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Abstract—When developing a new system, preliminary verifica-
tion can be performed using an emulator before actual hardware
production. Among the emulators needed in the development
process, QEMU is the most well-known. Although defining and
implementing a new peripheral’s operation can be challenging,
in this paper, we propose using dynamic linking to implement the
peripheral’s operation conveniently. Specifically, by connecting a
separate program called NeuroSim to QEMU through dynamic
linking, we can emulate a system in which a separate accelerator
is connected to the MCU. Moreover, when expanding QEMU in
this way, even if modifications to the peripheral’s operation are
required, it is better in terms of time and convenience because
only the shared object file needs to be compiled without rebuilding
the entire QEMU. Our study demonstrates that building with
dynamic linking resulted in a reduction of approximately 91%
in time compared to the build process without dynamic linking.

I. INTRODUCTION
A. QEMU

QEMU is a generic and open source machine emulator and
virtualizer [1]. It can be used in several ways, but in our study,
it is used for system emulation, in which it provides a virtual
model of a machine. Although this machine has some built-
in peripherals by default, there are also peripherals that are
not implemented or special peripherals that users might need.
Therefore, research has been conducted on development tools
for implementing new peripherals [2].

To define a new peripheral in QEMU, we need to modify
a json file and write the peripheral’s operation in C code. The
json file is a modified version of the SVD file provided by
the chip vendor. This file contains information about various
registers and fields. Therefore, we add the new peripheral’s
registers and fields in this file and implement the peripheral’s
operation in a separate C code.

B. NeuroSim

NeuroSim is an intergrated framework, which is developed
in C++ and wrapped by Python to emulate on-chip perfor-
mance on the hardware accelerator based on near-memory
computing or in-memory computing architectures [3], [4],
[5]. Specifically designed for hardware accelerators based on
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Fig. 1: Structure of shared object files

near-memory computing and in-memory computing architec-
tures, NeuroSim provides hierarchical design options spanning
device-level, circuit-level, and algorithm-level configurations.
The framework supports weight-duplication for optimizing on-
chip memory utilization and accommodates various neural
network topologies, enabling comprehensive benchmarking
from VGG-8 to ResNet architectures across datasets ranging
from CIFAR to ImageNet. Furthermore, NeuroSim interfaces
seamlessly with popular machine learning platforms such as
PyTorch and TensorFlow, providing detailed hardware per-
formance metrics including area estimation, latency analysis,
dynamic energy consumption, and leakage power assessment.

In our study, we aimed to define NeuroSim as a new QEMU
peripheral for efficient accelerator development. Through the
implementation of dynamic linking, we have enhanced the
development process by reducing component coupling and
making it more robust. This approach provides a foundation for
future Al accelerator design by enabling efficient integration
and testing of NeuroSim’s hardware design capabilities within
the QEMU environment.

II. PROPOSED METHOD

A. Implementation Using Dynamic Linking

Two major dynamic linking processes are required. The
first dynamic linking process occurs during NeuroSim oper-
ation. To run NeuroSim from QEMU’s code, the executable
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Fig. 2: Overall structure of proposed method

file generated when building NeuroSim must be executed with
parameters to be processed in NeuroSim. For this, a C function
that calls the external executable file with parameters needs to
be implemented and compiled into a shared object. This shared
object is represented as the libgemu.so file in Fig. 1.

The parameters passed to Neurosim by users can vary, for
they represent the values to be computed in the peripheral. As a
result, multiple libgemu.so files exist, each combining the same
executable with different parameters. The second dynamic
linking is used to call the functions that perform desired com-
putations from these libgemu.so files at the intended execution
points. When functions from the second shared object file are
called at specific points in QEMU, these functions gain the
ability to invoke functions from the libgemu.so file. The second
shared object file is represented as libcomposition.so in Fig. 1.

B. Order of Operations

The application code the users write will be operated on
the microcontroller. First, the user inputs the start address and
end address of the weight array defined in the application
code into the WSR (weight start register) and WER (weight
end register) of the CIM peripheral, respectively. When 71" is
written to the control register, it creates a separate CSV file
containing the weight array that exists at the address the user
previously wrote to the WSR and WER. By applying this CSV
file as an argument to the NeuroSim program, users can apply
the weights they desire. The results of NeuroSim operating
this way are stored in the ODR (Output Data Register) of the
CIM register, and users can access this register to produce the
desired results.

Fig. 2 illustrates the content mentioned in this chapter. The
arguments written at addresses specified in the user code are set
as arguments for another shared object file by the shared object
called CIM, which is the same as in the libcomposition.so file
in Fig. 1. This CIM shared object (libcomposition.so) executes
various shared objects depending on the case, and corresponds
to the libgemu.so files in Fig. 1. The multiple shared objects

(libgemu.so) operating within CIM (libcomposition.so) corre-
spond to the first dynamic linking mentioned in subsection A.
These various shared objects can obtain output by executing
the corresponding executable files for each case.
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Fig. 3: Comparison of build time

III. EXPERIMENTAL RESULTS

We compare three cases, as shown in Fig. 3:firtst, the case
without dynamic linking in which the neurosim source code is
included in QEMU (blue bar); second, the case using dynamic
linking with only libgemu.so (orange bar); and finally, the case
using dynamic linking libgemu.so and libcomposition.so files
(green bar). For each case, the build time was measured 5
times, with a new neurosim operation added in each iteration.

The red line in Fig. 3 connects each case’s average values,
which are 2.574s, 2.14s, and 0.2154s. This demonstrates that



utilizing dynamic linking enables faster builds during code
development, reducing build time by approximately 91% com-
pared to the build without dynamic linking. Additionally, it
shows that the separation between QEMU source code and the
peripheral source code to be implemented becomes possible,
making it more advantageous for maintenance.

IV. CONCLUSION

Adding a new peripheral to an existing microcontroller has
financial and time-related burdens, and failure in this process
can result in significant losses. Therefore, emulation during the
development phase is essential, but adding a new peripheral to
the existing QEMU can also be a significant challenge.

Using dynamic linking, as proposed in this study, enables
more convenient addition of peripherals. Furthermore, we
demonstrated that when an executable file already exists from
external implementation, creating a separate function to call
that file allows it to be dynamically linked to QEMU at
runtime, implementing the desired functionality. Along with
this convenience, the results showed that the build time was
reduced by approximately 91% compared to cases without
dynamic linking.
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