable domains like social network
analysis, biological networks, recommendation systems, and
text classification. The results can pave the way for engineering
state-of-the-art intelligent models using few-shot learning,
fine-tuning large language models (LLMs), and exploring
multi-modal models. Graph convolution networks (GCNs) and
graph attention networks (GATs) are two prominent subclasses
of GNNs aiming for generalization in graph learning. GCNs
update node features by aggregating information from neigh-
boring nodes using convolutions. GATs, on the other hand,
employ an attention mechanism to graph neural networks,
allowing nodes to attend differently to their neighbors when
aggregating information.

Generalization in the realm of graph learning is crucial
for ensuring that GNN models like GCNs and GATs can
perform well on unseen data, especially in the context of
unsupervised and semi-supervised learning. To address this
limitation, this work provides two-fold contributions. 1) We
study the information-theoretic perspective of graph regular-
ization. By overcoming the issues of insufficient supervision
and representation collapse, we enhance the performance of
GCNs and GATs. 2) Our in-depth analysis opens new doors to
analyze GATs for advanced domains like multi-modal LLMs
and quantum information theory.

II. RELATED WORK

GNNs have a wide range of applications and have been
rigorously studied with modifications to their architecture for
performance boosts. [1] gives a recent comprehensive review
of applications in the domains of data mining and computer
vision.

Graph networks have been studied in the realm of quantum
analog in [2]. The work proposes a baseline claim towards
graphs for an entangled quantum system. In this realm, the
quantization of edge data and adjacency matrix are potential
open research problems.

GNNs suffer from graph information bottleneck (GIB),
which implies a lack of regularization methods. Therefore, [3]
proposes a GIB, specifically tailored for explainability, called
GIBE. The paper studies the impact of regularization, sparsity,
and masking while opening new research paradigms to explore
the role of regularization, which motivates this work.

A similarity-based regularized softmax function has been
proposed in [4]. The prediction results are regularized by a
non-local total variation. However, this manual tuning ap-
proach needs to be studied for applicability in large complex
data structures.

Regularization has also been studied to overcome non-
convexity of objective functions [5]. Non-convex objective
functions result in multiple local minima, thus preventing
the algorithm from finding the global minimum, and hence,
optimization. Therefore, a regularization term in linear mixing



Fig. 1. GAT-reg pipeline with data preprocessing, training and classification stages.

models (LMMs) has been used as a sparsity regularization-
based loss function.

III. METHODOLOGY

In this work, we present an in-depth analysis on the informa-
tion theory perspective of regularization, a schematic of which
has been shown in Figure 1. The proposed regularization
shcheme aims to avoid overfitting by keeping the training in
line with the prior expectation, thus improving generalization.

A. Dataset

We use three benchmark citation datasets: Cora, Citeseer,
and Pubmed. In these datasets, the nodes refer to the scientific
papers, and the edges refer to the citation relationships. Cora
and Citeseer are built on the bag-of-words (BoW) represen-
tation, leading to high-dimensional sparse vectors since all
words are treated equally. Pubmed dataset uses the term
frequency-inverse document frequency (TF-IDF) approach,
where each word is weighed by its frequency on a collection
of documents in the dataset. The frequency f(t, d), of a term
t in a document d for BoW (Cora and Citeseer) and TF-IDF
(Pubmed) can be estimated using equations (1) and (2) [6],
respectively.

BoW(t, d) = f(t, d) (1)

TF-IDF(t, d) = TF(t, d)× IDF(t, d)

=

(
f(t, d)∑

t′∈d f(t
′, d)

)
× log

(
N

|{d ∈ D : t ∈ d}|

)
(2)

In (2), TF(t, d) is the term frequency of t in d, calculated
as f(t,d)∑

t′∈d f(t′,d) , and the denominator sums the frequencies of
all terms t′ in document d. This normalizes the frequency of
the term within the document, providing a relative measure.
The IDF(t,d) term stands for the inverse document frequency
of the term t, which measures how much information the
term provides across all documents in the corpus. Here,
N is the total number of documents, and the number of

documents containing the term t is given by the denominator
|{d ∈ D : t ∈ d}|.

Table I shows the statistics of the three datasets used for
our experiments.

TABLE I
STATISTICS OF CORA, CITESEER, AND PUBMED DATASETS

Dataset NumNodes NumEdges NumFeats NumClasses
Cora 2708 10556 1433 7

Citeseer 3327 9104 3703 6

Pubmed 19717 88648 500 3

We use the Plantoid standard split for our experiment using
training, validation, and testing splits in the ratio 70:20:10. The
Plantoid split is a benchmark that uses fixed class distribution
to ensure dataset balance and a consistent comparison across
experiments. We also use masks to assign nodes to appropriate
subsets so the model can focus on appropriate data during
training, validation, and testing.

IV. MODEL GENERALIZATION

We analyze three models: GCN, GAT, and regularized graph
attention networks (GATreg). GCNs [7] aggregate feature
information from the neighbors of a node in a layer-wise
convolutional manner. A single layer of a GCN can be given
by (3):

H(l+1) = σ
(
D− 1

2AD− 1
2H(l)W(l)

)
(3)

where H(l) is the feature matrix at layer l, A is the adjacency
matrix of the graph, D is the degree matrix, W(l) is the weight
matrix for current layer l+1, and σ is the nonlinear activation
function. GCN is inherently limited to this fixed aggregation
function to learn neighboring node features. To enhance the
generalizability and include the weightage of different neigh-
bors and their contributions to the node representation, GAT
[8] can be expressed as (4):

αij =
exp

(
LeakyReLU

(
aT [Whi ∥ Whj ]

))∑
k∈N (i) exp (LeakyReLU (aT [Whi ∥ Whk]))

(4)



where αij is the attention coefficient between nodes i and
j, hi and hj are the feature vectors for the nodes, W is the
weight matrix, and a is the attention vector.

a) Loss Function: During training, the cross entropy
loss (5) compares the predicted class probabilities (obtained
from the softmax function) with the actual class labels, while
Kullback-Leibler (KL) divergence (6) measures the difference
between the predicted distribution P (after the propagation
through the network) and a target distribution Q (true or
smoothed).

CE = −
C∑
i=1

yi log(pi) (5)

KL(P∥Q) =

C∑
i=1

pi log

(
pi
qi

)
(6)

We integrate these losses separately to study their impact on
each model using the 3 selected benchmark datasets. Loss
minimization is vital to improving a model’s generalizability,
convergence, and robustness, and we aim to achieve this using
regularization.

b) Regularization: GAT-reg: Different regularization ap-
proaches have been used in literature, like [9] adopting a
spatial regularization technique by minimizing the distance
between latent representations. We define a regularization
based loss function L composed of the negative log likelihood
loss LNLL and a regularization term based on CE loss LCE from
(5), and KL divergence LKL from (6), given in equations (7)
and (8), respectively.

Lreg-KL = LNLL + µ · LKL (7)

Lreg-CE = LNLL + µ · LCE (8)

To encourage the model to make an accurate prediction, we
use a negative log-likelihood loss to measure the discrepancy
between the predicted probabilities of the model and the true
labels for the training data. CE or KL divergence are used as
regularizers, keeping the model’s output distribution aligned.
The hyperparameter µ prevents overfitting by penalizing large
coefficients.

c) Experiment: The hardware and environment specifi-
cation for our experiment is given in Table II.

TABLE II
SYSTEM AND ENVIRONMENT SPECIFICATION

Component Specification
Operating system Windows 10

Processor 11th Gen Intel® Core™ i7-11800H
@ 2.30 GHz

RAM 64.0 GB
GPU NVIDIA GeForce RTX 3070

CUDA version 11.3
Pytorch Geometric version 2.3.1

The hyperparameters used for our experiments are provided
in Table III. The set of hyperparameters was chosen based

on the results of multiple runs using the selected 3 datasets
to obtain consistently better performance using the GATreg
baseline. However, they can be further fine-tuned using more
diverse datasets to perform better. For instance, µ=0 implies
vanilla GAT and GCN models, while a variation like µ=0.5
implies a higher impact of the regularized loss term.

TABLE III
HYPERPARAMETERS AND THEIR DESCRIPTIONS

Hyperparameters Description
Epochs 1000

Learning Rate 0.01
Dataset Cora, Citeseer, Pubmed

Hidden Channels (GCN) 16 (used in the GCN model)
Hidden Channels (GAT) 8 (used in the GAT model)

Heads 8 (number of attention heads in GAT)
Dropout Rate 0.6 (dropout used in GAT layers)
Weight Decay 5e-4 (for Adam optimizer)

mu (µ) 0.5

V. RESULTS

Table IV shows the classification accuracy results obtained
for our experiments, with the best results in bold. The better
performance of GCN compared to GAT can be attributed to the
smaller graph structures and relatively simpler relationships
between nodes in Cora, Citeseer, and Pubmed, where the
uniform message passing of GCN is effective. The attention
mechanism of GAT introduces complexity in the model, which
is ineffective in less complex datasets. Our regularized GAT
model allows an adaptive focus on relevant connections, which
is useful for datasets with non-uniform nodes, such as semi-
supervised scenarios. Moreover, the regularization prohibits
overfitting, thus enhancing generalization to unseen data.

TABLE IV
PERFORMANCE ANALYSIS OF GRAPH CONVOLUTIONAL NETWORK

(GCN), GRAPH ATTENTION NETWORK (GAT), AND REGULARIZED GRAPH
ATTENTION NETWORK (GAT-REG). THE RESULTS OF EACH MODEL HAVE

BEEN REPORTED USING KL DIVERGENCE (KL) AND CROSS-ENTROPY
(CE) LOSS ANALYSIS, USING CLASSIFICATION ACCURACY ± STANDARD

DEVIATION.

Model Datasets
Cora Citeseer Pubmed

RGCN [10] 0.819 ± 0.011 0.741 ± 0.016 0.792 ± 0.021
PREGGAT [11] 0.8297 ± 0.0119 0.7000 ± 0.0189 0.7639 ± 0.0146

LSGAT [12] 0.791 ± 0.013 0.681 ± 0.009 0.786 ± 0.012

Our Results
GCN-KL 0.8014 ± 0.0037 0.7224 ± 0.0042 0.7906 ± 0.0036
GCN-CE 0.8105 ± 0.0058 0.7078 ± 0.0037 0.7896 ± 0.0046

GAT-KL 0.7998 ± 0.0115 0.7036 ± 0.0172 0.7677 ± 0.0085

GAT-CE 0.8140 ± 0.0045 0.7058 ± 0.0084 0.7663 ± 0.0055

GATreg-CE(7) 0.8407 ± 0.00436 0.7243 ± 0.00372 0.7812 ± 0.00708

GATreg-KL(8) 0.8246 ± 0.00639 0.7172 ± 0.01187 0.7811 ± 0.00789

We also compare our work to other regularization tech-
niques. A graph similarity regularized softmax for GNNs



(RGNN) has been proposed in [10] for semi-supervised node
classification. A propagation regularization scheme for GAT
(PREGGAT) [11] uses a non-trivial variant of graph Laplacian
regularization. The efficacy of regularization in boosting the
performance of GNNs has been evaluated. An aggregation-
based regulation scheme, layer-wise self-adaptive GAT (LS-
GAT), has been proposed in [12]. LSGAT allows for the inte-
gration of GAT into existing GNN models without architecture
changes. Compared to these state-of-the-art models, our reg-
ularization scheme is outperforming in terms of classification
accuracy. A representative radar diagram of our results has
been shown in Figure 2.

Fig. 2. Comparative analysis of classification accuracy across Cora, Citeseer,
and Pubmed datasets. We compare the performance of GCN, GAT, and GAT-
reg models for cross-entropy and KL divergence loss.

Figure 3 shows that GATreg-CE consistently achieves a
higher test accuracy over 10 runs on the Cora dataset. It is
also evident that the regularization significantly enhances the
model’s performance compared to other models.

Fig. 3. Test Accuracy over 10 Runs (1000 epochs each) for Cora dataset.

From Figure 4, we observed that regularized models re-
sult in better overall performance. Additionally, GATreg-CE
stands out with the highest average accuracy, indicating its

effectiveness across multiple runs on the Citeseer dataset. The
optimal performance of GATreg-CE across Cora and Citeseer
datasets suggests that the proposed regularization techniques
are particularly suited to the datasets’ characteristics, leading
to better generalization.

Fig. 4. Test Accuracy over 10 Runs (1000 epochs each) for Citeseer dataset.

While GCN shows the best performance for the Pubmed
dataset, Figure 2, the accuracy variation is less pronounced
compared to Cora and Citeseer. Earlier literature has improved
the performance of proposed GAT models over Pubmed
dataset using hyperparameter tuning [13], where a large num-
ber of attention heads has led to better results. However, the
standard set of hyperparameters in Table 3 has been achieved
through empirical optimization of GATreg using the selected
datasets. GATreg-CE, although not showing the best results,
can be viewed as a suitable contender across diverse datasets.
The performance enhancement induced by the regularization
is significantly evident from Figure 5, on Pubmed dataset.

Fig. 5. Test Accuracy over 10 Runs (1000 epochs each) for Pubmed dataset.

VI. CONCLUSION AND FUTURE WORK DIRECTION

To increase the applicability of GATs for diverse applica-
tions, we analyzed the performance of graph-based networks
like GCNs and GATs across three benchmark datasets: Cora,
Citeseer and Pubmed. While GCN has better results compared
to GAT, our proposed regularization architecture, GATreg,
significantly improved the performance of GAT model. This
highlights the significance of the proposed regularization
scheme in increasing the GNN’s robustness.



This regularization can also be studied to enhance LLM’s
capabilities in multimodal networks. In the future, we also aim
to improve this regularization scheme and study its relevance
and analogy in the domain of quantum graph networks.
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