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Abstract—Drone technology has become crucial in security 

and national defense, with anti-drone systems playing a vital role 

in government and military operations. A key component of these 

systems is drone detection using infrared camera imagery. While 

deep learning represents the state-of-the-art approach for object 

detection, it requires extensive datasets for practical 

implementation. Given the limited availability of infrared image 

datasets, leveraging larger RGB image datasets through domain 

adaptation could potentially enhance detection capabilities. This 

study investigates the feasibility of RGB-Infrared domain 

adaptation for drone detection, implementing CPU-based 

processing across various YOLO models (YOLOv5n/x, 

YOLOv10n/x, and YOLOv11n/x). We trained twelve models using 

either RGB or infrared datasets and evaluated their performance 

both with and without domain adaptation. Without domain 

adaptation, the models achieved excellent mean average precision 

(mAP50) values exceeding 95% at speeds of 0.18 – 10.65 frames 

per second (FPS). With domain adaptation, RGB-trained models 

detecting drones in infrared images achieved mAP50 values of 42.6 

– 52.4% at 0.18 – 9.08 FPS, while infrared-trained models failed 

to detect drones in RGB images. Our findings demonstrate that (1) 

YOLO models excel at drone detection given sufficient data, (2) 

features learned from RGB images can be adapted for infrared 

image detection but not vice versa, and (3) domain adaptation with 

CPU-based processing is feasible for drone detection applications. 

Keywords—drone detection, domain adaptation, infrared 

image, RGB image, YOLO, CPU-based processing  

I. INTRODUCTION 

Drone technology has revolutionized numerous industries, 
particularly in aerial photography, surveillance, and military 
applications. The increasing prevalence of drones in modern 
warfare has created significant challenges for security and 
national defense. Anti-drone systems, designed to detect and 
intercept unmanned aerial vehicles in restricted or no-fly zones, 
have become crucial for government and military organizations. 
While these systems traditionally rely on human operators to 

evaluate potential threats, there is growing demand for 
automated detection capabilities. 

Research in anti-drone technology has explored various 
detection methods [1-5], including radar-based systems [3] and 
object detection algorithms [7-11]. Deep learning models 
integrated with camera systems have shown particular promise 
[23], with significant advances in infrared-based drone detection 
[7-11]. However, effective infrared detection models require 
comprehensive datasets capturing multiple angles and scenarios. 
For instance, recent experiments implementing YOLO models 
in 5G systems utilized three infrared camera setups for effective 
drone detection [16-18]. The limited availability of infrared 
datasets has led researchers to investigate the potential of 
incorporating RGB image data [12-15]. 

This study investigates the feasibility of domain adaptation 
[6] for drone detection across imaging modalities, specifically 
examining whether models trained on RGB images can 
effectively detect drones in infrared images, and vice versa. We 
evaluate both detection accuracy and processing speed to assess 
practical deployment potential with real-world cameras. Our 
testing implementation focuses on CPU-based processing, 
following Bhattacharya's demonstration of its suitability for 
portable, cost-effective hardware solutions [7]. The 
investigation encompasses six YOLO architectures in both 
Nano (YOLOv5n, YOLOv10n, YOLOv11n) and Extra Large 
(YOLOv5x, YOLOv10x, YOLOv11x) configurations, to 
evaluate detection performance and processing speed trade-offs 
across established and recent model variants [19].  

The remainder of this paper is organized as follows: Section 
II provides relevant background material, Section III details our 
methodology, Section IV presents results and discussion, and 
Section V concludes the study. 



 

Fig. 1. Categorization of anti-drone technologies including their detection and 
classification methods with respect to functionalities and ranges [1]. 

II. BACKGROUND 

A. Anti-Drone Technology 

Anti-drone systems, also known as counter-UAS 
(Unmanned Aircraft Systems), comprise technologies and 
strategies designed to detect, track, identify, and neutralize 
unauthorized or potentially threatening drones. The proliferation 
of drone technology and its diverse applications has heightened 
the importance of these systems. Anti-drone systems integrate 
multiple detection technologies, including radar, radio 
frequency (RF) monitoring, optical and acoustic sensors, and 
deep learning algorithms. 

These systems operate through three primary components: 

• Detection: Detection of drone presence within a 
designated area, utilizing technologies such as radar 
systems, radio frequency (RF) monitoring, and camera-
based imaging systems with advanced image processing 
algorithms. 

• Identification: Analysis of drone characteristics 
including flight patterns, physical attributes, and signal 
signatures to assess potential threats. This phase 
increasingly employs machine learning technologies, 
particularly Convolutional Neural Networks (CNNs), to 
achieve higher accuracies. 

• Neutralization: Implementation of countermeasures 
against identified threats, typically through signal 
jamming or other neutralization methods. 

Park et al. [1] provide a comprehensive survey on anti-drone 
systems. Fig. 1 categorizes these technologies based on 
detection methods, functional capabilities, and operational 
ranges [1]. Despite significant technological advances, anti-
drone systems continue to face challenges, particularly in 
distinguishing drones from other aerial objects like birds across 
diverse environmental conditions. These persistent challenges 
necessitate ongoing research to enhance system effectiveness in 
real-world deployments.  

B. Drone Detection through Infrared Images 

Infrared imaging captures electromagnetic radiation with 
wavelengths between visible light and microwaves, typically 
ranging from 750 nanometers to 1 millimeter [20]. This 
technology detects thermal radiation emitted by objects above 
absolute zero (-273.15°C), converting it into visible 

representations. Commercial infrared cameras, such as Sony 
Alpha 6000 [16], FLIR [17], and VarioCAM [18], offer frame 
rates between 9 and 60 FPS for thermal imaging applications.  

Infrared imaging can be used for thermal analysis and low-
light operation. Its ability to detect temperature variations 
enables to use infrared images as thermal mapping across 
surfaces and objects, while its independence from visible light 
allows effective operation in dark environments. These 
capabilities have proven particularly valuable for drone 
detection. where recent research [7-11] has been conducted 
using deep learning-based object detection models [23-24] for 
drone localization and classification in infrared images, as 
illustrated in Fig. 2. 

C. YOLO (You Only Look Once) and Model Scaling 

YOLO (You Only Look Once) [21, 22] is a popular family 
of deep learning models suitable for real-time object detection 
while maintaining high accuracy. The YOLO architecture 
reframes object detection as a regression problem, enabling 
simultaneous classification and localization through a single 
forward pass [22]. These models generate tensor outputs 
containing predicted bounding box information (locations, sizes, 
confidences) and conditional class probabilities of detected 
objects. Successive YOLO iterations have demonstrated 
improved performance on complex scenes while maintaining 
flexibility for various detection tasks. The YOLO framework 
has undergone continuous development, achieving better 
performance while allowing customization for specialized 
detection requirements. Model scaling [19] enhances detection 
capability through systematic adjustment of architectural 
dimensions. Typically, model scaling includes adjustments in 
depth and width where 

• Depth scaling: Increases the network's layers, enabling 
the capture of more complex features through additional 
convolutional layers [26] in the neural network. 

• Width scaling: Expands the number of units per layer, 
typically through additional convolutional filters, 
allowing broader feature detection at each layer. 

D. Domain Adaptation 

While classical machine learning relies on the assumption of 
identical distributions between training and testing datasets, 
practical applications frequently encounter different data 
distributions. These differences arise from various factors, 
including limited data availability demanding diverse sources, 
or temporal evolution of data characteristics. Domain adaptation 
[6] provides a framework for addressing these distribution 
mismatches, enabling models to effectively generalize across 
different domains. This study explores domain adaptation 
between RGB and infrared imaging modalities, leveraging their 
shared feature characteristics for object detection tasks.   

 

Fig. 2. An example of a drone detected in an infrared image using a YOLO 
model. 

 



 

Fig. 3. Representative images from RGB (left five columns) and infrared 
(right five columns) drone detection datasets. 

III. RESEARCH METHODOLOGY 

This study investigates the feasibility of domain adaptation 
for drone detection in infrared images using RGB image 
datasets. We evaluated twelve YOLO models, conducting 
model training and model testing both with and without domain 
adaptation. Detection performance was systematically analyzed 
to assess the viability of domain adaptation in drone detection 
applications. The following sections detail our methodology, 
including dataset preparation, data partitioning, model selection, 
and performance metrics.  

A. Dataset Preparation 

This study employed two drone detection datasets from the 
Roboflow: an infrared dataset comprising 7,060 labeled images 
[29] and an RGB dataset containing 15,852 labeled images [30]. 
Both datasets include bounding box annotations for drone 
localization. Representative samples from both datasets are 
shown in Fig. 3. 

B. Data Partitioning 

Each dataset was partitioned into three subsets for training, 
validation, and testing. Image augmentation techniques [31] 
were applied on the training set to enhance dataset size and 
diversity. Data partitioning and augmentation were already 
performed and stored in the Roboflow, though the RGB dataset 
lacked a designated testing set. Therefore, we divided the RGB 
validation set (1,983 images) into a validation set (1,045 images) 
and a testing set (938 images). Table I summarizes the 
distribution of RGB and infrared images, along with the number 
of drone instances across all datasets. While a total of 6,255 
images in the infrared training dataset is indicated in the 
Roboflow, our downloaded dataset contained 6,253 images. 

 

TABLE I.  NUMBER OF DRONE IMAGES AND INSTANCES FOR TRAINING, 
VALIDATION AND TESTING DATASETS 

Dataset 
Number of Drone Images Number of Instances 

RGB Infrared RGB Infrared 

Training 13,869 6,253 13,966 10,251 

Validation 1,045 555 1,050 481 

Testing 938 252 928 221 

 

C. Model Selection 

We selected YOLO models for this study based on their 
demonstrated high accuracy and computational efficiency [22], 
crucial factors for real-time drone detection. The investigation 
encompassed six YOLO variants across three architectures: 
YOLOv5, YOLOv10, and YOLOv11. YOLOv10 and 
YOLOv11 were chosen for their recent technological 
advancements, while YOLOv5 was included due to its 
widespread adoption in drone detection research. For each 
architecture, we employed both Nano (YOLOv5n, YOLOv10n, 
YOLOv11n) and Extra Large (YOLOv5x, YOLOv10x, 
YOLOv11x) scaling configurations, balancing the trade-off 
between processing speed and detection accuracy. A total of 
twelve distinct models were developed by training each of the 
six YOLO architectures with both RGB and infrared datasets.  

D. Performance Metrics 

Model performance was evaluated using two key metrics: 
mAP50 (Mean Average Precision at 50% IoU threshold) [28] 
and frame rate. Intersection over Union (IoU) quantifies 
detection accuracy by measuring the overlap between predicted 
and ground truth bounding boxes [25]. mAP50, a standard 
metric for object detection evaluation [27], represents the mean 
precision averaged across all classes at 50% IoU threshold. 
Frame rate, calculated as the inverse of per-image processing 
time, indicates the model's computational efficiency. 

IV. RESULTS AND DISCUSSION 

A. Model Training  

As described in Section III, twelve models were developed, 
with six YOLO variants (YOLOv5n/x, YOLOv10n/x, 
YOLOv11n/x) trained independently on RGB and infrared 
datasets. All models demonstrated excellent performance during 
both training and validation phases, achieving mAP50 scores 
above 90% with convergence within 100 epochs. Fig. 4 and 5 
illustrate the training results of YOLOv11n models using RGB 
and infrared drone images, respectively. 

TABLE II.  TESTING RESULTS WITHOUT DOMAIN ADAPTATION 

Domain 

Model mAP50 

Number of 

parameters 

(M) 

Frame per 

second 

(FPS) 
Train Test 

RGB RGB YOLOv5n 0.95 1.76 3.90 

IR IR YOLOv5n 0.99 1.76 3.84 

RGB RGB YOLOv5x 0.97 86.17 0.19 

IR IR YOLOv5x 0.99 86.17 0.18 

RGB RGB YOLOv10n 0.97 2.69 9.25 

IR IR YOLOv10n 0.99 2.69 10.15 

RGB RGB YOLOv10x 0.97 31.59 0.68 

IR IR YOLOv10x 0.99 31.59 0.69 

RGB RGB YOLOv11n 0.97 2.58 10.65 

IR IR YOLOv11n 0.99 2.58 4.74 

RGB RGB YOLOv11x 0.96 56.83 0.19 

IR IR YOLOv11x 0.99 56.83 0.84 

 



 

Fig. 4. Training results of the YOLOv11n model using RGB drone images 

Fig. 5. Training results of the YOLOv11n model using Infrared drone images 

B. Model Testing without Domain Adaptation 

During the first part of the testing phase, all twelve models 
were evaluated on a CPU using domain-matched testing 
datasets. As shown in Table II, the models achieved consistently 
high mAP50 scores exceeding 95%. However, CPU-based 
processing yielded relatively low frame rates ranging from 0.18 
to 10.65 frames per second (FPS). This processing speed 
limitation could potentially constrain system performance in 
scenarios where cameras operate above 11 FPS, despite the 
models' high detection accuracy. 

As evidenced in Table II, all YOLO versions achieved 
comparable mAP50 values. Among the tested models, 

YOLOv11n emerges as the most promising candidate for real-
time applications, offering the highest frame rate and lowest 
computational complexity (fewer parameters). These 
characteristics make it particularly suitable for CPU-based 
deployments in resource-constrained environments where 
energy efficiency is critical. 

C. Model Testing with Domain Adaptation 

The second part of the testing phase evaluated cross-domain 
performance on a CPU, where models trained on one imaging 
modality were tested on the other. Models trained on RGB 
datasets were tested on infrared images, and vice versa. As 
shown in Table III, RGB-trained models achieved mAP50 

 



scores between 42.6% and 52.4% when detecting drones in 
infrared images. Fig. 6 illustrates drone detection results on 
infrared test images using YOLOv11n models: domain-matched 
training (mAP50: 99%) versus cross-domain RGB training 
(mAP50: 47.1%). Given that mAP50 scores around 50% are 
generally considered acceptable in some object detection tasks, 
the performance of RGB-trained models on infrared images 
indicates promising cross-domain capabilities. Nevertheless, the 
CPU-based processing yielded relatively low frame rates 
ranging from 0.18 to 9.08 frames per second (FPS). This 
processing speed could potentially limiting system performance 
in scenarios where cameras operate above 9 FPS, despite the 
models' promising detection performances. 

Conversely, infrared-trained models demonstrated poor 
generalization to RGB images, yielding mAP50 scores below 
0.12% Fig. 7 illustrates drone detection results on RGB test 
images using YOLOv11n models: domain-matched training 
(mAP50: 97%) versus cross-domain infrared training (mAP50: 
0.113%). These results reveal the asymmetric nature of domain 
adaptation between RGB and infrared modalities in drone 
detection. This asymmetry likely stems from the relative feature 
complexity between modalities; RGB images contain richer 
feature sets that enable some degree of cross-domain detection, 
while the limited features in infrared images appear insufficient 
for RGB detection based on the method used in this work. 

These findings highlight the potential advantage of 
leveraging readily available RGB images for infrared drone 
detection through domain adaptation. Therefore, domain 
adaptation with CPU-based processing is feasible for drone 
detection applications. However, further research is needed to 
enhance both detection performance and processing speed, 
particularly for applications requiring higher frame rates. 

V. CONCLUSION 

This study investigated the feasibility of domain adaptation 
for drone detection in infrared images using CPU-based YOLO 
models. We evaluated six YOLO architectures in both Nano 
(YOLOv5n, YOLOv10n, YOLOv11n) and Extra Large 
(YOLOv5x, YOLOv10x, YOLOv11x) configurations, where 
each variant was trained with both RGB and infrared datasets to 
create twelve distinct models. These models were assessed both 
with and without domain adaptation. Without domain 
adaptation, all models achieved excellent performance with 
mAP50 scores exceeding 95%. With domain adaptation, RGB-
trained models demonstrated promising results on infrared 
images, achieving mAP50 scores between 42.6% and 52.4%. 
However, infrared-trained models performed poorly on RGB 
images, yielding mAP50 scores below 0.12%. This asymmetric 
performance suggests that the limited features in infrared images 
are insufficient for RGB detection using our methodology. 
While the detection accuracies from the domain adaptation 
showed promise, the corresponding CPU-based processing 
achieved relatively low frame rates (0.18-9.08 FPS), potentially 
limiting applications requiring higher speeds. Our findings 
demonstrate the feasibility of using RGB-trained models for 
infrared drone detection through domain adaptation, though 
further research is needed to enhance both detection 
performance and processing speed for practical deployment. 

 

TABLE III.  TESTING RESULTS WITH DOMAIN ADAPTATION 

Domain 

Model mAP50 

Number of 

parameters 

(M) 

Frame per 

second 

(FPS) 
Train Test 

RGB IR YOLOv5n 0.484 1.76 3.88 

IR RGB YOLOv5n 0.00042 1.76 4.07 

RGB IR YOLOv5x 0.508 86.17 0.18 

IR RGB YOLOv5x 0.00042 86.17 0.18 

RGB IR YOLOv10n 0.426 2.69 9.08 

IR RGB YOLOv10n 0.00042 2.69 10.91 

RGB IR YOLOv10x 0.482 31.59 0.67 

IR RGB YOLOv10x 0.000624 31.59 0.66 

RGB IR YOLOv11n 0.471 2.58 5.74 

IR RGB YOLOv11n 0.00113 2.58 12.09 

RGB IR YOLOv11x 0.524 56.82 0.19 

IR RGB YOLOv11x 0.00042 56.82 0.95 

 

 

 

Fig. 6. Drone detection results using YOLOv11n on infrared images: model 
trained with RGB dataset (left four columns) versus model trained with infrared 
dataset (right four columns).  

 

 

Fig. 7. Drone detection results using YOLOv11n on RGB images: model 
trained with RGB dataset (left four columns) versus model trained with infrared 
dataset (right four columns). 
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