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Abstract—Intelligent Transportation System (ITS)
uses advanced technologies such as Vehicular ad hoc
Network (VANET) to improve the safety and con-
gestion on the roads. The architecture of VANETs
is inherently decentralized, characterized by direct
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications. VANETs are exposed to various
known threats and attacks such as bogus information,
Denial of Service (DoS), Sybil, Data Replay attacks and
many more. In this paper, we propose a deep transfer
learning based Intrusion Detection System (IDS) using
VGG16 and GAF algorithm to detect position and
speed falsification attacks in VANET. This innovative
approach utilizes the power of deep transfer learning
and visualization of temporal sequences in BSM data to
improve the efficiency of IDS in V2X communications.
Preliminary results, using the VeReMiExt dataset, in-
dicate that the proposed approach outperforms existing
techniques for most attack types.

Index Terms—VANET, ITS, Transfer Learning,
VGG16, VeReMi Dataset, BSM, GAF

I. Introduction
The emergence of Vehicular Ad Hoc Networks

(VANETs) has opened a new chapter for the Intelligent
Transportation Systems (ITS) [1]. VANETs enable vehi-
cles to communicate with each other and with roadside
infrastructure, forming a real-time network that supports
safety applications such as collision avoidance alerts, traf-
fic management, and infotainment services. The archi-
tecture of VANETs is inherently decentralized, charac-
terized by direct vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications [2].

Vehicles in VANET share sensitive information about
their current status, including position, speed, heading
etc., through Basic Safety Messages (BSMs). Attackers
can harm the network by manipulating the legitimate data
(in BSMs or other packets), creating sybil nodes and/or
disrupting the network [3]. Timely detection of security
attacks is of utmost importance due to the serious conse-
quences of compromised networks, such as traffic disrup-
tions, accidents, and the manipulation of traffic data [4].
In this paper, we focus primarily on BSM related attacks,
where a malicious vehicle inserts incorrect position/speed
information in its BSMs before broadcasting them to
other nodes. These are insider attacks, as they are carried
out by authenticated nodes that have valid credentials

to access the network. Such attacks can compromise the
integrity and reliability of the system, posing serious risks
to passengers and drivers. Developing a robust intrusion
detection system (IDS) for detecting and mitigating these
security threats has become indispensable.

Traditional machine learning and deep learning based
IDS has emerged as a highly effective tool for detecting
security attacks in VANET [5] [6] [7]. Machine learning
algorithms can learn useful patterns in the data and
classify messages as malicious or legitimate. However,
there remain numerous challenges with these techniques,
such as high variability in data and real-time processing
requirements that can impact the performance of the IDS
[8]. Deep learning (DL) based IDS, in particular, can
be effective in detecting attacks, but requires extensive
training, on large datasets, and significant time and com-
putational resources. One potential solution to these issues
is the use of the Transfer Learning (TL) approach to
develop IDS for connected vehicles. TL leverages the use
of a pre-trained model from the source domain, which
can then be “fine-tuned” through some additional training
with datasets related to the target domain. This helps to
reduce the training time, improve performance, and work
with a smaller amount of data in the target domain [9].

Transfer learning based approaches have yielded promis-
ing results in different areas including text and image
classification and as well as network intrusion detection.
Transfer learning based IDS for general network traffic
have been proposed in [10] [11] [8]. In a previous work
[12], we presented a CNN-LSTM model for detecting DoS
attacks in VANET, using the pre-trained model in [13].
In this paper, we propose a novel approach, where the
initial pre-trained model was trained for image classifica-
tion rather than intrusion detection. We first convert the
information in the BSMs into images, by using Grammian
Angular Fields (GAF) technique. GAF allows the data
points to adhere to their temporal dependencies while
creating an image format for capturing visual patterns.
These images are then given as input to the proposed
TL based model, which uses VGG16 as the pre-trained
component. VGG16 [14] is a publicly available pre-trained
model, trained on millions of images, and has been ex-
tensively used for various image classification tasks. We
demonstrate that VGG16’s hierarchical feature extraction



capabilities are able to recognize anomalies in the different
BSM derived images and effectively identify anomalous
BSMs. This paper focuses specifically on the detection of
suspicious BSMs that are likely to be malicious. A com-
prehensive security mechanisms requires additional steps,
including reporting suspected misbehavior to designated
authorities, taking steps to mitigate any adverse effects
and taking appropriate actions against malicious actors,
which are out of the scope of this paper.

The remainder of this paper is organized as follows:
Section II first gives an overview of TL based intrusion
detection and then discusses some recent image based
classification techniques for detecting attacks. Section III
explains our proposed framework and Section IV discusses
our results. Finally, we present our conclusions and some
directions for future work in Section V.

II. Related Work
Numerous ML/DL based IDS for both in-vehicle and

inter-vehicle communication have been proposed to ensure
the security of vehicular communication [4] [15] [16] [17].
In recent years, transfer learning based IDS has been
successfully implemented for general network traffic. In
this section, we will first review existing TL based ap-
proaches for network attack detection, and then focus on
image based classification techniques, which can be used
for network attack detection.

A. Transfer Learning Based IDS
In [9], the authors use a pre-trained CNN model to

detect various types of IoT attacks. The BOT-IoT dataset
was used for training the network and UNSSW-NB15 for
testing, achieving an accuracy of above 97%. A deep neural
network trained on the NSL-KDD dataset was used to
implement a transductive transfer learning framework in
[8]. The model was tested on the CIDD dataset and achieve
an accuracy of 80%. In [11] the authors developed a TL
based framework based on the pre-trained ResNet model
[18] to detect different types of attacks in cyber-physcial
systems. UNSW-NB15 was used as the source dataset and
CICIDS2017 as the target dataset for performance evalu-
ation. This model reported a very high accuracy of 99.9%
and outperformed other deep learning based approaches,
such as CNN, DNN and LSTM. The work in [12] presents
a transfer learning approach to detect DoS attacks using
BSMs. A CNN-LSTM model pre-trained on NSL-KDD
dataset was used on VeReMiExt dataset to detect DoS
attacks. The proposed model achieved accuracies ranging
from 95% to 99% for different types of DoS attacks.

In [19], the authors propose a deep transfer learning
based framework for detecting IoT attacks. They intro-
duce an improved Deep Transfer Learning (DTL) model
adjusted with two autoencoders (AEs). The first distinct
autoencoder (AE1) is trained on labeled data from the
source domains. In contrast, the second distinct autoen-
coder (AE2) is trained on unlabeled data from the target

domain. To validate the effectiveness of the proposed
model, 9 real-world IoT datasets are employed in the
experimental study. The results show that the model has
better AUC scores compared with the other traditional
DL approaches.

B. Image Based Classification for Attack Detection
Image based misbehavior detection requires the infor-

mation in network packets to be converted into images
before processing. The work in [20] proposes an image-
based network intrusion detection system for internet
traffic dataset using deep neural networks such as VGG19.
It uses the weights transported from a pre-trained VGG-
16 model and the ImageNet data to predict intrusion
features, which are then passed to a deep neural network
to classify intrusions. The min-max normalization process
is used to scale the dataset and then convert it into RGB
images. The results demonstrate the effectiveness of the
proposed model, compared to the existing machine learn-
ing algorithms such as SVM, Decision Trees, and Logistic
Regression, for both binary and multi-class classification.

A TL based intrusion detection system for controller
area networks (CAN) that aims to improve the detection
rate and efficiency in terms of training and testing time
is presented in [21]. This model uses a pre-trained CNN-
LSTM hybrid model to extract the characteristics of CAN
traffic data and uses the labeled datasets of CAN intru-
sions from a smaller sample data to fine-tune the CNN
model in order to address the problem of lack of labeled
data in the automotive field. They use a simple normal-
ization method in the range of 0-255 to convert the CAN
dataset into images. The IDS demonstrates a detection
accuracy of 100% for fuzzy attacks and 99.9% for various
other attack types. According to the obtained results, the
proposed CNN-LSTM model outperforms CNN, LSTM,
and other proposed models in terms of accuracy, precision,
recall, and F1 score, approaching nearly 100% scores.

In [22], authors highlight the growing susceptibility of
interconnected vehicular networks and propose a transfer
learning solution based on pre-trained CNN architectures
for detecting abnormalities and unauthorized intrusions
in the CAN bus dataset. First, they convert selected
features into images because the pre-trained CNN model
is designed to accept 3D images. They use seven con-
volutional layers along with 3 max-pooling layers from
the pre-trained CNN model for knowledge transfer and
a dense layer for the classification. They use the car
hacking dataset as a source and the OTIDS dataset as
a target dataset. The proposed model achieved accuracy,
precision, recall and F1 scores exceeding 99% for binary
classification, showcasing the potential of transfer learning
in enhancing vehicular network security.

In light of the current approaches to performing in-
trusion detection focusing on network traffic data, [23]
introduces a new technique that employs Gramian Angu-
lar Field (GAF) [24], to map the temporal sequences to



images. The work is based on the CIC-IDS 2017 dataset,
and achieves better results compared to other ML models
such as KNN, LR and SVM. Similarly, in [25], the au-
thors convert ECG recordings into Gramian Angular Field
(GAF) images and then classify these images using VGG19
models. This conversion to the image space allows the use
of CNN architectures that have achieved high performance
on images across numerous computer vision tasks.

III. Proposed Attack Detection Framework
In this section, we present our transfer learning based

framework for detecting position and speed falsification
attacks using the VGG16 model. A GAF based transfor-
mation is used to convert BSM data into images while
preserving its temporal dependencies. We use the VGG16
model, a type of neural network trained on millions of im-
ages with 1000 classes, to enhance the detection accuracy
of attacks in VANET.

Fig. 1 shows the architecture of the proposed framework
for detecting position and speed falsification attacks. We
consider 8 different attack types (4 position falsification
and 4 speed falsification attacks), as shown in Table I,
which are defined in the VeRemiExt dataset [3].

TABLE I: Description of Attack Types
Sr Attack Types Description

1 Constant
Position

Position coordinates (X, Y) are fixed throughout the simulation
from the start till the end of the trip for a vehicle

2 Constant
Position Offset A fixed offset (X, Y) is added to the actual position (X, Y) of the vehicle.

3 Random
Position

Position coordinates (X, Y) are random at every time step.
Random values are limited within the simulation area.

4 Random
Position Offset A random offset is added to the actual position (X, Y) of the vehicle

5 Constant
Speed Speed coordinates (VX, VY) are fixed throughout the simulation

6 Constant
Speed Offset A fixed offset (X, Y) is added to the actual speed (VX, VY) of the vehicle.

7 Random
Speed

Speed coordinates (VX, VY) are random at every time step.
Random values are limited within the simulation area.

8 Random
Speed Offset A random offset is added to the actual speed (VX, VY) of the vehicle.

The preprocessing module performs feature selection
and feature extraction on the initial data to create the final
dataset consisting of 18 features plus a label (having one
of 9 possible values). Next, the image conversion module
converts the preprocessed data to images using our image
decoding algorithm B2img, which is shown in Algorithm 1.
The images generated by the image conversion module are
separated into the training and test sets, and the training
data is used to train the VGG16 based transfer learning
model. Finally, the test dataset is used to evaluate the
performance of the proposed model.

A. Preprocessing Block
The VeReMi Extension dataset consists of individual

JSON files containing BSM logs received by each vehicle,
as well as ground truth files containing unaltered data
with the true position and speed of each vehicle. For

Fig. 1: Proposed IDS Framework

each sender, the ith BSM from the sender, received at
time ti, contains important information about its current
position Pi = (pi,x, pi,y, pi,z), speed Vi = (vi,x, vi,y, vi,z),
acceleration, heading etc. The BSM data from the indi-
vidual JSON files were combined and processed to remove
duplicates and add labels. An initial feature selection step
was then performed to remove non-contributing features,
such as file names, z-coordinates of position, speed etc.
(which are always set to 0), and noise. After this prelim-
inary feature selection, the dataset contained 12 features,
plus the label. Models based on these 12 features from
individual BSMs did not meet performance expectations,
particularly for constant and random speed offset attacks.
So, we explored 6 new features that combine information
from 2 consecutive BSMs from the same sender to pro-
vide additional insight into the vehicle’s behavior. These
features were first reported in our previous work [12] and
summarized in Table II. After including the 6 new features,
the total number of features we have used for classification
is: m = 12 + 6 = 18.

TABLE II: Additional Features
Feature Name Formula Explanation

DiffPosX ∆Px,i = |Px,i − Px,i−1| Absolute difference of x-coordinates of position of 2 BSMs

DiffPosY ∆Py,i = |Py,i − Py,i−1| Absolute difference of y-coordinates of position of 2 BSMs

DiffSpdX ∆Vx,i = |Vx,i − Vx,i−1| Absolute difference of x-coordinates of speed of 2 BSMs

DiffSpdY ∆Vy,i = |Vy,i − Vy,i−1| Absolute difference of y-coordinates of speed of 2 BSMs

DistCbsm d =
√

(xi+1 − xi)2 + (yi+1 − yi)2 Distance traveled by a sender between two consecutive BSMs

DiffRcvTime ∆ti = |ti − ti−1| Difference in receive time between two consecutive BSMs



B. Image Conversion Module
The generation of images that can preserve the temporal

dependencies among data elements is one of the critical
aspects of the proposed method. The image conversion
module converts the data segments that have gone through
pre-processing into images by using Gramian Angular
Fields (GAF) techniques [24], which encodes time series
data into a series of images that can capture the underlying
temporal relationships to reveal potential anomalies or
patterns. This allows the structured BSM data to be used
with deep learning models for image classification, such as
VGG16, ResNet, Inception.

Algorithm 1: Converting BSM Data into Images (B2img)
Require: Structured data {X1, X2, . . . , Xn} with m fea-

tures
Ensure: Image representation of the structured data

1: Initialize: Gramian matrix G of size m × m
2: Compute Gramian Matrix:

Gij = cos−1
(

⟨Xi, Xj⟩
∥Xi∥ · ∥Xj∥

)
, 1 ≤ i, j ≤ m

where ⟨Xi, Xj⟩ is the dot product of features Xi

and Xj , and ∥Xi∥ is the Euclidean norm of Xi

3: Normalize Gramian Matrix:

Hij = Gij√∑m
k=1 G2

ik

∑m
k=1 G2

kj

, 1 ≤ i, j ≤ m

4: Create Image from Normalized Gramian Ma-
trix:

Image = convert_to_image(H)

A sequence of m BSMs are needed to generate a single
channel of a m × m RGB image, where m is the number
of features in the dataset (we have used m = 18); and
3 such images are combined to create the final RGB
image. Therefore, the total number of BSMs required for
a complete RGB image is 3m If the total number of
BSMs (nv) from a vehicle v is not a multiple of 3m,
then the last nv mod 3m BSMs are discarded so that
the generated images represent complete data sequences.
This is done to ensure consistency, as partial images
may introduce inaccuracies and impact the performance
of the proposed approach during processing. For image
conversion, the BSMs are first divided into groups of m
consecutive BSMs from the same sender. Algorithm 1
shows the steps required for processing each group of m
BSMs and combining them to create a single image of
size m × m. We note that the prediction time depends on
the number of BSMs needed to generate an image, which
in turn depends on the number of features (m). So, one
important objective is to reduce m as much as possible
(while still maintaining adequate performance), so that
prediction times remain within acceptable limits. In this
paper, we focus on scenarios where detected misbehavior is

reported to a central authority for further processing, and
does not require immediate physical/kinematic actions.

In Step 1, the time series data in each BSM is first
normalized. Next, in Step 2, the Gramian matrix G is
calculated and the values are normalized in Step 3, using
the equations given in [24] to generate the normalized
Gramian matrix H. Finally, in Step 4, the m × m image is
created by mapping the values of the normalized Gramian
matrix to pixel intensities. Three consecutive normalized
m × m matrices from the same sender HR, HG, HB are
then combined to create a single RGB image. The next
three matrices are combined to form the next image and
so on. This process continues until all Gramian matrices
for a sender have been included as part of an image. The
generated images can be used as a visual representation
of the structured BSM data for further analysis and
classification in our proposed approach.

C. Offline Model Training
Fig. 2 shows the structure of our VGG16 based offline

training module. The model training starts with convo-
lutional ReLU based non-linear activation layers. These
layers are divided into 5 different blocks, each containing
multiple convolutional layers. The weights of these layers
are frozen and each block has a max-pooling layer at the
end to help mitigate the risk of overfitting. The sizes of
filters in the convolutional base layers are augmented, from
64 in the initial block to 512 in the last block, to help the
network learn more complicated features at each stage by
maintaining the spatial resolution of the image.

Fig. 2: Layers wise architecture of VGG16 model

The convolutional layers in VGG16 are followed by 3
fully connected (FC) layers, which are trained on VeReMi
extension dataset with 9 classes. These FC layers aim
to extract non-linear combinations and to learn complex
relationships between features. The first FC layer (FC1)
consists of 4096 neurons and ReLu activation function
and receives its input from the last max-pooling layer
of the fifth convolutional block in the VGG16 model.



The second FC layer (FC2) receives the output of FC1
layer and applies dense combination with 4096 neurons
under the ReLu activation function. Both FC1 and FC2
layers extract high level features, perform dimensionality
reduction and combine non-linear features to classify the
objects more accurately [26]. The last fully connected layer
(FC3) has as many neurons as the number of classes in
the dataset. It uses the softmax activation function to
output class probabilities for 9 classes (8 attack types plus
legitimate BSMs) that we have considered.

IV. Performance Evaluation
We have used the VeremiExt dataset [3] to train and

test our proposed model. The VeReMi extension dataset
includes 19 different attack types, including 8 different
position and speed falsification attacks, which are the
primary focus of this paper. The attackers’ saturation is
kept at 30% as compared to legitimate vehicles to avoid
class imbalance issues, which can lead to overfitting in
most classification tasks. The total size of the dataset is
11.92 GB encoded in JSON file format. We evaluate the
performance of our proposed framework using well-known
metrics [19] for classification as given below:

Accuracy = TP + TN
TP + TN + FP + FN (1)

Precision = TP
TP + FP (2)

Recall = TP
TP + FN (3)

F1 Score = 2 × Precision × Recall
Precision + Recall (4)

The F1 score is the harmonic mean of precision and
recall, and is a good metric for overall performance of a
model, particularly for an unbalanced dataset. For eval-
uation of the proposed model, we partition the vehicles
so that there is no overlap among vehicles in the training
and test sets. This ensures that all vehicles sending BSMs
in the test set will be completely new to the models.
The models will not encounter any BSMs with the same
senderID or senderPseudo fields as those used for training.
This is important because in the VeremiExt dataset, all
BSMs from an “attacker” vehicle are considered malicious.
This means that if there is overlap between vehicles in the
training and test sets, it can lead to overfitting, where the
model simply learns the senderIDs of vehicles from the
BSMs that are labelled as malicious.

A. Detection of Position Falsification Attacks
In this section, we discuss the results of our proposed

IDS for position falsification attacks. Table III shows the
comparative performance of the proposed approach in
terms of key metrics such as accuracy, precision, recall,
and F1 score, against existing approaches for various posi-
tion falsification attacks. It can be seen that the proposed

approach has the overall best performance, consistently
achieving scores of 95% or higher across all metrics for all
4 attack types. It achieves the best overall performance
for 3 of the 4 attacks and is very close to the highest
score for the fourth (random position offset) attack. The
work in [27], uses classical machine learning algorithms,
and has lower performance compared to the other three.
Finally, we note that the proposed approach is able to
achieve high performance, even when the test data does
not contain any vehicle overlap with the training data;
while the other approaches do not ensure this, leading to
possible overfitting and skewing of test scores.

TABLE III: Comparison of position falsification attacks

Attack Types

Metrics Approaches
Train-Test

Vehicle
Overlap

Constant
Position

Constant
Position
Offset

Random
Position

Random
Position
Offset

Accuracy

Proposed No 0.999 0.981 0.999 0.967
Paper1 [3] Yes 0.995 0.961 0.999 0.988
Paper2 [27] Yes 0.645 0.698 0.625 0.706
Paper3 [15] Yes 0.992 0.988 0.998 0.996

Percision

Proposed No 0.998 0.998 0.999 0.979
Paper1 [3] Yes 0.998 0.998 0.998 0.998
Paper2 [27] Yes 0.62 0.62 0.55 0.61
Paper3 [15] Yes 0.938 0.927 0.974 0.967

Recall

Proposed No 0.998 0.945 0.997 0.974
Paper1 [3] Yes 0.987 0.873 0.999 0.961
Paper2 [27] Yes 0.650 0.690 0.610 0.710
Paper3 [15] Yes 0.913 0.853 1.000 0.967

F1 Score

Proposed No 0.995 0.959 0.999 0.952
Paper1 [3] Yes 0.992 0.931 0.999 0.979
Paper2 [27] Yes 0.630 0.650 0.650 0.580
Paper3 [15] Yes 0.926 0.889 0.987 0.967

B. Detection of Speed Falsification Attacks
While position falsification attacks have been discussed

extensively in the literature, there has been relatively
limited work on speed falsification attacks. Table IV shows
the comparison of accuracy, precision, recall, and F1 score
between the proposed and other approaches for various
speed falsification attacks. Our proposed approach per-
forms very well, with scores at or near the best scores for
all attacks, except constant speed offset attack. For this
attack, Paper3 [15] has the best performance, while the
proposed approach is next in terms of overall performance
as indicated by the F1 scores. The performance of the
approach in Paper1 [3] decreases considerably compared
to position falsification attacks and Paper2 [27], which
uses classical machine learning algorithms, again has the
lowest performance for speed falsification attacks. As men-
tioned earlier, unlike the other approaches, the proposed
approach ensures disjoint vehicle sets for training and
testing.



TABLE IV: Comparison of speed falsification attacks

Attack Types

Metrics Approaches
Train-Test

Vehicle
Overlap

Constant
Speed

Constant
Speed
Offset

Random
Speed

Random
Speed
Offset

Accuracy

Proposed No 0.999 0.856 0.982 0.999
Paper1 [3] Yes 0.944 0.816 0.981 0.893
Paper2 [27] Yes 0.547 0.627 0.606 0.640
Paper3 [15] Yes 0.996 0.997 0.998 0.999

Percision

Proposed No 0.999 0.988 0.991 0.991
Paper1 [3] Yes 0.997 0.996 0.998 0.997
Paper2 [27] Yes 0.590 0.590 0.650 0.570
Paper3 [15] Yes 0.980 0.967 0.962 0.987

Recall

Proposed No 0.995 0.528 0.995 0.852
Paper1 [3] Yes 0.819 0.397 0.939 0.650
Paper2 [27] Yes 0.560 0.620 0.620 0.630
Paper3 [15] Yes 0.953 0.987 1.000 1.000

F1 Score

Proposed No 0.997 0.754 0.976 0.998
Paper1 [3] Yes 0.899 0.568 0.968 0.787
Paper2 [27] Yes 0.590 0.570 0.620 0.640
Paper3 [15] Yes 0.966 0.978 0.980 0.993

V. Conclusion
In this paper, we present a TL-based IDS capable of de-

tecting different variants of position and speed falsification
attacks. We employ the GAF technique to convert tempo-
ral sequences of BSM data into a series of RGB images.
This method enables the utilization of publicly available
pre-trained models, such as VGG16 for attack detection in
the connected vehicles field. To evaluate the performance
of our proposed framework, we utilize VeReMiExt, a state
of the art publicly available dataset. The proposed model
demonstrates consistent superior performance compared
to existing approaches for most attack types. The perfor-
mance for constant speed offset attacks is lower compared
to [15], but better than the other 2 techniques. We note
that for all these attacks, the results for our proposed
approach uses disjoint vehicle sets for training and testing,
while this is not the case for the other approaches. In
future work, we plan to extend our framework to detect
additional attacks in connected vehicles, including traffic
congestion, Sybil, and data replay attacks.
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