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Abstract—Drone technology has become crucial in security
and national defense, with anti-drone systems playing a vital role
in government and military operations. A key component of these
systems is drone detection using infrared camera imagery. While
deep learning represents the state-of-the-art approach for object
detection, it requires extensive datasets for practical
implementation. Given the limited availability of infrared image
datasets, leveraging larger RGB image datasets through domain
adaptation could potentially enhance detection capabilities. This
study investigates the feasibility of RGB-Infrared domain
adaptation for drone detection, implementing CPU-based
processing across various YOLO models (YOLOvVSn/x,
YOLOV10n/x, and YOLOv11n/x). We trained twelve models using
either RGB or infrared datasets and evaluated their performance
both with and without domain adaptation. Without domain
adaptation, the models achieved excellent mean average precision
(mAP50) values exceeding 95% at speeds of 0.18 — 10.65 frames
per second (FPS). With domain adaptation, RGB-trained models
detecting drones in infrared images achieved mAPS50 values of 42.6
—52.4% at 0.18 — 9.08 FPS, while infrared-trained models failed
to detect drones in RGB images. Our findings demonstrate that (1)
YOLO models excel at drone detection given sufficient data, (2)
features learned from RGB images can be adapted for infrared
image detection but not vice versa, and (3) domain adaptation with
CPU-based processing is feasible for drone detection applications.

Keywords—drone detection, domain adaptation, infrared
image, RGB image, YOLO, CPU-based processing

I. INTRODUCTION

Drone technology has revolutionized numerous industries,
particularly in aerial photography, surveillance, and military
applications. The increasing prevalence of drones in modern
warfare has created significant challenges for security and
national defense. Anti-drone systems, designed to detect and
intercept unmanned aerial vehicles in restricted or no-fly zones,
have become crucial for government and military organizations.
While these systems traditionally rely on human operators to
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evaluate potential threats, there is growing demand for
automated detection capabilities.

Research in anti-drone technology has explored various
detection methods [1-5], including radar-based systems [3] and
object detection algorithms [7-11]. Deep learning models
integrated with camera systems have shown particular promise
[23], with significant advances in infrared-based drone detection
[7-11]. However, effective infrared detection models require
comprehensive datasets capturing multiple angles and scenarios.
For instance, recent experiments implementing YOLO models
in 5G systems utilized three infrared camera setups for effective
drone detection [16-18]. The limited availability of infrared
datasets has led researchers to investigate the potential of
incorporating RGB image data [12-15].

This study investigates the feasibility of domain adaptation
[6] for drone detection across imaging modalities, specifically
examining whether models trained on RGB images can
effectively detect drones in infrared images, and vice versa. We
evaluate both detection accuracy and processing speed to assess
practical deployment potential with real-world cameras. Our
testing implementation focuses on CPU-based processing,
following Bhattacharya's demonstration of its suitability for
portable, cost-effective  hardware solutions [7]. The
investigation encompasses six YOLO architectures in both
Nano (YOLOv5n, YOLOv10n, YOLOv11n) and Extra Large
(YOLOvV5x, YOLOv10x, YOLOvllx) configurations, to
evaluate detection performance and processing speed trade-offs
across established and recent model variants [19].

The remainder of this paper is organized as follows: Section
II provides relevant background material, Section III details our
methodology, Section IV presents results and discussion, and
Section V concludes the study.
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Fig. 1. Categorization of anti-drone technologies including their detection and
classification methods with respect to functionalities and ranges [1].

II. BACKGROUND

A. Anti-Drone Technology

Anti-drone  systems, also known as counter-UAS
(Unmanned Aircraft Systems), comprise technologies and
strategies designed to detect, track, identify, and neutralize
unauthorized or potentially threatening drones. The proliferation
of drone technology and its diverse applications has heightened
the importance of these systems. Anti-drone systems integrate
multiple detection technologies, including radar, radio
frequency (RF) monitoring, optical and acoustic sensors, and
deep learning algorithms.

These systems operate through three primary components:

e Detection: Detection of drone presence within a
designated area, utilizing technologies such as radar
systems, radio frequency (RF) monitoring, and camera-
based imaging systems with advanced image processing
algorithms.

e Identification: Analysis of drone characteristics
including flight patterns, physical attributes, and signal
signatures to assess potential threats. This phase
increasingly employs machine learning technologies,
particularly Convolutional Neural Networks (CNNs), to
achieve higher accuracies.

¢ Neutralization: Implementation of countermeasures
against identified threats, typically through signal
jamming or other neutralization methods.

Park et al. [1] provide a comprehensive survey on anti-drone
systems. Fig. 1 categorizes these technologies based on
detection methods, functional capabilities, and operational
ranges [1]. Despite significant technological advances, anti-
drone systems continue to face challenges, particularly in
distinguishing drones from other aerial objects like birds across
diverse environmental conditions. These persistent challenges
necessitate ongoing research to enhance system effectiveness in
real-world deployments.

B. Drone Detection through Infrared Images

Infrared imaging captures electromagnetic radiation with
wavelengths between visible light and microwaves, typically
ranging from 750 nanometers to 1 millimeter [20]. This
technology detects thermal radiation emitted by objects above
absolute zero (-273.15°C), converting it into visible

representations. Commercial infrared cameras, such as Sony
Alpha 6000 [16], FLIR [17], and VarioCAM [18], offer frame
rates between 9 and 60 FPS for thermal imaging applications.

Infrared imaging can be used for thermal analysis and low-
light operation. Its ability to detect temperature variations
enables to use infrared images as thermal mapping across
surfaces and objects, while its independence from visible light
allows effective operation in dark environments. These
capabilities have proven particularly valuable for drone
detection. where recent research [7-11] has been conducted
using deep learning-based object detection models [23-24] for
drone localization and classification in infrared images, as
illustrated in Fig. 2.

C. YOLO (You Only Look Once) and Model Scaling

YOLO (You Only Look Once) [21, 22] is a popular family
of deep learning models suitable for real-time object detection
while maintaining high accuracy. The YOLO architecture
reframes object detection as a regression problem, enabling
simultaneous classification and localization through a single
forward pass [22]. These models generate tensor outputs
containing predicted bounding box information (locations, sizes,
confidences) and conditional class probabilities of detected
objects. Successive YOLO iterations have demonstrated
improved performance on complex scenes while maintaining
flexibility for various detection tasks. The YOLO framework
has undergone continuous development, achieving better
performance while allowing customization for specialized
detection requirements. Model scaling [19] enhances detection
capability through systematic adjustment of architectural
dimensions. Typically, model scaling includes adjustments in
depth and width where

e Depth scaling: Increases the network's layers, enabling
the capture of more complex features through additional
convolutional layers [26] in the neural network.

e Width scaling: Expands the number of units per layer,
typically through additional convolutional filters,
allowing broader feature detection at each layer.

D. Domain Adaptation

While classical machine learning relies on the assumption of
identical distributions between training and testing datasets,
practical applications frequently encounter different data
distributions. These differences arise from various factors,
including limited data availability demanding diverse sources,
or temporal evolution of data characteristics. Domain adaptation
[6] provides a framework for addressing these distribution
mismatches, enabling models to effectively generalize across
different domains. This study explores domain adaptation
between RGB and infrared imaging modalities, leveraging their
shared feature characteristics for object detection tasks.
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Fig. 2. An example of a drone detected in an infrared image using a YOLO
model.
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Fig. 3. Representative images from RGB (left five columns) and infrared
(right five columns) drone detection datasets.

III. RESEARCH METHODOLOGY

This study investigates the feasibility of domain adaptation
for drone detection in infrared images using RGB image
datasets. We evaluated twelve YOLO models, conducting
model training and model testing both with and without domain
adaptation. Detection performance was systematically analyzed
to assess the viability of domain adaptation in drone detection
applications. The following sections detail our methodology,
including dataset preparation, data partitioning, model selection,
and performance metrics.

A. Dataset Preparation

This study employed two drone detection datasets from the
Roboflow: an infrared dataset comprising 7,060 labeled images
[29] and an RGB dataset containing 15,852 labeled images [30].
Both datasets include bounding box annotations for drone
localization. Representative samples from both datasets are
shown in Fig. 3.

B. Data Partitioning

Each dataset was partitioned into three subsets for training,
validation, and testing. Image augmentation techniques [31]
were applied on the training set to enhance dataset size and
diversity. Data partitioning and augmentation were already
performed and stored in the Roboflow, though the RGB dataset
lacked a designated testing set. Therefore, we divided the RGB
validation set (1,983 images) into a validation set (1,045 images)
and a testing set (938 images). Table I summarizes the
distribution of RGB and infrared images, along with the number
of drone instances across all datasets. While a total of 6,255
images in the infrared training dataset is indicated in the
Roboflow, our downloaded dataset contained 6,253 images.

C. Model Selection

We selected YOLO models for this study based on their
demonstrated high accuracy and computational efficiency [22],
crucial factors for real-time drone detection. The investigation
encompassed six YOLO variants across three architectures:
YOLOvS, YOLOv10, and YOLOvll. YOLOv10 and
YOLOv1l were chosen for their recent technological
advancements, while YOLOv5 was included due to its
widespread adoption in drone detection research. For each
architecture, we employed both Nano (YOLOv5n, YOLOv10n,
YOLOvlln) and Extra Large (YOLOv5x, YOLOv10x,
YOLOv11x) scaling configurations, balancing the trade-off
between processing speed and detection accuracy. A total of
twelve distinct models were developed by training each of the
six YOLO architectures with both RGB and infrared datasets.

D. Performance Metrics

Model performance was evaluated using two key metrics:
mAP50 (Mean Average Precision at 50% IoU threshold) [28]
and frame rate. Intersection over Union (IoU) quantifies
detection accuracy by measuring the overlap between predicted
and ground truth bounding boxes [25]. mAP50, a standard
metric for object detection evaluation [27], represents the mean
precision averaged across all classes at 50% IoU threshold.
Frame rate, calculated as the inverse of per-image processing
time, indicates the model's computational efficiency.

IV. RESULTS AND DISCUSSION

A. Model Training

As described in Section III, twelve models were developed,
with six YOLO variants (YOLOv5n/x, YOLOvI10n/x,
YOLOv11n/x) trained independently on RGB and infrared
datasets. All models demonstrated excellent performance during
both training and validation phases, achieving mAP50 scores
above 90% with convergence within 100 epochs. Fig. 4 and 5
illustrate the training results of YOLOv1 In models using RGB
and infrared drone images, respectively.

TABLE L NUMBER OF DRONE IMAGES AND INSTANCES FOR TRAINING,
VALIDATION AND TESTING DATASETS
Number of Drone Images Number of Instances
Dataset
RGB Infrared RGB Infrared
Training 13,869 6,253 13,966 10,251
Validation 1,045 555 1,050 481
Testing 938 252 928 221

TABLE II. TESTING RESULTS WITHOUT DOMAIN ADAPTATION
Domain Number of Frame per
Train | Test Model mAP50 parameters second
o) (FPS)
RGB | RGB | YOLOv5n 0.95 1.76 3.90
IR IR YOLOv5n 0.99 1.76 3.84
RGB | RGB | YOLOvS5x 0.97 86.17 0.19
IR IR YOLOvSx 0.99 86.17 0.18
RGB | RGB | YOLOv10n 0.97 2.69 9.25
IR IR YOLOv10n 0.99 2.69 10.15
RGB | RGB | YOLOv10x 0.97 31.59 0.68
IR IR | YOLOv10x 0.99 31.59 0.69
RGB | RGB | YOLOvlIn 0.97 2.58 10.65
IR IR YOLOvlIn 0.99 2.58 4.74
RGB | RGB | YOLOvIIx 0.96 56.83 0.19
IR IR | YOLOvllx 0.99 56.83 0.84
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Fig. 5. Training results of the YOLOv11n model using Infrared drone images

B. Model Testing without Domain Adaptation

During the first part of the testing phase, all twelve models
were evaluated on a CPU using domain-matched testing
datasets. As shown in Table II, the models achieved consistently
high mAP50 scores exceeding 95%. However, CPU-based
processing yielded relatively low frame rates ranging from 0.18
to 10.65 frames per second (FPS). This processing speed
limitation could potentially constrain system performance in
scenarios where cameras operate above 11 FPS, despite the
models' high detection accuracy.

As evidenced in Table II, all YOLO versions achieved
comparable mAP50 values. Among the tested models,

YOLOv1 1n emerges as the most promising candidate for real-
time applications, offering the highest frame rate and lowest
computational complexity (fewer parameters). These
characteristics make it particularly suitable for CPU-based
deployments in resource-constrained environments where
energy efficiency is critical.

C. Model Testing with Domain Adaptation

The second part of the testing phase evaluated cross-domain
performance on a CPU, where models trained on one imaging
modality were tested on the other. Models trained on RGB
datasets were tested on infrared images, and vice versa. As
shown in Table III, RGB-trained models achieved mAP50



scores between 42.6% and 52.4% when detecting drones in
infrared images. Fig. 6 illustrates drone detection results on
infrared test images using YOLOv1 1n models: domain-matched
training (mAP50: 99%) versus cross-domain RGB training
(mAPS50: 47.1%). Given that mAP50 scores around 50% are
generally considered acceptable in some object detection tasks,
the performance of RGB-trained models on infrared images
indicates promising cross-domain capabilities. Nevertheless, the
CPU-based processing yielded relatively low frame rates
ranging from 0.18 to 9.08 frames per second (FPS). This
processing speed could potentially limiting system performance
in scenarios where cameras operate above 9 FPS, despite the
models' promising detection performances.

Conversely, infrared-trained models demonstrated poor
generalization to RGB images, yielding mAP50 scores below
0.12% Fig. 7 illustrates drone detection results on RGB test
images using YOLOv1ln models: domain-matched training
(mAP50: 97%) versus cross-domain infrared training (mAP50:
0.113%). These results reveal the asymmetric nature of domain
adaptation between RGB and infrared modalities in drone
detection. This asymmetry likely stems from the relative feature
complexity between modalities; RGB images contain richer
feature sets that enable some degree of cross-domain detection,
while the limited features in infrared images appear insufficient
for RGB detection based on the method used in this work.

These findings highlight the potential advantage of
leveraging readily available RGB images for infrared drone
detection through domain adaptation. Therefore, domain
adaptation with CPU-based processing is feasible for drone
detection applications. However, further research is needed to
enhance both detection performance and processing speed,
particularly for applications requiring higher frame rates.

V. CONCLUSION

This study investigated the feasibility of domain adaptation
for drone detection in infrared images using CPU-based YOLO
models. We evaluated six YOLO architectures in both Nano
(YOLOvV5n, YOLOv1On, YOLOvlln) and Extra Large
(YOLOv5x, YOLOv10x, YOLOvV11x) configurations, where
each variant was trained with both RGB and infrared datasets to
create twelve distinct models. These models were assessed both
with and without domain adaptation. Without domain
adaptation, all models achieved excellent performance with
mAPS50 scores exceeding 95%. With domain adaptation, RGB-
trained models demonstrated promising results on infrared
images, achieving mAP50 scores between 42.6% and 52.4%.
However, infrared-trained models performed poorly on RGB
images, yielding mAP50 scores below 0.12%. This asymmetric
performance suggests that the limited features in infrared images
are insufficient for RGB detection using our methodology.
While the detection accuracies from the domain adaptation
showed promise, the corresponding CPU-based processing
achieved relatively low frame rates (0.18-9.08 FPS), potentially
limiting applications requiring higher speeds. Our findings
demonstrate the feasibility of using RGB-trained models for
infrared drone detection through domain adaptation, though
further research is needed to enhance both detection
performance and processing speed for practical deployment.

TABLE IIL. TESTING RESULTS WITH DOMAIN ADAPTATION
Domain Number of Frame per
Train | Test Model mAPS0 parameters second
™M) (FPS)
RGB IR YOLOvSn 0.484 1.76 3.88
IR RGB | YOLOv5n | 0.00042 1.76 4.07
RGB IR YOLOv5x 0.508 86.17 0.18
IR RGB | YOLOv5x | 0.00042 86.17 0.18
RGB IR | YOLOv1On 0.426 2.69 9.08
IR RGB | YOLOvIOn | 0.00042 2.69 10.91
RGB IR | YOLOv10x 0.482 31.59 0.67
IR RGB | YOLOv10x | 0.000624 31.59 0.66
RGB IR | YOLOvlIn 0.471 2.58 5.74
IR RGB | YOLOvlln | 0.00113 2.58 12.09
RGB IR | YOLOvllx 0.524 56.82 0.19
IR RGB | YOLOvIIx | 0.00042 56.82 0.95

Fig. 6. Drone detection results using YOLOv1 1n on infrared images: model
trained with RGB dataset (left four columns) versus model trained with infrared
dataset (right four columns).

Fig. 7. Drone detection results using YOLOv11ln on RGB images: model
trained with RGB dataset (left four columns) versus model trained with infrared
dataset (right four columns).
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