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Abstract—TIn this paper, we introduce a novel adversarial detec-
tion framework designed to enhance the security and robustness
of DNNs, with a particular focus on applications in autonomous
driving systems. Our approach leverages segmentation masks
and innovative techniques for image feature reordering and
adjustment to detect adversarial attacks effectively. We compre-
hensively evaluate the proposed framework under a white-box
attack scenario, comparing its performance against the state-
of-the-art Feature Squeezing method across eleven adversarial
attack techniques and three heterogeneous benchmark datasets.
The results demonstrate that our framework achieves detection
rates exceeding 96% across all datasets, establishing its efficacy
and robustness against diverse attack strategies.

Index Terms—Adversarial Attack Algorithms, Autonomous
Driving Cars, Computer Vision, Cybersecurity, Deep Learning,
Machine Learning, Segmentation mask

I. INTRODUCTION

Autonomous driving systems have become heavily reliant
on artificial intelligence, particularly Deep Neural Networks
(DNNs), to perform critical tasks such as processing 3D
sensor data from LiDARs and depth cameras [1]], recognizing
traffic signs [2], and controlling essential vehicle functions
like steering [3]. These advancements have positioned Al
as a cornerstone of modern autonomous systems, enabling
unprecedented levels of automation and precision in real-world
applications.

However, despite their success, DNNs exhibit significant
vulnerabilities to adversarial attacks [4] in which attackers
carefully craft perturbations to input data that can lead to
erroneous model predictions aligned with an attacker’s intent.
Such adversarial manipulations pose serious risks in safety-
critical domains like autonomous driving, where even minor
misclassifications can result in catastrophic consequences.

The challenge of securing these models is exacerbated
by several factors, including the limited generalizability of
existing defense mechanisms, their computational overhead,
and their reduced efficacy against a diverse range of adversarial
strategies. Furthermore, research has demonstrated the real-
world transferability of adversarial examples [1]], [S]|-[7] ,
further highlighting the gravity of this threat. Addressing
these issues is crucial for the widespread adoption of DNN-
based autonomous driving systems, which play a pivotal role
in enabling Vehicle-to-Everything (V2X) communication and

applications like cooperative perception and path planning [8]],
[9]. Solving these challenges will be vital to ensuring the
safety and reliability of autonomous systems in real-world
environments.

We introduce a novel method for detecting adversarial at-
tacks for autonomous driving systems. The proposed approach
employs a U-Net model to extract segmentation masks from
input images, which are subsequently analyzed using a one-
class Support Vector Machine (SVM). This initial verification
step evaluates whether the extracted segmentation patterns
align with the expected dataset characteristics, serving as the
first line of defense. Next, the features of the masked image
are reordered as well as filtered and then the contrast is
adjusted, using our novel IFRA algorithm. This algorithm
produces two versions of the input: a split-swapped image and
its mirrored version. Finally, a verifier DNN model classifies
these images and their predictions are compared to the main
model prediction for final decision.

This paper presents three key contributions:

1) Segmentation-Based Detection: Instead of analyzing the
input image directly, adversarial noise is detected by
verifying its segmentation mask. This is achieved using a
U-Net model to generate segmentation masks, followed
by a One-Class Support Vector Machine (SVM) to
identify abnormal patterns.

2) Novel Feature Processing Algorithm: A new algorithm
is introduced to reorder and adjust input features, pro-
ducing two alternative versions of the input for enhanced
analysis.

3) Verifier Model Training: The verifier model is trained
using these generated input versions to validate the
predictions of the target model, adding an additional
layer of defense.

The structure of this paper is as follows: Section [[I] reviews
relevant literature on adversarial attacks targeting autonomous
driving cars. Section |lII| details the proposed detection frame-
work designed to safeguard DNN models against such ad-
versarial threats. Section |[V]| describes the experimental setup
and tools used for implementing and validating the method.
Section |V| presents the experimental results, highlighting the
effectiveness of the proposed defense mechanism. Lastly,



Section [V]| presents a summary highlighting the key findings
of this work.

II. LITERATURE REVIEW

This section focuses on adversarial attacks that target au-
tonomous driving cars, highlighting the potential hazards of
such adversarial attacks on real-world autonomous systems.

1) Adversarial Traffic Signs: Morgulis et al. [|6] showcased
the real-world applicability of adversarial examples in de-
ceiving commercial Traffic Sign Recognition (TSR) systems.
Building on the methodology of Sitawarin et al. [5]], they
developed an enhanced pipeline to generate adversarial traffic
signs. Key improvements included applying a mask to isolate
the sign, resizing images to align with the TSR classifier’s
input requirements, and refining perturbations with penalty
constraints on grayscale levels to minimize visual detectability.
The physical experiments revealed that 40% of the crafted
adversarial signs successfully misled the TSR system, with
some attacks causing the system to freeze, mimicking a denial-
of-service (DoS) attack.

2) GAN for Generating Adversarial Signs: Kong et al. [10]
introduced an approach to generate adversarial images aimed
at disrupting a Deep Learning-Based Steering Wheel Control
System in autonomous vehicles. This technique simulated
real-world conditions by processing multiple frames of the
same traffic sign, accounting for dynamic changes in the
sign’s dimensions as the vehicle approached. The method was
evaluated on three datasets Udacity [11[], DAVE-2 [12]], and
KITTI [13]] to test its robustness across diverse scenarios. The
experimental results revealed that adversarial signs induced
significant steering deviations in the vehicle’s trajectory, with
average deviations ranging between 17 and 19 degrees.

3) Attacking End-to-End Autonomous driving cars: Wu et
al. [7]] investigated two white-box adversarial attack methods
targeting NVIDIA’s autonomous driving model [[14]. The first
approach utilized the Fast Gradient Sign Method (FGSM)
to create image-specific perturbations, while the second em-
ployed universal perturbations for an image-agnostic attack
strategy. Both methods were tested in three distinct environ-
ments within the Robot Operating System (ROS) framework
[15]], encompassing both scenarios, simulated and real world.
The experiments demonstrated that these attacks effectively
caused vehicles to veer off their lanes.

4) Adversarial Attacks against LIDAR System: Cao et al.
[16] revealed a critical vulnerability: LiDAR systems can be
manipulated using physical adversarial objects. To exploit this
weakness, LiDAR-adv is introduced, the first comprehensive
framework for generating physical adversarial objects. In real-
world testing, these objects successfully bypassed LiDAR
detection systems, posing significant safety concerns. Addi-
tionally, prior research [[17]], [[18] highlighted the susceptibility
of LiDAR systems to laser spoofing attacks. These involve
injecting false laser signals into the system, allowing attackers
to manipulate object detection and localization, potentially
causing dangerous driving errors.

III. METHODOLOGY

Detecting imperceptible and human-recognizable adversar-
ial inputs is crucial, particularly in unsupervised Al systems
like autonomous vehicles. Our method addresses these needs
by targeting both types of input. The following subsections
outline the key elements of the proposed pipeline.

A. U-Net Model for Mask Segmentation

The U-Net model is a CNN architecture introduced by
Ronneberger et al. [19] for image segmentation, especially in
the biomedical field. The advantage of using the U-Net model
for image segmentation comes from its effective learning even
if it is trained on limited training data or small objects.

B. One Class Support Vector Machine

The One-Class Support Vector Machine (OCSVM) [20],
learns the boundary around normal data to separate them from
potential anomalies without needing labeled samples of these
anomalies. The OCSVM is used for anomaly detection tasks
where only normal data is available, such as fraud detection
and network security [21]. Based on the generated segmenta-
tion masks of the U-net, OCSVM can detect adversarial input
associated with large perturbations that form our first line of
defense.

Algorithm 1 Image Features Reordering and Adjustment
(IFRA)

Input: Masked Image x
Output: Split-Swapped and Split-Mirrored images (s, Tsm)

1: wy < width(x)

2: hy < height(x)

3t herop < ha /2, Werop ¢ We /2

4: 1 < empty_matrix(shape(z))

5: $o < empty_matrix(shape(x))

6: 51[0 2 hy, 0 Wepop] = [0t Ay, Werop * Wend]

7. 510 ¢ hay Werop : Wena) < [0 2 hay 0 Wepop)

8: f < horizontal_flip(x)

9: 52[0 : hyy 01 Wepop] < [0 1 Ay, Werop * Wendl

10: $2[0 2 Ay, Werop © Wend) < [0 2 hy, 0 Werop)

11: maskyeq < create_Median_Filter(filter size = (3 x 3))
12: T, < Median_filtering(s1, maskmyeq)

13: Tgm,,., < Median_filtering(sz, maskpeq)

14: clahep, <«  create_CLAHE(grid size = (3 x

3), clip limit = 5)
15 Tgg < CLAHE('rssnted’ Clahepmp)
16: Tgm < CLAHE(xgy,,.,, Clahepmp)
17: return (g, Tsm)
18: end

C. Image Features Reordering and Adjustment

Images are high-dimensional and unstructured data [22].
The attackers exploit these natural properties to introduce
subtle, often imperceptible perturbations in the image space,
making it adversarial. We propose the Image Features Re-
ordering and Adjustment (IFRA) algorithm [I| as a mitigation
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Fig. 1: The proposed adversarial detection framework.

strategy to reduce the transferability effect [23|] of adversarial
attacks between Al models. The IFRA algorithm reorders the
image features by splitting the input image into two halves
and then swapping them changing the position of the features.
Another version of the input image is created by mirroring the
input first, then splitting and swapping. In addition, we adjust
the image features by applying median filtering and adaptive
histogram equalization operation [24], [25].

D. Adversarial Detection Mechanism

Our method aims to mitigate the transferability effect of
adversarial images in which it can detect them. Therefore, we
train a second DNN model, called a verifier model, to validate
the prediction of the main model. The generated images of
IFRA algorithm form the training set of the verifier model.
Thus, for every input image, there will be three predictions,
the main model’s prediction, and two predictions of the verifier
model. If the three predicted classes are the same, the input
image is considered clean, otherwise deemed adversarial.

IV. EXPERIMENTAL SETUP

We compared our proposed pipeline performance depicted
in Figure [I] against Feature Squeezing, a leading adversar-
ial detection approach. We tested under a white-box attack
scenario, following the implementation of Feature squeezing
[26]. Additionally, we evaluated the robustness of our method
against varying levels of adversarial noise generated by the
FGSM attack algorithm.

A. Datasets and Preprocessing

MNIST Dataset [27]: This 28 x 28 grayscale dataset contains
60, 000 training and 10, 000 test images of handwritten digits
(0-9). Digits are centered with high grayscale values, and
backgrounds are mostly zero as shown in Figure [2] Segmen-
tation masks were generated by marking non-zero pixels as
foreground.

CIFAR-10 Dataset [28]]: Consisting of 32 x 32 RGB im-
ages across 10 classes (airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, truck) as shown in Figure this
dataset includes 50,000 training and 10,000 test images. As
segmentation masks were unavailable, we manually labeled
200 training and 25 test images per class. Data augmentation
expanded this set to 1,000 images per class, which trained a
YOLO-V8-Seg model [29] to generate 5,000 masks per class.
Additional images were sourced for the Cat and Deer classes
[30], [31] to enhance mask quality generated by the YOLO-
V8-Seg model, and most masks were manually verified and
corrected where needed.

GTSRB-8 Dataset (Speed-Limit Subset) [32]]: This subset of
the German Traffic Sign Recognition Benchmark (43 classes)
focuses on eight classes of speed-limit shown in Figure [2]
with 8,140 training and 3,142 test images. We created 200
training and 20 test masks manually, excluding any noisy or
indiscernible images as shown in Figure [3| for dataset quality.

We use the online CVAT tool [33]] to manually generate the
segmentation masks for the experimented datasets.

B. Target Models

Model Performance: Table |I| summarizes the accuracy and
mean confidence of target models tested on MNIST, CIFAR-
10, and GTSRB-8 datasets. For MNIST, the pre-trained Carlini
model [34] achieved 99.43% accuracy, while a pre-trained
DenseNet model [35] reached 94.84% accuracy on CIFAR-10
and 96.8% accuracy on GTSRB-8. Using the source code of
the Feature Squeezing [26], adversarial samples were created.
For MNIST and CIFAR-10, 100 adversarial images 10 per
class were generated per attack; for GTSRB-8, 96 adversarial
images 12 per class were generated per attack.

TABLE I: Target models accuracy and confidence rates.

Dataset Model Test Mf:an Selected | Samples Mgan
Accuracy | Confidence | Samples | Accuracy | Confidence
MNIST Carlini 99.43% 99.39% 100 100% 100%
CIFAR-10 | Densenet 94.84% 92.15% 100 100% 95.55%
GTSRB-8 | Densenet 96.8% 91.8% 96 100% 91.3%




Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9

ol/z121311s1617]514]
o[7121311151617(711
FIFEEICIFEAERA
REBEEESTAFEE
TREXTEXLRT

" N 0 A 5 20
B"IEUHDEE“

EEIIIIIE!E
4 TOF 40 4k 4
jo e |of lof | |
Q0000000
el [=[ Jo] | |
EXEEEXER
EYEXEEXERE

Masked Clean Clean

Image Mask Image
T

jesejeq

LSINW

Split

Split
Image Mirror Swap Swap

"
ﬂ

Clean

Clean
Mask

Masked
Imaie
.
+
jesejeq
0L-¥vd4ID

Split

e Mirror- Swap Swap

Clean
Im'af

Split

Clean
Mask

r
jesejeq
8-g3S19

Masked
Image

Split

Split
Mirror-Swap Swap

Fig. 2: The flow of the input image in the proposed framework.
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Fig. 3: Distorted images from the GTSRB-8 dataset.

TABLE II: Evaluation metrics of the U-Net models.

Dataset Name | Model Name | Test IOU | Test Dice
MNIST U-Net 97.17% 98.39%
CIFAR-10 U-Net 73.85% 84.10%
GTSRB-8 U-Net 83.9% 91.1%

TABLE III: OCSVM models parameters and accuracy.

Dataset Name | Model Name ¥ " Test Accuracy
MNIST OCSVM auto-selected | 0.01 99.17%
CIFAR-10 OCSVM auto-selected | 0.01 99.25%
GTSRB-8 OCSVM auto-selected | 0.01 97.7%

TABLE IV: Verifier models accuracy.

Test Accuracy Test Accuracy Test Accuracy

Dataset Name | Model Name Split-Swapped | Mirrored-Swapped All
MNIST Carlini [34] 98.19% 98.48% 98.33%
CIFAR-10 Densenet [35] 86.43% 86.48% 86.45%
GTSRB-8 Densenet [35] 98.56% 97.64% 98.10%

C. U-Net Model Setup

The U-Net model was trained to generate segmentation
masks for each dataset. The model was trained in two phases:
an initial 30 epoch on 90% of the data 10% for validation
and an additional 20 epoch on the complete dataset, with data
augmentation techniques applied to improve the robustness.
The U-net performance is measured by the Intersection over
Union (IoU) and the Dice metrics in Table[[l} The U-net model
performed well on the MNIST and GTSRB-8 datasets, while
it generalized less effectively for the CIFAR-10 dataset.

D. Adversarial Detection Flow

OCSVM Model: It is configured using the default param-
eters from the Sklearn library as outlined in Table and
demonstrated high accuracy in all datasets.

IFRA algorithm: IFRA algorithm involves two key pro-
cesses to generate split-swapped and mirrored-swapped ver-
sions of the masked input image, as illustrated in the pseudo-
code [1] It includes 3 x 3 median filtering and 3 x 3 grid-size
with contrast clip-limit = 5 for the CLAHE operator applied
to the three datasets except for the MNIST dataset where the
clip-limit was set to 1.

Verifier Model: The verifier model is the second defense
layer, and is trained on the output images of IFRA algorithm.
It shares the architecture of the target model as shown in Table
[l with the input image resized to 64 x 64. Table[[V]summarizes
the test accuracy of verifier models. While the verifier models
for the MNIST and GTSRB-8 datasets performed similarly to
their target models, the CIFAR-10 verifier model showed an
8.39% accuracy drop, achieving a test accuracy of 86.45%.

E. Adversarial Attack Configuration

Table outlines eleven adversarial attack setups across
three modes. The non-targeted mode generates adversarial
images that the model misclassifies into any incorrect class.
The next-target mode shifts the target class to the next one
using t = L + 1 mod No.Classes, where L is the correct
class and ¢ is the target class. The least-likely (LL) mode
targets the class with the lowest confidence of the model’s
output, t = min(g). All adversarial images were clipped
to fit within an 8-bit color range. The attack success rate
with the associated confidence rates and distortion metrics are
summarized in Table [V] Most of the attacks resulted in high-
confidence misclassifications, except for the JSMA attacks.
The CW|, attack, although computationally intensive, achieved
a 100% success rate for all datasets.

F. The robustness of the proposed pipeline against a wide
range of Perturbation Values

We constructed adversarial samples from the GTSRB-8 data
set using the fast gradient sign method (FGSM). Fourteen
perturbation values € were tested, ranging from minimal,
nearly imperceptible values starting from 0.01 to larger dis-
tortions 0.5. The performance of our detection method was
compared with various Feature Squeezing techniques, with
results presented in Table



TABLE V: Specification and metrics of crafting adversarial
images.

Distance Success Prediction Distortion

Metric Attack Mode Cost (s) Rate Confidence Lo Lo Lo
FGSM Un-
% 2
Lo 03 argeted 0.001 46% 94.76% 0302 | 5916 | 0.561
_ ]in‘g 3 | Untargeted | 0.005 92% 99.82% 0302 | 4820 | 0523
e=0.
7 B ow Next 64.887 100% 99.99% 0261 | 4277 | 049
Z < > LL 64.635 100% 99.98% 0.279 | 4.666 | 0.510
= DeepFool | Untargeted | 0.077 100% 89.16% 2.074 | 0532 | 0.732
Lo ow. Next 0310 99% 99.99% 0.680 | 2.878 | 0458
2 LL 0376 100% 99.99% 0.733 | 3200 | 0458
ow, Next 84928 100% 99.99% 0.995 | 4.737 | 0.051
I 0 LL 84374 T00% 99.99% 0997 | 5.172_| 0.060
0 JSMA Next 0544 63% 64.92% T.000 | 4814 | 0.049
LL 0.677 5% 64.54% T.000 | 5.619 | 0064
FGSM
Lo - 00156 | Untargeted | 0013 86% 96.93% 0016 | 0.864 | 0.998
A EH\S 4 | Untarseted | 0.083 9% 9875% | 0008 | 0367 | 0994
£ =0.
L ow Next 327.833 100% 98.82% 0.012 | 0443 | 0.988
e > > LL 311.504 T00% 97.38% 0014 | 0521 | 0994
:4 DeepFool | Untargeted | 0.254 7% 83.79% 0.028 | 0235 | 0993
£ Lo oW Next 7.907 100% 97.90% 0.033 | 0284 | 0.753
C 2 LL 9.070 100% 9721% 0.040 | 0352 | 0.847
ow, Next 198414 100% 9821% 0.640 | 2.041 | 0.018
L 0 LL 49.072 100% 97.60% 0.693 | 2479 | 0.024
0 1SMA Next 8219 100% 0261% 0.897 | 4992 | 0.078
LL 10.641 98% 39.07% 0.896 | 5599 | 0.098
FGSM
Lo - 00156 | Untargeted | 0031 89.58% 95.66% 0016 | 1730 | 1.000
. —B%nx Untargeted | 0.128 86.46% 96.34% 0.008 | 0.733 | 0.999
L ow Next 297.163 100% 97.44% 0012 | 0892 | 0974
0 i > LL 330.601 | 97.92% 97.54% 0015 | 1.183 | 0.995
§ DeepFool Untargeted 0.158 97.92% 90.93% 0.054 0.591 0.999
I Lo ow. Next 23.537 100% 97.32% 0.048 | 0544 | 0574
o 2 LL 23854 T00% 96.95% 0.059 | 0.760 | 0.727
W, Next 457.162 T00% 97.86% 0.682 | 2.788 | 0.012
L o LL 574574 100% 97.56% 0.770 | 3970 | 0.025
0 1SMA Next 135021 | 93.15% 33.45% 0.891 | 8.820 | 0.040
LL 166015 | 95.83% 29.54% 10.300 | 0904 | 0.050

All experiments were carried out on NVIDIA 4060 GPU
laptop (8GB), 64GB RAM, and Windows 11. To promote
reproducibility, the implementation of our adversarial de-
tection framework for all experiments can be accessed at
https://github.com/AhmadFASattout/Image-Features-Reo
rdering-and- Adjustment-to-Mitigate-the-Transferability- Effe
ct-of- Adversar- Attacks-.git

V. RESULTS

Table presents the detection rates of our proposed
pipeline compared to the best combination of feature squeezers
for adversarial images generated using eleven attacks across
three datasets. Our method achieved over 96% detection rates
for successful adversarial attacks on all datasets. Notably,
detection rates for FGSM and BIM attacks surpassed the best-
combination Feature Squeezing detector. This improvement
stems from fundamental differences in approach: Feature
Squeezing relies on bit-depth reduction that uniformly normal-
izes image features and adversarial noise using one squeezer
and applies denoising filters using another two squeezers. In
contrast, our method leverages the IFRA algorithm, which
reorders pixel positions and enhances the contrast, mitigating
the smoothing effects of median filtering. The overall detection
rates of the proposed detection method for CIFAR-10 and
GTSRB-8 datasets outperform the best Feature Squeezing
detector by more than 10%. However, for the MNIST dataset,
our detection rates score slightly lower than Feature Squeezing
by only 0.9%.

The false positive rates of our method are similar to
those of Feature Squeezing for the MNIST and GTSRB-8
datasets. However, for CIFAR-10, the higher false positive
rate stems from the verifier model’s reduced classification

accuracy, as shown in Table This reduction is primarily
due to differences in the training data. Unlike the main model,
which is trained on the full dataset, the verifier model uses
the masked version of the data. To confirm this, we trained
the same main dense-net model using the masked CIFAR-
10. The resulting accuracy was 88.17%, which is 6.67%
lower than the target model’s accuracy. This indicates that
masking the background in the dataset negatively impacts the
accuracy. Furthermore, the precision of the U-Net model in
generating accurate segmentation masks plays a critical role in
the verifier model’s performance. The same reasoning applies
to the OCSVM model.

\/

1.0

0.9 4

0.8 4

0.7 4

0.6

0.5 4

0.4 A

0.3 - —— Our Proposed Method

Best Feature Squeezer

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 4: Detection rates of our proposed method vs best feature
squeezer for a wide range of adversarial perturbations under
FGSM attack on the GTSRB-8 dataset.

The results presented in Table demonstrate that our de-
tection method delivers state-of-the-art performance across all
tested perturbation values, achieving an overall detection rate
of 96.71%. Remarkably, the method consistently outperformed
the most effective Feature Squeezing techniques for every
tested € value of the FGSM attack, showcasing its robustness
and effectiveness against a wide range of adversarial inputs.
Figure [ reflects these findings in a graphical representation.
The figure underscores the resilience and reliability of our
detection approach, consistently maintaining a high detection
rate exceeding 88%, irrespective of the perturbation level. The
FGSM attack at € = 0.04 proved to be the most effective, yet
our method successfully achieved a detection rate of 88.63%.
By comparison, the best-performing Feature Squeezing tech-
nique managed only a 38.63% detection rate at the same
perturbation level, highlighting the superior robustness of our
approach against adversarial attacks.

Finally, to evaluate the computational efficiency of the
proposed method in comparison to the Feature Squeezing
approach within the context of autonomous driving systems,
we measured the detection time of the proposed method and
Feature Squeezing for the GTSRB-8 dataset. Specifically, the
comparison was conducted against the best-performing Feature
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TABLE VI: Adversarial detection rates of the proposed method compared to Feature Squeezing with the required configuration.

Configuration Lo Attacks Lo Attacks Lo Attacks Overall False
Detector Parameters Threshold | FGSM BIM chlcwx T Deep Fool NCX[CWZ T NCX[CWU T NCX[JSMA T Delt;:‘l;on Pr;{s;lllcve
FeatureSqueezing 1-bit 0.00025 97.8% 98.9% 100% 100% 100% 100% 100% 71% 64% 100% 100% 92.9% 4.1 %
£ [ FeatureSqueezing 2-bit 0.00008 73.9% 8.6% 94% 98% 100% 95.9% | 95% 63% 76% 100% 100% 81.5% 39 %
= ge"““’esq”?e"."g Median-Filter 2 2 000275 | 97.8% | 97.8% | 100% | 100% 100% 100% | 100% | 93% | 95% | 100% | 100% 98.4% 4%
est Combination 1-bit
Split-Algorithm
Our Method Median-Filter 3 x 3 — 100% 100% 95% 100% 100% 94.9% 99% 95% 95% 98.4% 97.7% 97.5% 4.9 %
CLAHE 3 x 3 Clip-Limit = 1
FeatureSqueezing 5-bit 0.2997 4.6% 14.1% 38% 67% 56.7% 79% 92% 2% 5% 6% 8.1% 34.3% 4.9%
FeatureSqueezing Median-Filter 2 X 2 1.1683 255% | 489% 95% 100% T1.1% 98% 100% 9% 100% T1% 86.7% 82.9% 4.9%
S [ FeatureSqueezing Non-local Mean 13 —3 —2 0.3588 17.4% 30.4% 85% 95% 74.2% 91% 95% 4% 6% 24% 21.4% 49.9% 4.7%
52: FeatureSqueezing Median-Filter 2 2
£ | Best Combination 5-bit 1.1683 27.9% 50% 97% 100% 76.2% 99% 100% 99% 100% 77% 86.7% 83.9% 51%
o Non-local Mean 13 — 3 — 2
Split-Algorithm
Our Method Median-Filter 3 x 3 - 83.7% | 90.2 % 98 % 100% 94.8% 99% 100% 99% 99% 97% 98.9% 96.5% 16.8%
CLAHE 3 x 3 Clip-Limit = 5
FeatureSqueezing S-bit 0.1324 31% 19.2% 37.5% | 552% 33.3% 37.5% | 59.3% 6.2% 10.4% 11.4% 53% 27.9% 4.3%
FeatureSqueezing Median-Filter 3 x 3 0.2988 39.1% 37.3% 93.7% 100% 56.2% 92.7% | 98.9% 100% 100% 98.9% 100% 84.8% 4.0%
% | FeatureSqueezing Non-local Mean 11 —3 — 4 0.1774 60.8% 69.8% 100% 100% 85.4% 98.9% 100% 52% 125% | 23.9% 43% 60.1% 4.3%
ﬁ FeatureSqueezin, Median-Filter 3 x 3
4] Best C qb' At 2 5-bit 0.3741 445% | 57.8% | 97.9% | 100% 66.6% 98.9% | 100% | 98.9% | 100% | 95.8% | 98.9% 88.5% 3.7%
o cst f-ombination Non-local Mean 11 — 3 — 4
Split-Algorithm
Our Method Median-Filter 3 x 3 - 959% | 97.5% | 100% | 100% 98.9% 98.9% | 100% | 100% | 100% | 98.9% | 100% 99.2% 4.9%
CLAHE 3 x 3 Clip-Limit = 5

TABLE VII: Adversarial detection rates of the proposed method

compared to Feature Squeezing under FGSM Attack with

varying ¢ values and their configuration for the GTSRB-8 dataset.

C FGSM attack with different € values Overall
Detector Parameters Threshold | 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 03 0.4 0.5 D"I‘f;‘é""
F. ng 5bit 0.12085 | 28.16% | 24.60% | 11.62% | 1931% | 10.11% | 439% | 2.05% | 1.07% 0% 2.02% % 0% 0% 0% 6.97%
o | FeatureSqueezing Median-Filter 3 X 3 026721 | 47.88% | 44.44% | 24.41% | 38.63% | 41.57% | 40.65% | 49.46% | 51.61% | 51.61% | 51.06% | 75.86% | 84.52% | 85.71% | 19.16% | 54.59%
o [ FeatureSqueezing | Non-local Mean 13 —3 —4 | 0.17390 | 69.01% | 53.08% | 32.55% | 25% | 1797% | 12.08% | 15.05% | 7.52% | 430% | 1.06% % 0% 0% 0% 6%
% | Featuresquee Median-Filter 3 X 3
5 catureSqueezing 5-bit 033005 | 57.74% | 44.44% | 27.90% | 32.95% | 3595% | 35.16% | 44.08% | 4731% | 44.08% | 44.68% | 65.51% | 82.14% | 76.19% | 76.19% | 50.57%
Best Combination Non-local Mean 13 — 3 — 4
on-local Mean 13 —
Split-Algorithm
Our Method Median-Filter 3 x 3 - 98.59% | 96.92% | 91.86% | 88.63% | 93.25% | 94.50% | 95.69% | 96.77% | 98.92% | 100% | 100% | 100% | 100% | 100% | 96.71%
CLAHE 3 x 3 Clip-Limit = 5

Squeezing detector, as presented in Table Experimental
results revealed that for detecting a single input, the Feature
Squeezing method required approximately 0.01751 seconds
per image, whereas our proposed detection framework demon-
strated a faster detection time of around 0.01526 seconds per
image. It is important to highlight that this comparison was
carried out under equivalent conditions, ensuring that both
Feature Squeezing pipeline and our method processed input
data of identical dimensions namely, 64 x 64 RGB images.

VI. CONCLUSION

In summary, we presented an innovative adversarial detec-
tion framework employing a two-layer defense strategy. The
method is able to mitigate the transferability effect of adversar-
ial attacks and detect them. Our framework achieved state-of-
the-art detection rates exceeding 96% across eleven adversarial
attack methods on three diverse datasets. This methodology
is particularly effective in safeguarding autonomous driving
systems, achieving a detection rate over 99% against adver-
sarial attacks targeting speed-limit signs. Experimental results
reveal that the framework significantly outperforms Feature
Squeezing techniques on GTSRB-8 and CIFAR-10 datasets
while maintaining comparable results on MNIST. Specifically,
it achieves average detection rates of 93.2% and 95.9% for
FGSM and BIM attacks, respectively, across all datasets, com-
pared to 56.73% and 68.53% achieved by Feature Squeezing
method. In addition, our detection method is faster than the
best-performing feature squeezer in the context of autonomous
driving cars on the GTSRB-8 dataset. Overall, this robust and

versatile framework demonstrates high detection rates across
grayscale and RGB datasets, underscoring its potential for
generalizability and practical application.
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