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Abstract—Road accidents involving pedestrians remain a lead-
ing cause of mortality worldwide. As autonomous driving technol-
ogy advances to address this issue, Deep Reinforcement Learning
(DRL) has emerged as a promising approach for teaching
vehicles to navigate safely, particularly in avoiding pedestrians.
This paper presents a DRL algorithm for pedestrian avoidance
in autonomous four-wheeled vehicles, simulated using Webots
and Deepbots framework. This study employs stochastic and
deterministic algorithms to train the vehicle in specific simulated
scenarios. The study also aims to enhance pedestrian avoidance
capabilities, advance autonomous vehicle safety, and address a
challenge in fully autonomous vehicles capable of drivers’ and
pedestrians’ safety. The study also aims to provide a fundamental
approach for further improvement on safer autonomous driving
DRL algorithms in Webots simulators in the future.

Index Terms—Deep Reinforcement Learning, Webots, Pedes-
trian Avoidance, Simulation

I. INTRODUCTION

Road mortality emerges as a hugely familiar health uneasi-
ness, contributing substantially to mortality rates worldwide.
According to the 2019, Approximately 1.19 million yearly
fatalities, 30% of the deaths are between the ages of 5 and
29 years. Moreover, An analysis of the fatality distribution
across various road user categories reveals a concerning
pattern: two- and three-wheeled vehicle users (cyclists and
motorcyclists) accounted for the highest proportion at 30% of
total fatalities, occupants of four-wheeled vehicles accounted
for the proportion 25% of total fatalities, and pedestrians, a
particularly vulnerable group, comprising 21% of the overall
mortality rate [1]. With regard to the statistics, road accidents
must emphasize the development of road safety measures.
Substantial improvements in vehicle safety technologies have
innovated to upgrade road security for vehicle drivers and
pedestrians.

With safety technological improvements in modern vehi-
cles, these technologies raise performance through advanced
mobility control and accident avoidance algorithms. Currently,
The advent of the AI era has shaken up autonomous driving
algorithms. This evolution highlights tremendous progress
toward fully autonomous vehicles, performing promising im-
provements and safety that may encounter adverse driving
environments [2].

*This work is funded by the Royal Thai Scholarship.

DRL algorithm uses a trial-and-error approach to optimize
the agent in numerous environments, such as autonomous
driving [3]. It allows modern vehicles to learn and improve
dodging navigation by sensor data, which enables immediate
sensibility, decision-making, and control to evade hurdles. The
robustness and flexibility of DRL are idealized for real-world
implementation, cruising as an advanced algorithm in au-
tonomous driving systems to safer maneuvers in sophisticated
atmospheres.

This study is inspired by the DRL algorithms on pedestrian
avoidance to escape pedestrian accidents, especially in the
occluded area. Many DRL works apply this approach, includ-
ing pedestrian avoidance [4] and UAV obstacle avoidance [5].
Moreover, upgrading Advanced Driving Assitance Systems to
boost autonomous driving safety [6]. DRL is an approach
to upgrade the vehicles’ mobility and safety to escape dif-
ficult circumstances. Also, this study employs Webots, an
open-source robotics simulator. It simulates rat behavior [7],
models indoor robotic waste bins [8], replicates real-world
scenarios analyzing agent’s path planning [9], and creates
complex driving environments for automotive research [10].
With the implementation above, Webots was utilized as a
simulation platform for this study due to its versatility and
robust capabilities.

From the aforementioned inspirations, This study employs
pedestrian avoidance simulation with a four-wheeled car con-
taining sensors using the Webots simulator. It implements
DRL in stochastic and deterministic models to train the agent
in pedestrian avoidance and safely reach the destination. In-
deed, this study encourages the DRL algorithm for pedestrian
avoidance, improving the safety-based autonomous driving
simulation and the development of simulated autonomous
vehicles.

II. BACKGROUND

DRL builds on the principles of the Markov Decision
Process, defined by states, actions, transition probabilities,
rewards, and a discount factor. It creates decision-making
scenarios through trial-and-error actions in specified envi-
ronments. It allows the agent to learn policies appropriately
and select the best action in the environment to achieve the
goal. The DRL approach proceeds in both stochastic and



Fig. 1. Neural Network architecture implemented in this study.

deterministic models by exploiting deep neural networks to
empower reinforcement learning for optimal policy.

Fig.[1] illustrates the neural network architecture imple-
mented in this study comprises a sophisticated multi-layer
structure designed for autonomous navigation tasks. The input
layer processes 14 distinct parameters representing critical
environmental and vehicular state information. This feeds into
three densely connected hidden layers, containing 128 neurons
in each layer, providing sufficient computational capacity for
complex pattern recognition. To enhance the generalization
capabilities of the model and prevent overfitting, dropout reg-
ularization with a 20% rate is systematically applied between
successive hidden layers. Network optimization employs the
Adam algorithm, facilitating stable convergence through adap-
tive learning rate adjustments for individual parameters. The
architecture culminates in an output layer of four neurons,
corresponding to the action space probabilities for autonomous
navigation decision-making.

A. Deep Q - Learning

Deep Q-Learning (DQN) is a sophisticated model-free
deterministic reinforcement learning technique that merges
original q-learning with a deep neural network; in principle,
this method leverages the Bellman equation as an iterative
update mechanism to estimate the action-value function. The
key of DQN is the optimal q-value calculation, which is proved
from a combination of episodic rewards, estimated action
values generated by the neural network, and a discount factor
[11].

Q∗(s, a) = Es′∼E [r + γmax
a′

Q∗(s′, a′)|s, a] (1)

Where Q∗(s, a) represents the optimal action-value func-
tion, r is the accumulated rewards, γ defines the discount
factor balancing the episodic reward and future reward, which
is between 0 and 1. Q∗(s′, a′) is the estimated action-value
function from next state and action.

Iterative minimizing the loss function Li(θi) can improve
the DQN algorithm by continually updating the neural network
weights inside the model. This procedure optimizes the Q-
value approximates to refine the model’s accuracy and action-
value function estimate performance [11].

Li(θi) = Es,a∼p(·)[(yi −Q(s, a; θi))
2] (2)

Where yi illustrates the optimal action-value function,
Q(s, a; θi) and θi are the estimated action-value function and
the network hyperparameters at iteration i, respectively.

Regarding the DQN approach, This study employs a DQN
with a target network to imitate the action network with the
mean-squared error loss function, shown in Algorithm 1. The
policy of the agent is chosen by the maximum of the action
value from the output layer.

Algorithm 1 Deep Q-Learning with Target Network and
experience replay. [11]

1: Initialize Replay Memory D to Capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target-value function Q̂ with weights θ− = θ
4: for episode = 1, T do
5: Initialize sequence s1 = x1 and preprocessed sequence

ϕ1 = ϕ(s1)
6: for t = 1, T do
7: With probability ϵ select a random action at

otherwise select at = argmaxaQ(ϕ(st), a; θ)
8: Execute action at and observe reward rt and

observation xt+1

9: Set st+1 = st, at, xt+1 and preprocessed ϕt+1 =
ϕ(st+1)

10: Store transition (ϕt, a, r, ϕt+1) in D
11: Sample random minibatch of transitions (ϕt, a, r,

ϕt+1) from D

12: yj =

{
rj (terminate)
rj + γmaxa′ Q̂(ϕj+1, a

′; θ−) (otherwise)
13: Perform a gradient descent step on (yi−

Q(s, a;ϕ))2 w.r.t. the network parameters θ
14: reset Q̂ = Q
15: end for
16: end for

B. Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) trains in a policy-

based way that observes the sampling actions regarding its
latest stochastic policy. The figure of action selection ran-
domness relies on initial conditions and training methods.
During training, the policy regularly trains less randomly due
to an iterative update approach, which enables the leverage of
rewards. However, local minima can emerge from the updated
policy [12]. The advantage function is calculated from (3)

Ât = Et[r(s, a) + γυπθold
(s′)− υπθold

(s)] (3)

Where r(s, a) is the episode’s reward, γ defines the discount
factor, υπθold

(s′) and υπθold
(s) are the value function from the

value’s network in the next state and current state.
The surrogate function is calculated from (4), consisting

of the clipping function stabilizing the policy updates. The
function’s key is the clipping parameter (ϵ), which excessively
prevents policy updates that could destabilize policy training.

g(ϵ, Ât) = Êt[min (rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]
(4)



Where ϵ = 0.2, rt(θ) is the proportional of the policy
function from the policy’s network in the current and older
value. and Ât is the advantage function at the timestep t

To update the policy, the PPO objective function must be
maximized to proceed with stochastic gradient ascent [12].

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min (rt(θ)Ât), g(ϵ, Ât))

(5)

Algorithm 2 Proximal Policy Optimization - Clip [12]
1: Input: initial policy parameters θ0 initial value function

parameters ϕ0

2: for episode = 1, T do
3: Collect set of trajectories Dk = {τi} by running policy

πk = π(θk)
4: Compute rewards R̂t

5: for PPO update Iteration = 1, N do
6: Compute advantage estimates, Ât

7: Update the policy by (4)
8: Fit value function by (5)
9: end for

10: end for

The regression on mean-squared error is applied to fit the
value function [12].

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vϕ(st)− R̂t)
2 (6)

Where Vϕ(st) is the predicted value of the value network
in the current state and R̂t is the sum of discounted rewards.

From Algorithm 2, PPO trains in an on-policy way that
observes the sampling actions regarding its latest stochastic
policy. The figure of action selection randomness relies on
initial conditions and training methods. Over the training, the
policy regularly trains less randomly due to an iterative update
approach, which enables the leverage of rewards. As a result,
actions can either continue to be sampled stochastically or be
selected deterministically by taking the action with maximum
probability from the output layer.

III. IMPLEMENTATION

A. Scenario

The experiment utilizes Webots, an advanced 3D simulator,
to model a complex scenario, Fig. 2, with a 4-wheeled agent
navigating a dual-lane road (0.6m/lane) around a static obsta-
cle and an occluded pedestrian. The agent moves at 0.6 m/s,
starting 1.3m from the obstacle, with the pedestrian crossing
at 0.16 m/s on an adjacent lane 1.8m away - the pedestrian
starts walking if the agent can drive to 1.5 m; this simulation
aims to find the agent’s optimal policy for agent navigation to
evade the obstacle and pedestrian and safely reach the goal,
which is 2.5m far from the robot.

Fig. 2. Pedestrian avoidance scenario in Webots simulator.

Fig. 3. Robot-Supervisor scheme on Deepbots [13]

B. 4-Wheeled Robot Settings

The robot is configured within the simulated environment
using node structures. Its chassis is formed as a square solid
node measuring 26cm x 18cm x 5cm in dimension, while
the wheels are modeled as cylinders with a 5cm radius and
3cm thickness. The front wheel is shaped as two single hinge-
joint nodes to enable driving and steering. In contrast, the rear
wheels employ single hinge joints solely for propulsion.

The robot contains an array of front-mounted distance
sensors and a camera for obstacle and pedestrian detection.
An internal GPS tracks the robot’s position, and rotational
encoders on the motors to measure wheel speed and steering
angle. The data from sensors allows us to learn how to navigate
by DRL in occluded pedestrian situations.

C. Deepbots

Deepbots, a python open-source framework integrated with
Webots, enables deep reinforcement learning in robotics. It
duplicates the famous OpenAI-Gym interface for user-friendly
simulation [13]. This study applies the Deepbots framework
to launch DQN and PPO algorithms for robot control and
goal-oriented navigation using the robot-supervisor scheme



demonstrated in Fig. 3, spectating their benefits in complex
scenarios within a simulation environment.

a) States: This study employs a 14-parameter state rep-
resentation for the agent, including normalized coordinates,
sensor readings, steering angle, and distances to environmental
elements. It incorporates lane detection status, obstacle and
pedestrian detection states, and the robot’s roll angle.

b) Actions: The agent’s movement defines four discrete
action spaces to manipulate the agent at the iteration in the
episode. Action 0 accelerates at 0.15 m/s speed, while Action
1 decelerates at 0.075 m/s speed. Action 2 steers the agent
to the left at 5 degrees, and Action 3 steers it to the right at
5 degrees. These action spaces simplify the decision-making
action for the agent’s movements.

c) Rewards: The rewards per episode are computed
by movement progress and goal achievement and deducted
from the misdirection and collision penalty. In contrast, The
movement progress rewards are calculated from the agent’s
goal-distance change between timesteps and punished by the
agent’s immobility. Similarly, a 20-point bonus applies when
accomplishing the goal. This reward structure improves the
agent’s movement and eliminates inappropriate policy.

rewardsprog =

{
(dr,tart+1 − dr,tart) ∗ 0.15 ∆d > 0

−0.05 ∆d = 0
(7)

Where dr,tart+1
and dr,tart are the distance between the

robot and target in timestep t+1 and t accordingly.
An obstacle collision produces a penalty of 7 points, while

a pedestrian collision produces a more severe deduction of 8
points from the rewards. The out-of-lane penalty is calculated
from the minimum distance between the agent and the target.

penaltyoutlane = min [abs(2.733− dr,targett+1
∗ 10, 2)] (8)

Where dr,tart+1
is the distance between the robot and target

in timestep t+1.
d) Hyperparameters: In this study, the simulation hyper-

parameters of DQN and PPO are presented in Table I.

IV. USAGE NOTES

The example simulation code is available at:
https://github.com/DragonKorn1/dqn ppo avoid webots.
This study uses computing hardware, including an Intel
Core i9-9820X processor with 128 GB of RAM. The system
employs an NVIDIA Quadro K620 GPU with CUDA version
11.8 and CUDNN version 8.9.7 for GPU computation.

V. EVALUATION AND COMPARISON

This paper comprehensively evaluates the rewards obtained
and the robot’s maneuverability capabilities through an exten-
sive experimental period spanning 30,000 episodes.

TABLE I
SIMULATION HYPERPARAMETERS [14]

Hyperparameters DQN PPO
Discount factor (γ) 0.99 0.99
Starting epsilon (εstart) 1 1
Decaying epsilon (εdecay) 0.99 0.99
End epsilon (εend) 0.01 0.01
Batch size 256 256
Learning rate 5E-05 5E-05
Weight decay (Adam) 1E-04 1E-04
Target update interval 100 -
Clipped parameter (ϵ) - 0.2
Critic update iteration - 7

Fig. 4. 500th Moving average accumulated rewards of DQN (red line) vs.
PPO (blue line)

A. Rewards

Fig. 4 demonstrates the 500th moving average accumulated
rewards between DQN and PPO; the DQN shows high volatil-
ity with frequent drops, some reaching near-zero rewards.
This oscillating trend demonstrates deficient learning stability
with poor rewards. In contrast, PPO demonstrates more stable
learning, rapidly improving around the 10, 000th episode and
then slightly increasing the rewards, implying solid learning
performance and maintaining a consistently higher reward.

From the rewards, the DQN algorithm, in this paper, consists
of a policy network with a target network and performs unsta-
ble learning while struggling with the policy’s network updates
due to overestimation. Unlike the PPO, which comprises the
policy and value networks, it undergoes better rewards. This
algorithm stabilizes the policy’s update by minimizing the
value’s function from the value network. Furthermore, the
clipping function is crucial to handling the overestimation from
the policy’s updates. As a result, This function improves the
overall algorithm’s performance, reflecting higher accumulated
rewards and the agent’s mobility in the scenario.

B. Agent’s Maneuverability

Fig. 5 portrays the navigation behavior by DQN and PPO
algorithms, revealing significant differences in their effective-



ness for autonomous agent mobility due to policy overes-
timation during training iterations. The DQN-trained agent
performs with limited capability, hesitant forward movement,
and inefficient navigation. This result explicitly indicates its
struggle to accomplish the scenario. In contrast, the PPO-
trained agent demonstrates superior performance by maintain-
ing full speed while executing precise rightward adjustments to
simultaneously avoid static obstacles and moving pedestrians
while efficiently progressing toward the goal. The stable learn-
ing with overestimation handling by the clipping function and
actor-critic neural networks enables the agent to receive better
results in training. Thus, These results demonstrate that PPO
provides more reliable and efficient autonomous navigation
capabilities than DQN’s more limited approach.

Fig. 5. Robot navigation paths of DQN (top left) and PPO (bottom left)
and performance metrics at 30000th episode.

C. Comparing of DRL Across Simulators and Tasks

Following Table II, various simulators can use the DRL
simulation applications. This study, concentrating on pedes-
trian avoidance using Webots with Deepbots as a DRL frame-
work, provides valuable insights compared to other simulation
environments. Analysis of related research reveals different
performance patterns across platforms and algorithms.

A study using Gazebo with ROS [15] for view planning
tasks offers high-fidelity physics simulation and sensor model-
ing, though with higher computational resources than Webots.
Research utilizing Pygame for UAV object avoidance [16]
highlighted how environmental complexity impacts algorithm
performance. The training iterations may train faster because
of the simpler physics; however, they may not comprehen-
sively capture real-world dynamics.

OpenAI Gym implementations for mobile robot path-
finding [17] demonstrated notably different performance char-
acteristics. This reversal of the typical performance pattern
underscores how task-specific requirements can fundamentally
affect algorithm suitability. The Duckietown simulator [18],
which is focused on autonomous driving scenarios, also re-
flects its specialized reward structure for driving tasks.

Our implementation using Webots simulates complex navi-
gation tasks within a realistic range. The Webots environment
balances simulation fidelity and computational efficiency, mak-
ing it particularly suitable for autonomous vehicle research.
Each simulator demonstrates distinct advantages: Gazebo ex-
cels in sensor simulation, Pygame offers rapid prototyping ca-
pabilities, OpenAI Gym provides standardized environments,
and Duckietown specializes in autonomous driving scenarios.

TABLE II
SIMULATION COMPARISON WITH OTHER RESEARCH.

Research Simulator DRL Framework Rewards
DQN PPO

[15] Gazebo + ROS Stable Baselines3 0.5 0.8
[16] Pygame Stable Baselines3 -5.666 31.117
[17] OpenAI Gym Stable Baselines3 100% 56.1%
[18] Duckietowns Stable Baselines3 ∼5,700 ∼2,000

This study Webots Deepbots 12.64 29.61

This comparative analysis reveals that both simulator char-
acteristics and task specifications heavily influence algorithm
performance. While PPO generally outperforms DQN across
platforms for navigation tasks, exceptions exist based on spe-
cific environmental constraints and objectives. These findings
emphasize the importance of carefully matching simulation
platforms and algorithms to specific research requirements in
autonomous driving applications.

VI. CONCLUSION AND FUTURE WORK

Following the simulation result, As the DQN algorithm, the
robot struggles to learn the scenario, appearing as the reward,
and it slightly navigates towards the goals but fails to avoid
pedestrians and reach the goal. This algorithm demonstrates
lower performance for this pedestrian avoidance scenario.
In contrast, the PPO algorithm performs more efficiently,
archiving to reach the goal safely. The PPO’s rewards reflect
efficient, stable learning over the episode. However, the PPO
takes over 10000 episodes to stabilize the learning.

However, although the PPO’s algorithm completes the task,
the accumulated reward does not reach the maximum possible
reward after the 30000th iteration. The extended training
duration required for the policy global minima convergence
indicates potential inefficiencies in the learning process that
could be addressed through algorithmic refinements. The sub-
optimal accumulated reward suggests that the agent may adopt
satisfactory but not optimal navigation strategies, possibly due
to premature convergence to local maxima in the policy space.

In term of the simulation transferring to the real-world
scenario perspective, although this platform furnishes precious
insights for algorithm development and testing, it is impor-
tant to acknowledge that entire validation through real-world
testing remains essential for ensuring reliable autonomous
vehicle performance. This validation necessitates further re-
search to evaluate and validate the reliability of simulation-
based optimizations to practical applications. This assures that
algorithms developed in the controller environment maintain
their performance when deployed in real-world scenarios.



Furthermore, training for stable performance in a real-world
scenario requires significant iterations and presents practical
challenges for deployment and actual adaptation. This limita-
tion becomes important when considering the desire to retrain
or adapt the system for different environmental conditions or
vehicle configurations.

In the future, other techniques will be applied, such as
Prioritized Experience Replay (PER), which adjusts priori-
tized experiences’ probabilities to perform more frequently
in agent training, and Curriculum Learning, which makes
an agent learn from simple to complex traffic scenarios in
a similar environment, for example, the agent learns from
driving on the straight road to safely maneuvering in a crowded
complex intersection or roundabout. Likewise, more advanced
algorithms will also be introduced, for example, soft actor-
critic (SAC), Deep Deterministic Policy Gradient (DDPG),
and Double Deep Q-Learning (DDQN) to improve the agent’s
learning performance and computational time.

Future research also explores more complex and diverse
scenarios within the Webots simulation environment to address
these limitations and advance the capabilities of autonomous
navigation systems, including implementing multi-agent in-
teractions with increased vehicle and pedestrian density and
introducing challenging environmental conditions such as
nighttime operations and varied terrain characteristics. More-
over, near real-world simulation will emerge for real-world
benchmarking. This approach would make it much easier to
imitate the environment and vehicle configuration to retrain in
real-world scenarios, which reduces the implementation time
and cost to train the agent.
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