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Abstract—Audio-visual cross-modal retrieval seeks to establish
relations and similarities between different media types, facilitat-
ing retrieval and recommendations across modalities. The core
challenge of cross-modal retrieval is to analyze and understand
the data of different modalities, extract the joint representation
and overcome the cross-modal heterogeneity gaps. In this paper,
we propose a novel deep supervised fine-grained feature fusion
network for cross-modal retrieval, which aims to utilize the
multi-modal fusion attention mechanism combined with fine-
grained features to dynamically adjust the weights between multi-
modal features to learn extensive and comprehensive cross-modal
representations. Additionally, the shared weight strategy and the
constrained loss function are used to jointly guide the model to
learn modality-invariant features. Our proposed model obtains
excellent experimental results on the widely used VEGAS and
AVE benchmark datasets.

Index Terms—Cross-modal retrieval, Fine-grained features,
Feature fusion, Correlation learning.

I. INTRODUCTION

CROSS-MODAL retrieval is a crucial topic in multimodal
learning, aimed at achieving efficient information re-

trieval across different modalities (e.g., images, text, audio,
and video). Unlike unimodal retrieval, cross-modal retrieval
requires modeling the semantic relationship between hetero-
geneous modalities so that the input modality data (audio)
can be used to retrieve related data of another modality (such
as matching images) [1]. This technology has shown wide
application potential in the fields of intelligent security, e-
commerce, medical image analysis, etc. However, cross-modal
retrieval faces a series of challenges, and the heterogeneity gap
is one of the key difficulties.

In recent years, researchers have proposed various methods
to address these challenges, among which fine-grained feature
modeling has emerged as a significant research direction[2].
Compared with traditional methods that represent modal data
through global features, fine-grained methods pay more at-
tention to local features within the modality and fine-grained
semantic alignment between modalities. For example, fine-
grained features can represent a specific area or object in
the image modality. In this way, fine-grained methods can
better capture the local-local relationship between modalities
in cross-modal retrieval, thereby improving retrieval perfor-
mance.

To solve these problems, researchers have proposed some
methods to align local regions of visual and audio fea-
tures through multi-modal attention mechanisms (cross-
attention)[3]. Although fine-grained methods have made sig-
nificant progress in improving cross-modal retrieval perfor-
mance, there are still challenges in balancing the differences
in modal characteristics and reducing computational overhead.
Therefore, this paper focuses on the application of fine-grained
feature modeling in cross-modal retrieval, aiming to explore
a more efficient fine-grained feature extraction and alignment
method to improve cross-modal retrieval performance further.

In this paper, we propose a novel deep supervised fine-
grained feature fusion network, which learns the features of
each modality in a unified framework, dynamically adjusts the
weights between them, and utilizes the multi-modal fusion at-
tention mechanism to enhance semantic alignment. Through a
multi-step fusion strategy, it promotes the interaction of cross-
modal features and explores potential correlation representa-
tions. In the stage of fusing visual-audio input features, we
utilize the adaptive weighting strategy to dynamically adjust
the weight of each feature and optimize the synergy between
features. Additionally, a shared weight strategy is used together
with a constrained loss function to guide the training of the
model to learn modality-invariant and discriminable features.

This paper focuses on the application of fine-grained fea-
tures in cross-modal retrieval, aiming to design an efficient
feature fusion method to further improve the performance
and applicability of the model. The main contributions are
as follows:

1) We propose a novel fine-grained feature fusion method
that combines the fine-grained features of images and
audio to capture more detailed semantic relationships
between modalities.

2) We train the model using a constrained loss function with
a shared weight strategy so that the modality preserves
discriminative and modality-invariant features between
samples from different semantic categories.

3) Experimental verification on multiple cross-modal re-
trieval datasets proves that our method is superior to
existing mainstream methods in retrieval accuracy.



II. RELATED WORKS

In this section, we will provide a brief introduction to related
methods for cross-modal retrieval, as well as some attention-
based techniques.

A. Unsupervised cross-modal approaches

Maximizing the correlation between different modalities
without supervised information is essential for learning joint
representations across diverse data types. Canonical Correla-
tion Analysis (CCA) [4] focuses on learning linear transfor-
mations of the modalities to project them into a shared space,
maximizing their mutual relevance. Deep Canonical Correla-
tion Analysis (DCCA) [5] extends this approach by utilizing
deep neural networks to capture complex, high-dimensional
correlations through nonlinear transformations. Unsupervised
Contrastive Hashing with Modality Correlation (UCHM) [6]
introduces a distinct strategy. It minimizes hash similarity
through a custom loss function to train a similarity generator.
The resulting Modality Interaction Entropy (MIE) similarity
matrix acts as a guiding model for training a deep hash
network, enabling the discovery of robust joint representations.

B. Supervised cross-modal approaches

Supervised semantic information is used to reduce the
intra-modal heterogeneity gap by distinguishing samples from
different semantic categories. TNN-C-CCA [7] enhances the
Cluster-CCA method by introducing a task-specific loss func-
tion based on multi-modal learning. This approach not only
accounts for the correlations of paired samples but also in-
corporates the correlations of non-paired samples, leading to
more robust representation learning.

Attention mechanisms in neural networks selectively em-
phasize important parts of the input data while suppressing less
relevant ones. In cross-modal tasks, attention modules capture
the correlations between modalities, aligning audio and vi-
sual sequences by learning the interdependencies among their
elements. Deep Co-attention Network [8] proposed a deep co-
attention architecture for multi-view subspace representation
learning, enhancing interpretability and prediction reliability.

III. PROPOSED METHOD

In this section, we start by defining the problem of cross-
modal retrieval. Next, we introduce a novel model aimed at
learning feature representations from audio-visual modality
data. Finally, we provide detailed implementation specifics of
the proposed approach.

A. Problem Formulation

Multimedia data H ≡
{
(ha

i ,h
v
i )
}n

i=1
be n pairs of audio-

visual samples where ha
i ∈ R128 and hv

i ∈ R1024 are
the i-th audio and visual vectors extracted by pre-trained
VGGish and Inception networks, respectively. We assign a
corresponding one-hot category vector yi ∈ {0, 1}m for each
pair of multimedia samples, where m represent the num-
ber of categories. Multimedia data differ in dimensions and
distributions, making direct comparison challenging. Using

transformation functions, we address cross-modal retrieval by
mapping features into a shared representation space.

B. Fine-grained Feature Extraction

In this work, we aim to balance computational efficiency
and resource usage by combining small kernels (k3×1, k5×1,
with k7×1) larger kernels. An audio-visual feature pair Ha

and Hv is processed through an encoder with a shared linear
layer, and individual subnetworks using 1D convolutions with
various kernel sizes and max pooling. This generates fine-
grained features F a and F v as follows:

F a = Encoder(Ha,θa
e ) F v = Encoder(Hv,θv

e ) (1)

F a
k×1 = Conv1d

(
F a, k;θa

k

)
, F v

k×1 = Conv1d
(
F v, k;θv

k

)
,

(2)

where Conv1d(f , k,θ) represents a 1D convolution opera-
tion applied to a feature k ∈ {3×1, 5×1, 7×1} with parameter
θ.

C. Fine-grained Feature Fusion

While multiple modalities offer more information, fusing
them can reduce modality-specific details. To address this, we
design a multi-modal fusion attention (MFA) with adaptive
weighting to integrate information into a stable representation.
The architecture is detailed in Figure 2. For given feature maps
F v
k and F a

k , we utilize a modality function unit that performs
element-wise operations for integrate intra-modal Φv (Φa) and
inter-modal Φva (Φav) attention map. We create both audio
and visual representations in the following ways:

Gv = σ(ΦvaW
va
1 +Φv)⊙ Φv,

Ga = σ(ΦavW
av
2 +Φa)⊙ Φa,

(3)

where W are parameter matrices, and σ is the Sigmoid func-
tion. The joint representation J = σ(Bilinear

[
Gv, Ga

]
) ∈

R128×3×128 allows the network to perform soft selection
between F v

k and F a
k . The adaptive weighting process for MFA

denoted as Mk is defined as follows:

Mk = J ⊙ F v
k + (1− J)⊙ F a

k , (4)

The quality of initial integration can influence the final
fusion weights in the attention module. Since this involves
feature fusion, a common approach is to use another attention
module to combine the input features. We employ a two-stage
fusion strategy to calculate the final feature representations
F̂ v
k , F̂ a

k by the following formula (as shown in Figure 1):

M1
k = MFA(F v

k , F
a
k ), Ivk = M1

k ⊙ F v
k , Iak = M1

k ⊙ F a
k ,

M2
k = MFA(Ivk , I

a
k ), F̂ v

k = M2
k ⊙ F v

k , F̂
a
k = M2

k ⊙ F a
k ,

(5)
Finally, the model connects two linear layers to convert the
768-dimensional F̂ v

k and F̂ a
k features into 64-dimensional Ov

and Oa features as the output of the model.



Fig. 1: Illustration of the general framework of the proposed method.

Fig. 2: Illustration of the general framework of the proposed
multi-modal fusion attention.

D. Objective Function

We introduce two constraints for cross-modal feature rep-
resentation learning: discriminative, and intra-modal loss.

We connect a simple linear layer at the end of the multi-
modal dual subnetwork. This classifier is incorporated into
the visual and audio modality subnetworks to ensure the
distinction of instances from different categories after feature
projection. It uses the training data to predict a m-dimensional
category vector for each instance. We utilize the following loss
function to preserve the discriminability of modal representa-
tions in the semantic space:

Jdis =
1

n
∥f(oa

i )− yi∥F +
1

n
∥g(ov

i )− yi∥F , (6)

where yi denote the true category, and f(·), g(·) represent
transformation function of the predicted category.

To improve the discriminative performance of deep neural
networks [9], we position instance features close to their
category centers, addressing intra-class compactness and inter-
class separability. By projecting the features into a shared
subspace, the intra-modal constraint loss directly calculates
feature distances, guiding the model to learn compact, sepa-
rable representations and enhance discriminative ability. The
loss is defined as follows:

Jintra =
1

2n

n∑
i=1

∥∥oa
i − cayi

∥∥2
2
+

1

2n

n∑
i=1

∥∥ov
i − cvyi

∥∥2
2
, (7)

where cai and cvi represents the center of features oa
i and ov

i

belonging to i-th class.

IV. EXPERIMENTS

We conduct a comparative analysis of our proposed method
against various advanced approaches and discuss the results.



We also conduct ablation experiments to assess the impact of
various components of the model.

A. Comparison with Existing Methods

We compare our method with existing advanced approaches
on the VEGAS and AVE datasets. All methods utilize the
same audio-visual data features, and the final representation
dimensions in our model align with those of the advanced
methods.

TABLE I: the mAP scores for audio-visual retrieval on the
VEGAS test dataset.

Approach Audio2Visual Visual2Audio Average
CCA [4] 0.332 0.327 0.330

KCCA [10] 0.288 0.273 0.281
DCCA [5] 0.478 0.457 0.468

C-CCA [11] 0.711 0.707 0.709
C-DCCA [12; 13] 0.722 0.716 0.719

ACMR [14] 0.465 0.442 0.454
TNN-C-CCA [7] 0.751 0.738 0.745
VAE-CCA [15] 0.821 0.824 0.822
MSNSCA [2] 0.866 0.865 0.866

Proposed 0.881 0.895 0.888

TABLE II: the mAP scores for audio-visual retrieval on the
AVE test dataset.

Approach Audio2Visual Visual2Audio Average
CCA [4] 0.190 0.189 0.190

KCCA [10] 0.133 0.135 0.134
DCCA [5] 0.221 0.223 0.222

C-CCA [11] 0.153 0.152 0.153
C-DCCA [12; 13] 0.230 0.227 0.229

ACMR [14] 0.162 0.159 0.161
TNN-C-CCA [7] 0.253 0.258 0.256
VAE-CCA [15] 0.328 0.302 0.315
MSNSCA [2] 0.323 0.343 0.333

Proposed 0.371 0.368 0.370

Tables I and II present a comparison between our proposed
method and existing approaches on the VEGAS and AVE
datasets. The experimental results demonstrate that our method
is more effective than the current state-of-the-art techniques.
Our proposal method fuses the fine-grained features of multi-
modality, capturing more semantic information with the infor-
mation of another modality and bridging the heterogeneity gap.
Unsupervised methods like CCA, DCCA, and KCCA struggle
to achieve high retrieval scores because they do not leverage
semantic information, hindering the model’s ability to learn
discriminative features essential for cross-modal retrieval.
While models based on advanced techniques (e.g., DNN,
attention) generally show satisfactory performance, methods
like MSNSCA, VAE-CCA, and TNN-CCA fail to fully exploit
the rich correlations in cross-modal data, lacking sufficient
interaction between modalities and struggling to bridge the
heterogeneity gap, which significantly limits retrieval perfor-
mance.

B. Impact of Different Components

The proposed method’s objective loss function consists of
Jdis, Jintra, and the MFA module. We performed ablation
experiments on the proposed method to evaluate the influence
of various components on the model’s retrieval performance.
From Tables III and IV, we observe that the model trained with
only Jdis only achieves retrieval accuracy of 0.282 and 0.114
on the VEGAS and AVE datasets. When the MFA module
is added, the performance of the model can be significantly
improved, since the MFA module utilizes the correlation be-
tween modes and bridges the heterogeneity gap. Experimental
results demonstrate that combining various components of the
proposed model significantly improves retrieval accuracy.

TABLE III: Comparison of the performances of the combina-
tion of three components on the VEGAS test dataset.

No. Jdis Jintra MFA Audio2Visual Visual2Audio Average
0 ◦ ◦ ✓ 0.431 0.443 0.437
1 ◦ ✓ ◦ 0.276 0.287 0.282
2 ✓ ◦ ◦ 0.361 0.354 0.358
3 ◦ ✓ ✓ 0.704 0.718 0.711
4 ✓ ◦ ✓ 0.783 0.774 0.779
5 ✓ ✓ ◦ 0.612 0.608 0.610
6 ✓ ✓ ✓ 0.881 0.895 0.888

TABLE IV: Comparison of the performances of the combina-
tion of three components on the AVE test dataset.

No. Jdis Jintra MFA Audio2Visual Visual2Audio Average
0 ◦ ◦ ✓ 0.202 0.213 0.208
1 ◦ ✓ ◦ 0.112 0.116 0.114
2 ✓ ◦ ◦ 0.118 0.114 0.116
3 ◦ ✓ ✓ 0.267 0.271 0.269
4 ✓ ◦ ✓ 0.274 0.278 0.276
5 ✓ ✓ ◦ 0.221 0.234 0.228
6 ✓ ✓ ✓ 0.371 0.368 0.370

C. Visualisation of the Learned Representation

We utilize the t-SNE method to transform visual and audio
representations into a two-dimensional visualization plane for
analyzing the distribution of our proposed method. Figure 3(a)-
(c) visualizes the distribution of the original data and the
audio-visual modality data in the same visualization plane.
We can observe that the boundaries of different categories of
the original data samples overlap, it is challenging to clearly
differentiate between the samples of the various categories. and
there is a large gap between the audio-visual modality samples
belonging to the same category. Figure 3(d)-(f) visualizes
the data trained by the proposal model and the distribution
of the audio-visual modality data in the same visualization
plane. The distance between samples of different categories is
far, and they can be effectively distinguished. However, there
are still some overlapping samples, which limit the retrieval
performance of the model.

V. CONCLUSION

In this paper, we introduce a novel approach for learning
deep supervised fine-grained feature fusion from audiovisual
modal data. This method progressively establishes correlations



(a) Original visual data (b) Original audio data (c) Original visual-
audio data

(d) Visual data(our) (e) Audio data(our) (f) Visual-audio
data(our)

Fig. 3: Visual analysis of the distribution of test data in the
VEGAS data set. Different marks represent the distribution of
samples in visual and audio modalities, and different colors
represent samples of different categories.

between different modalities through a multi-modal fusion
attention module. Additionally, we propose a constrained
loss function that directs the model to learn representations
that are both discriminative and invariant across modalities.
Comprehensive experimental results and evaluations on two
widely used benchmark datasets highlight the effectiveness
of the proposed model architecture. However, the visual-
audio retrieval task still has some limitations, which requires
balancing the differences in modality features and the compu-
tational overhead associated with reducing fine-grained feature
extraction.
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