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Abstract—Power grids are often subjected to faults. In re-
sponse, Disturbance Records (DRs) are generated by relevant
devices, capturing a brief snapshot of the pre-fault and post-fault
conditions. Therefore, DR analysis is a critical requirement for
fault diagnosis, which, however, requires both expert knowledge
and time. In this work, we investigate the use of Large Language
Models (LLMs) to address these challenges. In particular, we
design DrAgent, an agentic workflow aimed to make DR analysis
potentially simpler and more accessible. DrAgent combines a pre-
trained LLM with user-defined, domain-specific tools, allowing it
to achieve relatively higher accuracy in relevant cases. Based on
an input query, the agent uses an LLM to plan a sequence of steps
to address the query, involving one or more tool usage. In order
to improve the robustness, we use argument reconstruction to
try and resolve potential syntactic errors in the planned function
calls. Moreover, we cache the outputs of frequently used tools,
in order to reduce redundancy and latency to an extent. We
evaluated the performance of DrAgent using real-life DRs and a
set of evaluation questions. The answers generated by DrAgent
were assigned a numerical score by a domain expert. The results
of performance evaluation indicate that DrAgent, in general,
can significantly improve the accuracy of responses requiring
numerical results. On the other hand, the step-by-step reasoning
of agentic workflow can potentially help power grid operators,
both novice and expert, to learn or verify the process.

Index Terms—Power Grids, Disturbance Records, COM-
TRADE, Artificial Intelligence, Large Language Models, Agents,
Function Calling

I. INTRODUCTION

Power grids are critical infrastructure, acting as the lifeline
of modern industry and society. However, they are often
subjected to faults due to various reasons, such as natural
hazards and electromechanical failures. In response to faults,
Intelligent Electronic Devices (IEDs) generate DRs, typically
following the IEEE Common Format for Transient Data Ex-
change (COMTRADE) [1] standard. Fast identification and
remedy of the faults is necessary since every minute of
transmission line outage can lead to a high monetary penalty
[2].

A DR captures a brief snapshot of the operating conditions
of the segment of a power grid connected to an IED. Analysis
of DRs can help to diagnose a fault, which, in turn, helps
address other problems, such as estimating the distance of
a fault along a transmission line [3]. However, DR analysis

requires expertise in power grids and power systems, in
general. In other words, fault analysis can be a challenging
task for the non-experts. On the other hand, in some complex
scenarios, even the experts may require several minutes to
hours to perform a detailed diagnosis of a fault. Moreover,
as senior experts retire from service and new employees join
the workforce, a potential knowledge gap is created where the
existing expert knowledge, in part, might be lost. Accordingly,
artificial intelligence (AI) appears to be a suitable candidate
for addressing these challenges.

The recent advances in Generative AI (GenAI) and LLMs
have influenced different aspects of contemporary work and
life [4]. LLMs, which are pre-trained with vast corpora of text,
can answer diverse queries based on their existing knowledge.
However, at times LLMs may generate incorrect answers,
often referred to as “hallucination.” Moreover, while pre-
trained LLMs typically have a “general” knowledge about the
world, they often lack in having specialized, domain-specific
knowledge. In addition, LLMs normally lack the ability to
interact with the real world. Autonomous agents and agentic
workflows [5]–[7] have emerged as a potential solution to
address some of these challenges. In general, an agent uses its
existing knowledge together with tools (or functions) to solve
a given problem. Consequently, agentic workflows allow for
an efficient representation of domain-specific knowledge for
LLMs.

Motivated by these aspects, in this work, we investigate the
design of DrAgent, an agentic workflow aimed to help with
fault analysis in power grids. DrAgent, illustrated in Figure 1,
is based on a popular agentic architecture, Reasoning Without
Observation (ReWOO) [6]. In particular, given a DR and a
query (alternatively, question or task), the agent formulates
a plan to solve the query using one or more user-defined
tools. Subsequently, the steps are executed sequentially by
invoking relevant functions with appropriate parameters. Since
LLM-generated function calls, as part of the plan to solve a
task, sometimes may contain incorrectly formatted parameters,
DrAgent uses argument reconstruction, where an LLM is
asked to generate a syntactically correct function call.

On the other hand, in some cases, a given tool may be
used to execute the same code for different tasks, leading to
redundancy and overhead. DrAgent addresses this challenge



Fig. 1: Illustration of DrAgent, based on the ReWOO [6]
architecture.

by caching the output of frequent function calls. Finally,
after a query has been solved by executing all the designated
steps, DrAgent provides the user with an appropriate response,
consisting of text and/or image(s). When relevant, DrAgent
also provides a brief explanation and reasoning behind the
answer, potentially enabling users to understand and verify the
fault analysis. The scope of DrAgent is limited to the analysis
of faults occurring in the transmission lines of power grids.

The specific contributions of this work are as follows:
• Designing DrAgent, an agentic workflow based on Re-

WOO, to enable accurate fault and disturbance analysis
in power grids by leveraging domain-specific knowledge.

• Improving the robustness of plan execution and response
latency of agentic workflow, in part, by introducing
argument reconstruction of function calls and tool output
caching.

• Evaluating the accuracy of DrAgent’s response to a set
of frequently asked questions in fault analysis using DRs
generated by IEDs. The evaluation was performed by a
domain expert.

• Quantitatively comparing the performance of DrAgent
(i.e., agentic workflow) and a non-agentic approach to
fault analysis.

The remainder of this work is organized as follows: Section
II presents a short background on fault analysis and agentic
workflows. Section III discusses the design of DrAgent. Sec-
tion IV presents the experimental setup. The results of the
performance evaluation are discussed in Section V. Finally,
Section VI concludes this work.

II. BACKGROUND

AI has found widespread applications in the context of
fault analysis and other areas in power grids and power
systems. Saha and Parapurath [8], for example, investigated the
problem of distinguishing between “real” and “test” DRs by

clustering the waveform images based on their similarity. Real-
life substations may involve manual operations and test data
generation, so this solution constitutes a data-cleaning step.
Hong et al. [9] identified the fault types by training a Deep
Neural Network-based classification model using the images
of the waveforms.

Chen et al. [10] surveyed the contemporary use of AI and
machine learning toward solving different power systems-
related problems, such as fault prediction. The authors ob-
served that the integration of LLMs and tools may potentially
help experts investigate domain-specific use cases. Gitzel et
al. [11] outlined a vision of how LLMs can potentially help
distribution system operators obtain tangible recommendations
across various use cases. Xiao and Xu [12], on the other hand,
investigated the problem of energy consumption optimization
in buildings by leveraging LLM-based agents to interpret
unstructured data using domain knowledge.

Reasoning and Acting (ReAct) [7] largely popularized the
growth of LLM-based agents. ReAct employs a thought-
action-observation loop, where an LLM, given a query, runs a
tool and generates some output, and then decides on the next
step based on the currently observed output. ReAct, therefore,
requires continuous interaction with an LLM. Moreover, any
wrong action can deviate the agent’s trajectory from the de-
sired path. ReWOO [6] addresses these challenges by making
an LLM generate a sequence of plans (or steps) and evidence,
based on the available tools. Moreover, the evidence (output)
of each step is reused by one or more later steps. Consequently,
a ReWOO agent can execute these steps by using tools
locally. LLMCompiler [13], on the other hand, offers further
improvement by enabling tool execution in parallel, thereby
potentially reducing the response time.

To synthesize, the use of GenAI and LLMs for fault analysis
in power grids largely remains unexplored. Since this is a
recurring problem for grid operators, requiring both expertise
and time, the investigation of an agentic approach gains
importance.

On the other hand, in the context of LLM-based agents,
it may be noted that, given the often unpredictable nature
of LLMs, the syntax of invoking a tool, as prescribed by an
LLM, might exhibit deviations from the correct syntax. As a
consequence, such tool calls may fail. This can especially be
true when the signatures of the underlying functions are non-
trivial. As a motivating example, in a different context, Saha
et al. [14] considered the use of domain-specific corrections
to improve the accuracy of natural language text-to-SQL
translation.

Moreover, in the course of a detailed analysis of any prob-
lem using an agent, certain tools may be invoked repeatedly
using the same arguments, leading to redundant computations.
In order to address these challenges and lacunae, in this paper,
we take an agentic approach toward power grid fault analysis
using LLMs, together with improving the robustness and non-
redundancy of tool execution.



III. DESIGN OF DRAGENT

DrAgent1 is based on the ReWOO architecture. Therefore,
it solves a query by generating a plan and executing the
planned steps. In addition, the initialization data in Figure 1
pre-computes some of these data and makes them available to
the LLM during planning. This avoids the need for an extra
step (i.e., a function call) to retrieve the parameter’s value,
leading to simpler plans and lower response latency. In this
section, we present a detailed overview of DrAgent.

A. System Model

Let F be the set of user-defined tools (functions) available
to an agent. Let q be a given query. Let P(q) = ⟨e1 =
f1(a1), e2 = f2(a2), · · · , ek = fk(ak)⟩ be the k-step plan
generated by the agent to address the query, where ak denotes
the set of arguments taken by the kth function call, generating
output (“evidence”) ek; fi ∈ F . The set ai includes one or
more values from e1, e2, · · · , ei−1. In addition, ai,∀i, may
also contain zero or more default or previously saved data.

Let κ be a counter that keeps track of how many times a
function has been called. Let τ be the tool cache so that:

τ(f, a) =

{
f(a) if κ[(f, a)] < θ

ef(a) otherwise,
(1)

where θ is a threshold; ef(a) denotes the cached output of the
function call f(a). The output of frequent function calls can
be cached by appropriately setting the value of θ in (1).

It may be noted that caching should be used only with those
tools where the source data do not change. For example, the
content of a DR never changes, so the results of relevant
computations based on a DR can be cached. On the other
hand, a function, for example, get_current_weather, where the
underlying data changes over time, should not be cached.
Equation (1) can be modified to achieve this by maintaining
a list of cache candidates.

It may be further noted that tool caching is different from
LLM caching, a feature enabled by many contemporary LLMs
and LLM frameworks. Therefore, one can use both techniques,
either of them, or none at all. LLM caching, where a query-
response pair is cached, can significantly decrease the response
latency. However, this also leads to a potential problem. If an
LLM generated a wrong answer and cached it, a user would
continue to get the wrong answer when the same question is
asked again. With tool caching, this impact is largely reduced.
For example, certain tools, operating on DR data, generate
deterministic results, making them suitable for caching. This
allows an LLM to interpret the results appropriately—even
if the current interpretation is wrong, the LLM still has a

1We prefer an agentic approach to fully autonomous agents—where LLMs
can generate and execute relevant code—due to different reasons. On one
hand, LLM-generated code at times could be incorrect, especially when
domain-specific, specialized calculations are considered. On the other hand,
for security reasons, an additional step of verifying LLM-generated code
would be required before executing such code. With user-defined tools, we
make use of trusted code that can capture relevant logic appropriately.

positive likelihood of offering a correct interpretation when
asked again.

Tool caching is also different from Least Recently Used
(LRU) caching since the former caches content based on a
usage threshold. Therefore, in theory, users could specify what
to cache and when. However, LRU can still be used in some
cases. For example, when analyzing a DR, most operations
need to read DR data to perform computations. The disk
reading time can be potentially reduced by caching the content
of a DR using LRU.

With an agentic approach, the name of any function f and
its arguments set a is generated by an LLM based on F , which
can be large. When a is relatively large or complex, there is
a chance that an LLM may fail to generate a faithfully based
on the signature of f . Such syntax errors may be trivial, for
example, a missing closing quote of a string. However, the
presence of any syntax error ensures that the corresponding
function call will fail.

Let ρ be the argument reconstruction function, which gen-
erates a correct function call by fixing any syntax error in
the arguments; ρ ̸∈ F . To illustrate, let us consider a hy-
pothetical Python function: def display_text(text:
str) -> str. A call with syntax errors, for example,
display_text(text=’Hello, world), would fail.
However, by applying the argument reconstruction function,
we get ρ(display_text(text=’Hello, world)) =
display_text(text=’Hello, world’), which can
be executed successfully.

Ideally, ρ can be realized in the local environment of an
agent by applying pattern matching, for example, based on
regular expressions. However, when the arguments contain
multiple parameters of different types, such pattern match-
ing could become difficult. In addition, one or more such
arguments may contain spaces, which can make the parsing
more difficult. For example, the tool responsible for searching
product manuals—discussed later in this section—takes a
query as input. The query may contain several words and
symbols separated by spaces or line separators.

For the sake of simplicity, we realize ρ by making an
additional call to the LLM. In particular, the prompt to the
LLM contains a function’s signature as well as the generated
arguments set, based on which a correct set of arguments is
asked to be generated. We ask the LLM to return the arguments
as a Python dictionary, which can be unpacked and used to
call the corresponding function. As an optional, final step, we
also used json_repair [15] to fix any remaining syntax error
with the function call arguments. This was done only when
parsing failed after argument reconstruction.

Algorithm 1 illustrates the steps of tool invocation with
DrAgent. Let nk be the maximum number of arguments in
any arguments set ai. Then, serialization of ai is done in
O(nk) time. The concatenation of two strings (line 2) to
generate a string of length n takes O(n) time; n > nk.
Moreover, let O(f) be the asymptotic time complexity of any
function f . Accordingly, the time complexity of Algorithm
1 becomes O(max{O(n), O(f)}). Since most functions in



Algorithm 1: Tool invocation by DrAgent
Input:

• f : The name of the function
• a: The arguments set of the function
• κ: Function call counter
• θ: Tool caching threshold
• ρ: Argument reconstruction function

Output: r: The output of function call
1 s← Serialize a into a string
2 h← Generate the hash of f ||s
3 if κ[h] ≥ θ then
4 r ← Cached output from τ(f, a)

5 else
6 r ← ρ(f(a))
7 if κ[h] ≥ θ then
8 Cache the output r in memory

9 κ[h]← κ[h] + 1

DrAgent iterate over the sample values in a DR, the string
length, n, in general, is dominated by the time complexity
of the functions. In other words, Algorithm 1 works in O(f)
time, which is the expected behavior.

B. Overview of Tools

Figure 2 illustrates some of the current and voltage wave-
forms from a sample DR along with some key events, such as
fault inception and clearance. Fault analysis involves identify-
ing these pieces of information, among others, by analyzing a
DR.

We implemented a dozen of Python functions and equipped
DrAgent with them. The tools allowed us to achieve primarily
three functionalities—analysis of the faults, visualization of
the waveforms, and answering queries based on product man-
uals. Figure 3 shows the distribution of the parameter count of
these functions (tools). Most functions have 1–2 parameters,
for example, the paths to the COMTRADE configuration and
data files. A few functions have relatively more parameters.
For example, the function to plot the analog waveforms takes
channel numbers and sample numbers as optional inputs,
allowing users to zoom in on specific regions. It may be noted
that the LLM itself is also another (default) tool available to
the agent.

The tools for fault analysis appropriately encapsulated
domain-specific knowledge and performed computations based
on data available in the DRs. In particular, a DR contains
a configuration and a data file, among others. The DR con-
figuration file contains a list of configured channels (analog
and digital) along with some other settings. The data file,
on the other hand, contains raw sample value measurements
before and after the fault trigger. For example, if the sampling
frequency is 1000, then a one-second window captured in a
DR data file will contain 1000 samples, where each sample
captures the current and voltage measurements for the analog
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Fig. 2: Illustration of some key events based on a sample DR.
This is a Phase 3 fault, as observed from the significantly
distorted current waveform in the third row (Line CT IL3).
The three dashed vertical lines, respectively, indicate the fault
inception, the point when the maximum fault current was
reached, and the fault clearance. The dark vertical line across
the image indicates the trigger point.

calculator

search_product_manuals

plot_analog_channel_waveforms

plot_digital_channel_waveforms

find_fault_type

find_rms_value

find_fault_inception
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Fig. 3: Distribution of parameters count (x-axis) of the user-
defined tools functions (y-axis).

channels as well as the active/inactive status for the digital
channels.

In order to identify the fault type, for example, we prompted
the LLM with a summary of current and voltage values
before and after the trigger point, based on the DR data file.
On the other hand, the fault inception was determined by
identifying the sample number at which the current and voltage
levels exceeded the normal measurements. These algorithms
are commonly known and used by experts performing fault
analysis. Therefore, the detailed steps are skipped for the sake
of brevity.

To search across product manuals, we took a
Retrieval-Augmented Generation (RAG) approach, via
the search_product_manuals tool. In RAG [4], documents are
typically split into smaller chunks, based on which vector
embeddings are generated. These embeddings are stored in
a vector database. Subsequently, given a query, semantically
similar chunks are retrieved from the database, for example,
based on cosine similarity between the embeddings of a



Fig. 4: A screenshot of the DrAgent prototype, depicting a
query, the functions called, and a part of the answer. Some
information has been redacted.

query and stored chunks. The list of chunks so retrieved is
sent to an LLM based on which a response is generated. In
many scenarios, the retrieved chunks are re-ranked based on
contextual relevance before generating a response.

In our experiments, we observed that sometimes the LLM
generates plans with nested function calls. Parsing and exe-
cuting such plans lead to relatively more complex, recursive
patterns. Therefore, we instruct the LLM to take a bottom-
up approach to planning where (1) each step makes only
one function call and (2) the pre-requisite function calls are
planned to be executed ahead of the steps that need any such
outputs as inputs. Such simplification allowed us to avoid
dependency-related errors.

IV. PERFORMANCE EVALUATION

We implemented DrAgent using Python 3.12 and rele-
vant libraries, such as Chainlit2, comtrade3, LangChain4, and
LangGraph5. We used the Gemini 1.5 Pro and Gemini 1.5
Flash [16] LLMs. The agent generated plans to solve tasks
using Gemini 1.5 Pro. The application was containerized and
deployed on the cloud. A container used 1 GB RAM and 1
CPU to run the application.

We used Vertex AI Agent Builder6 to search across 138
product manuals using RAG. The search_product_manuals
tool invoked relevant Application Programming Interfaces
provided by the Agent Builder platform. The search results
were re-ranked using FlashRank [17] and TinyBERT7.

We evaluated the performance of DrAgent using 18 DRs
generated by different IEDs. We considered six fundamental
queries related to fault analysis, as shown in Table I. Each
DR was manually analyzed by an expert, based on which the
answers to these questions were separately documented.

For each DR, we asked DrAgent each of the six questions in
sequence. The responses generated by DrAgent were captured

2https://docs.chainlit.io/get-started/overview
3https://github.com/dparrini/python-comtrade
4https://www.langchain.com/
5https://langchain-ai.github.io/langgraph/
6https://cloud.google.com/products/agent-builder
7https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2

TABLE I: Questions used, and their relative importance, for
the performance evaluation of DrAgent

# Question Importance
Q1 What is the type of the fault? High
Q2 What is the fault inception? High
Q3 What relay algorithm(s) is/are detected? Medium
Q4 What is the trip output? Distance protection,

differential protection, or both? Which phase?
Medium

Q5 What is the max fault current? Low
Q6 When was the fault cleared? Low

TABLE II: Evaluation Scale

Answer Type Score
Incorrect answer -1
No answer 0
Partially correct answer 1
Correct answer 2
Exceptionally well answered or provides valuable extra info 3

and saved in separate documents, one for each DR. Subse-
quently, these responses were manually evaluated by a domain
expert. A numerical score was assigned to each answer.

We used a five-point scale to rate the accuracy of answers
generated by DrAgent, as shown in Table II. Incorrect answers
were assigned a score of -1. Sometimes the agent (or LLM)
failed to generate an answer or claimed that it did not have
an answer. In such scenarios, the score was 0. In some other
scenarios, the answers generated were incomplete or partially
correct. For example, if the agent, when asked about the
fault type, responded with “single line-to-ground fault,” but
failed to specify which phase—A, B, or C—was involved, we
considered the answer as incomplete and assigned a score of
1. Correct and complete answers were assigned a score of
2. Finally, a score of 3 was reserved for exceptionally good
answers. Based on the scores for each DR and each question,
the average score and the 95% confidence intervals were
computed. In addition to the aforementioned six questions, we
also executed other relevant queries to verify that appropriate
function calls were made, in general.

In order to evaluate the potential impact of tool caching,
we considered three additional queries, as shown in Table III.
With the tool caching threshold (θ) set to 2, Q7, Q8, and Q9
were executed sequentially. This particular sequence made the
latter two queries potentially use previously cached outputs of
function calls. We considered the tool usage time—the time
taken to execute the code contained in a tool, as given by
(1)—to evaluate the potential impact of tool caching.

As a baseline, we also considered a non-agentic approach
to fault analysis using Gemini 1.5 Pro and its multimodal
capability. The objective was to identify whether or not the
availability of user-defined, domain-specific tools can improve
the accuracy of fault analysis.

In particular, given a DR, we prompted Gemini 1.5 Pro
with a single prompt containing the six questions (Table I).
In addition, the content of the DR configuration file as well
as a portion of sample values from the DR data file were
also provided. As mentioned earlier, the find_fault_type tool
of DrAgent used a prompt that summarized the current and



TABLE III: Additional queries used for evaluating the perfor-
mance of tool caching

# Question
Q7 How long did the fault last?
Q8 Plot the analog waveforms. Show only 100 samples around the

fault inception.
Q9 Plot the analog waveforms. Show only 50 samples around the

fault clearance.

voltage levels. The same prompt was used with the non-agentic
approach as well. Finally, images depicting the waveforms and
status of the analog and digital channels, respectively, were
also provided as part of the prompt used with the non-agentic
approach.

Our prompt instructed Gemini to answer Q2 based on
the raw sample value measurements from the DR data file,
captured inside a small window around the trigger point
identified by the DRs. The motivation was that a fault usually
occurs around the trigger point. For Q5, we added instructions
to identify the maximum current based on the peaks of the
current waveforms observed in the image. Finally, for Q6, we
instructed Gemini to identify the fault clearance based on a
separate image showing the current and voltage waveforms
after the trigger point.

In this context, it may be noted that the numerical answers
require a high degree of accuracy. Otherwise, they are deemed
as incorrect (score = -1). For example, fault inception and
clearance (time measurements) may have a maximum absolute
error of up to 3 milliseconds. On the other hand, for fault
current measurement, we considered a tolerance range of 5%.

V. RESULTS

Table IV shows the evaluation scores of DrAgent for each
DR and each question, based on the evaluation performed by
an expert. For DR13 through DR18, Q4 could not be answered.
Accordingly, their scores are indicated as “N/A.”

Table IV shows that the average score for eight DRs (right-
most column) was at 2.00, indicating that DrAgent was able
to generate completely correct answers in a significant number
of cases. In particular, for these eight DRs, the answers for all
six queries were correct, thereby each receiving a score of 2.0.
The average score was less than 1.00 for only two DRs—DR17
and DR18. For the remaining eight DRs, the average score was
at least 1.00, indicating that their analysis was correct, in part.

On the other hand, if we look across the queries, the average
evaluation score for each query ranged between 1.16 and 2.00.
In particular, DrAgent secured an average score of 1.50 for Q1.
The fault type was correctly identified for all the DRs except
three—DR10, DR17, and DR18. In other words, DrAgent
(essentially, the LLM) was generally able to diagnose the fault
type correctly in most cases. It may be recalled that we used
Gemini without any domain-specific fine-tuning. An answer to
Q1 was obtained by prompting the LLM with appropriate data
and instructions. In other words, the results largely indicate
that pre-trained LLMs, in general, can still offer useful results
in specialized areas if prompted appropriately.

TABLE IV: Human evaluation scores for DrAgent

# Q1 Q2 Q3 Q4 Q5 Q6 Average
DR1 2 2 2 2 2 2 2.00
DR2 2 2 2 2 2 2 2.00
DR3 2 2 2 2 2 2 2.00
DR4 2 2 2 2 2 2 2.00
DR5 2 2 0 2 2 2 1.66
DR6 2 2 0 2 2 2 1.66
DR7 2 2 2 2 2 2 2.00
DR8 2 2 2 1 2 2 1.83
DR9 2 2 1 2 2 2 1.83
DR10 -1 2 0 1 2 2 1.00
DR11 2 2 2 1 2 2 1.83
DR12 2 2 2 1 2 2 1.83
DR13 2 2 2 N/A 2 -1 1.40
DR14 2 2 2 N/A 2 -1 1.40
DR15 2 2 2 N/A 2 2 2.00
DR16 2 2 0 N/A 2 -1 1.00
DR17 -1 2 2 N/A 2 -1 0.80
DR18 -1 2 1 N/A 2 -1 0.60
Average 1.50 2.00 1.44 1.66 2.00 1.66

On the other hand, the results for Q2 and Q5 were obtained
using two different tools that performed computations with DR
data. Since the underlying calculations are relatively complex
for an LLM, tool usage resulted in the correct answers.
However, comparable outcomes were not obtained for Q6,
whose answers also were based on a user-defined tool. In
general, the identification of fault clearance could be tricky
sometimes. As such, our implementation of this function also
failed to capture the diverse conditions. However, as noted in
Table I, Q6 is of low importance, in general.

Table IV also shows that the average score for Q3 was 1.44.
It may be noted that DrAgent answered Q3 by using a two-
step process to identify the relay algorithms: (1) the names
of the digital channels that were activated were identified
by calling the get_digital_channels_activation_status tool and
(2) the relay algorithms corresponding to the channel names
were identified by looking at the product manuals using the
search_product_manuals tool. In this case, correct answers
were obtained for 12 out of 18 DRs. The results were partially
correct for two DRs, DR9 and DR18. No useful answer was
obtained for the remaining four DRs.

It may be noted that we used RAG to search the product
manuals. Therefore, a likely reason for not receiving any
meaningful answers for Q3 could be that the underlying
retrieval mechanism had failed to retrieve sufficiently relevant
context from the vector database. However, since vector search
is often approximate, running the same query again could
potentially lead to an answer. Nevertheless, in the future, it
would be interesting to investigate alternative search and re-
ranking mechanisms.

Figure 5 shows the evaluation scores, averaged across
all the DRs, for the agentic approach using DrAgent and
the non-agentic approach, as discussed in Section IV. The
detailed scores for the non-agentic approach are shown in the
Appendix.

The figure shows that DrAgent resulted in statistically
significant better performance for Q2 and Q6, as compared
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Fig. 5: Average performance of fault analysis using agentic
and non-agentic approaches.

to the non-agentic approach. The result also appeared to be
better in the case of Q5.

In the case of Q3, the average scores obtained using
DrAgent and the non-agentic approach were the same, 1.44.
However, as Figure 5 indicates, the confidence interval was
narrower for DrAgent. In particular, the non-agentic approach
resulted in four incorrect answers (see Appendix), while the
remaining answers were correct. In contrast, DrAgent did
not generate any wrong answers—they were either correct,
partially correct, or no answer was generated—leading to a
lower dispersion of the scores. It may be recalled that the non-
agentic approach prompted the LLM with all the questions,
data (text and images), and instructions in a single prompt.
This potentially provided the LLM with a better context, which
allowed it to interpret the digital channel names in a relatively
better way. However, in general, no answer may be preferred
over having incorrect answers.

Finally, in the case of Q1, the average score of DrAgent was
marginally lower than the score obtained using a non-agentic
approach. It may be noted that both approaches used the same
data and instructions for fault-type diagnosis. Therefore, this
variation in the results can be accounted for by the stochastic
nature of LLMs.

We also evaluated DrAgent using other relevant queries and
examined whether or not the correct functions were called. For
example, Listing 1 shows the plan and tools called in response
to the query “Show me the sequence of events as a table.”
Here, the get_digital_channels_activation_status function was
called to get the activation status of the digital channels.
Subsequently, the LLM was responsible for arranging the
information in a tabular format.

On the other hand, the query “Analyze the fault in detail”
led to the use of multiple tools, as shown in Listing 2. It may
be noted that, unlike the other queries, this particular query
was more generic. Accordingly, the LLM generated a plan to
use some of the relevant tools available to it.

Listing 1: Plan of execution for the query “Show me the
sequence of events as a table”
Get a summary of the digital channels and their activation

status using the provided COMTRADE files.
#E1 = get_digital_channels_activation_status[cfg_file_path

=’/app/dr.cfg’, dat_file_path=’/app/dr.dat’]

Ask LLM to present the sequence of events from the digital
channels activation status, as a table. Also, ask LLM
to include the corresponding timestamps by considering
the sampling rate of 1000 samples/sec.

#E2 = LLM[Task: Show me the sequence of events as a table.
Context: Sampling rate = 1000 samples/sec. Digital
channels activation status: #E1]

Listing 2: Plan of execution for the query “Analyze the fault
in detail”
Find the fault type and involved phases using the

find_fault_type function. This function will also
provide an explanation of how the fault type was
determined.

#E1 = find_fault_type[cfg_file_path=’/app/dr.cfg’,
dat_file_path=’/app/dr.dat’]

Find the fault inception sample number using the
find_fault_inception function.

#E2 = find_fault_inception[cfg_file_path=’/app/dr.cfg’,
dat_file_path=’/app/dr.dat’,
fault_inception_current_threshold=0.1,
fault_inception_voltage_threshold=0.05]

Calculate the fault inception time in seconds.
#E3 = calculator[expression=’#E2 / 1000.0’]

Determine the maximum fault current using the
find_max_fault_current function.

#E4 = find_max_fault_current[cfg_file_path=’/app/dr.cfg’,
dat_file_path=’/app/dr.dat’]

Estimate the fault clearance sample number using the
estimate_fault_clearance function.

#E5 = estimate_fault_clearance[cfg_file_path=’/app/dr.cfg’,
dat_file_path=’/app/dr.dat’]

Analyze the fault based on the information gathered.
#E6 = LLM[Analyze the fault in detail, given the fault type:

#E1, fault inception time: #E3 seconds, maximum fault
current: #E4 Amperes, and fault clearance sample number
: #E5. Consider providing recommendations for improving
system protection based on the analysis.]

Figure 6 shows the tool usage time of two particular tools—
find_fault_inception and estimate_fault_clearance—when the
queries Q2, Q6, Q7, Q8, and Q9 were executed, in order, for
DR2. Each of these two tools (function) took about half a
second to execute8 and generate the results in the concerned
experimental environment. However, when Q8 and Q9 were
executed, the outputs of these tools were retrieved from the
cache, resulting in a tool usage time of about 0.1 milliseconds.
In other words, the tool usage time in the latter case was
reduced by around 5000 times. The results, therefore, illustrate
that tool caching can be potentially useful, especially when
fault analysis (or similar tasks) involves frequent usage of
some tools and such functions are executed in an environment
with low computational resources.

VI. CONCLUSION

Power grids are often subjected to faults. DR analysis is
a critical and recurrent requirement to diagnose a fault and
take appropriate action. However, fault analysis can be a chal-
lenging task for the non-experts. Moreover, when the scope

8Ideally, Q6 can be answered by using estimate_fault_clearance only.
However, sometimes the LLM calculates the fault duration, thus executing
find_fault_inception as well. In such scenarios, during our evaluation, we
assigned the score of 2 if the numerical value of the duration was correct and
the answer explicitly mentioned that it was fault duration.
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Fig. 6: Tool usage time for different queries for two particular
tools, find_fault_inception and estimate_fault_clearance. Inset:
a magnified view of the tool usage time for Q8 and Q9.

of analysis is expanded, it could become a time-consuming
process. The emergence of GenAI and LLMs offers a new
direction to address some of these challenges.

In this work, we discussed the design of DrAgent, which
combines a pre-trained LLM’s knowledge with domain-
specific knowledge represented in the form of tools. In the
agentic workflow, given a query, a plan is generated that
uses one or more tools. Subsequently, the tools are executed
to generate an answer. Such a step-by-step approach also
enables a novice to learn new concepts and problem solving
steps. It also allows the experts to verify the reasoning of the
LLMs. The planning and execution are further improved using
argument reconstruction and caching the tool outputs. Our
experimental results indicated that DrAgent can, in general,
offer better results—especially, when numerical accuracy is
considered.

In the future, this work can be extended in different ways.
Additional queries and tools may be considered to further
expand the scope of fault analysis. On the other hand, the
consideration of additional DRs may offer a more granular
performance analysis. Finally, the scope of tool caching may
be expanded to resource caching in order to reduce computa-
tional overhead and latency further.
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APPENDIX
HUMAN EVALUATION SCORES FOR THE NON-AGENTIC

APPROACH OF DR ANALYSIS

# Q1 Q2 Q3 Q4 Q5 Q6 Average
DR1 2 -1 -1 2 2 -1 0.50
DR2 2 2 2 1 2 -1 1.33
DR3 2 2 -1 2 2 -1 1.00
DR4 2 2 2 1 2 -1 1.33
DR5 -1 2 2 1 2 -1 0.83
DR6 2 2 2 1 2 2 1.83
DR7 2 2 -1 2 2 -1 1.00
DR8 2 -1 -1 2 2 -1 0.50
DR9 2 2 2 2 2 -1 1.50
DR10 2 2 2 2 2 2 2.00
DR11 2 2 2 1 -1 2 1.33
DR12 2 2 3 2 2 2 2.16
DR13 2 2 2 N/A 2 -1 1.40
DR14 2 -1 2 N/A 2 -1 0.80
DR15 2 -1 2 N/A -1 -1 0.20
DR16 2 2 3 N/A 2 -1 1.60
DR17 2 -1 2 N/A 2 -1 0.80
DR18 -1 -1 2 N/A 2 -1 0.20
Average 1.66 1.00 1.44 1.58 1.66 -0.33


