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Abstract—This  study  presents optimization and
lightweighting techniques to improve the performance of real-
time face detection models in resource-constrained
environments such as embedded systems. The selected model,
RetinaFace, based on the MobileNetV1 0.25 backbone, was
streamlined into SlimLite and RFBLite networks, and the
components and layers of the model were efficiently
restructured to effectively reduce model size and inference time.
These optimizations achieved a balanced trade-off between
performance and real-time processing capabilities in a resource-
constrained environment. The ONNX optimization further
improved the inference speed of the RetinaFace model by
approximately 37.7%, reducing the average inference time from
524.89 ms to 327.24 ms on an embedded platform (Raspberry Pi
4). In addition, resource efficiency was maximized by reducing
the input resolution to 320x240, resulting in an additional 67.5%
reduction in inference time to 106.16 ms while maintaining face
detection accuracy. This demonstrates that the model retains its
detection capabilities even at reduced input resolution, ensuring
reliable performance. Accuracy evaluations were performed
using the WIDER FACE dataset, highlighting the importance of
tailoring optimization strategies to achieve optimal performance
in constrained environments. This research is expected to
broaden the applicability of lightweight face detection models,
enabling potential integration in areas such as software-defined
vehicles (SDVs), multi-object tracking, gesture recognition, and
advanced driver assistance systems (ADAS).
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1. INTRODUCTION

Computer vision technology plays an important role in the
perception system of Autonomous Vehicles (AVs), focusing
on the recognition of the external environment. This includes
tasks such as detecting road signs, identifying pedestrians,
and predicting vehicle trajectories. However, interest in in-
vehicle perception technology has recently increased with the
emergence of the concept of Software-Defined Vehicles
(SDVs) [1], which integrate hardware and software to allow
flexible deployment of functionality and software-based
updates. In-vehicle perception technology can be used in a
variety of areas, including monitoring driver status, detecting
objects in the vehicle, and analyzing passenger behavior.
Driver monitoring systems are an important example of this
technology, as they are essential for detecting and responding
to potentially dangerous situations such as driver inattention
or drowsiness. This requires technology that can accurately
recognize faces in real time and accurately estimate
landmarks such as the eyes, nose, and mouth.

In the confined environment of a vehicle, achieving high-
speed processing and accuracy is essential to effectively
perform face detection and landmark estimation. However,
the space and power-constrained nature of the in-vehicle
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environment limits the feasibility of using high-performance
GPUs or large servers, necessitating lightweight and
optimized models capable of real-time processing on
compact embedded devices.

To meet these requirements, this research focuses on
optimizing real-time face detection performance while
maintaining accuracy in resource-constrained environments.
The RetinaFace model [2], known for its high accuracy in
face detection, was chosen as the basis for exploring
performance optimization and lightweighting techniques for
embedded vehicle applications. While the original
RetinaFace model uses MobileNetV1 0.25 [3] as a backbone
for partial lightweighting, further structural simplifications
and layer adjustments are needed to achieve reduced model
size and inference time without sacrificing detection accuracy.

The paper is organized as follows: Section II reviews
related work, Section III outlines the proposed lightweighting
and optimization methods, Section IV describes the
experimental setup and results, and Section V discusses the
conclusions and future research directions.

II. RELATED WORK

A. Face Detection

Face detection is the task of automatically identifying the
location of a face in an image or video frame, while landmark
estimation predicts the positions of key facial features on the
detected face. Recent advances in deep learning, particularly
Convolutional Neural Networks (CNN) [4] and other neural
network-based models, have achieved impressive results in
these tasks. A significant area of research has focused on
developing lightweight and optimized models, especially for
real-time performance in resource-constrained environments.

BlazeFace, introduced by Bazarevsky et al. (2019) [5], is
a lightweight face detection model developed by Google that
is specifically optimized for real-time processing on resource-
constrained devices such as mobile platforms. By using
Depthwise Separable Convolutions [6], BlazeFace reduces the
computational burden; however, its simplified structure may
degrade performance when detecting small faces or faces at
different angles in complex environments.

SCRFD (Sample and Computation Redistribution Face
Detector), introduced by Guo et al. (20-21) [7], improves face
detection performance by employing sample and computation
redistribution strategies to achieve high performance in
various environments. However, the complex structure of
SCRFD, which requires multiple optimization techniques, can
lead to increased computational cost, potentially limiting its
application in highly resource-constrained environments.

While current face detection models are designed for
lightweight, real-time processing, each has its own limitations.
To address these limitations, RetinaFace was developed by



combining multi-task learning [8] with Feature Pyramid
Network (FPN) [9] and Single Stage Headless (SSH) [10]
modules to achieve accurate detection of faces of different
sizes and angles. This configuration enables real-time
performance even in resource-constrained environments.

B. Landmark Estimation

Landmark estimation, which involves accurately predicting
the positions of key facial features (e.g., eyes, nose, mouth),
plays a critical role in applications such as face detection,
expression analysis, and emotion recognition. Various
methods have been proposed to improve the efficiency and
accuracy in this area.

Multi-Task Cascaded Convolutional Networks (MTCNN),
proposed by Zhang et al. (2016) [11], performs face detection
and landmark estimation simultaneously. MTCNN uses a
three-stage neural network (proposal network, refinement
network, output network), which progressively refines the
locations of the face and its landmarks. Although it offers high
accuracy and fast processing speed, MTCNN's large number
of parameters and high computational complexity can hinder
performance in resource-constrained environments.

3D Dense Face Alignment model proposed by Guo et al.
(2020) [12] addresses the limitations of 2D landmark
estimation by exploiting 3D facial information, which enables
accurate landmark positioning despite rotations or tilts.
However, incorporating 3D information adds computational
cost, making it less suitable for resource-constrained
environments such as embedded systems.

III. PROPOSED METHOD

To improve the real-time processing efficiency of the
RetinaFace model in resource-constrained environments, this
study presents three key approaches: (1) Modifying the
MobileNetV1 backbone to incorporate the SlimLite and
RFBLite networks, (2) Reconfiguring model layers and
components for greater efficiency, and (3) Applying advanced
lightweighting techniques, including ONNX conversion, to
maximize model efficiency. These methods aim to
significantly reduce model size and computational load while
maintaining detection accuracy, thereby facilitating real-time
performance on constrained hardware.

A. Modification of the MobileNetV1 Backbone

Current RetinaFace model integrates Feature Pyramid
Network (FPN) and Single Stage Headless (SSH) modules to
support multi-resolution feature maps. Building on the
lightweight design of MobileNetV1 with Depthwise
Separable Convolutions, we introduce two streamlined
network structures: SlimLite and RFBLite networks.

SlimLite Network

SlimLite is optimized for real-time processing in
constrained environments using MobileNetV1-based
lightweighting techniques. To simplify the model, the FPN
and SSH modules are removed and replaced by three
streamlined convolutional blocks:

e Conv-BN Activation Block (conv_bn): This block,
consisting of a 3x3 convolution, batch normalization
(BN) [13], and ReLU activation [14], stabilizes and
improves the initial feature extraction.

o Depthwise Convolution Block (conv_dw): Uses
Depthwise Separable Convolution, applying a 3x3
filter to each input channel independently, followed by
a 1x1 convolution for channel merging, increasing
speed and reducing computational load.

e Depthwise Separable 2D Convolution (depth_conv2d):
Efficient grouped convolutions optimize feature
information while maintaining a lightweight structure.

Unlike the original RetinaFace model, which combines
multi-resolution feature maps, the SlimLite Network relies on
a single-scale feature map for prediction. Sequential convl
through conv4 blocks extract basic features, while conv_dw
blocks from conv5 through convl1 generate deeper features
for a single-scale map. The conv12 block refines features for
bounding box regression, classification, and landmark
regression, with a multi-box configuration defining layers for
each task, enabling efficient prediction with minimal
resources. By eliminating complex feature combination
processes, SlimLite Network reduces model complexity,
increasing processing speed and resource efficiency. Fig. 1
illustrates this optimized structure, effectively demonstrating
the achievement of model lightweighting under constrained
settings.

RFBLite Network

RFBLite Network is designed to enhance the real-time
processing performance of the RetinaFace model in resource-
constrained environments. Like SlimLite Network, RFBLite
is optimized for efficient operation on limited hardware, but it
uniquely incorporates the Receptive Field Block (RFB)
module [15] to enable accurate face detection over a range of
sizes without complex multi-scale feature combinations. This
network consists of the following core components:

e Receptive Field Block (RFB) Module: Replacing the
SSH module, the RFB module contains three branches
that capture features with distinct receptive fields,
enabling effective face detection across multiple sizes
without multi-scale processing.

e Single module for multi-scale feature extraction: As a
single multi-scale feature extraction module, the
BasicRFB module captures features of different sizes
in parallel, streamlining the network, reducing
memory usage, and maximizing computational
efficiency. Each branch (branch0, branchl, branch2)
uses different filter sizes and dilation rates to optimize
feature extraction.

Structurally, RFBLite is similar to SlimLite in that the
initial convolution layers (convl to conv4) extract basic
features, while the blocks from conv5 to conv7 and the
BasicRFB module (conv8) focus on extracting intermediate
and high-level features, resulting in a single-scale feature map.
The final prediction layers (conv9 to conv14) refine features
for bounding box regression, classification, and landmark
regression, with a multi-box configuration for efficient task-
specific outputs. As shown in Fig. 2, this architecture provides
a lightweight model that maximizes real-time processing
performance in resource-constrained environments.

B. RetinaFace Base Model Modification

To further improve efficiency and real-time performance
in resource-constrained environments, the RetinaFace model
has been redesigned to focus on lightweighting key



components. The original RetinaFace model uses FPN and
SSH modules to combine multi-resolution feature maps for
face detection of different sizes. Specific lightweighting
strategies were applied to optimize these modules for
embedded system performance.

Lightweight FPN Module

To reduce the FPN module's computation cost and memory
consumption, the dimensions of the input and output channels
have been reduced. Specifically, the original input channels
were reduced from [64, 128, 256] to [32, 64, 128], and the
output channel was reduced from 64 to 32, thereby reducing
the computational requirements for each layer. This
optimization streamlined the input-output configurations for
both output layers (outputl, output2, output3) and merge
layers (mergel, merge2) to [32 — 32, 64 — 32, 128 — 32]
and [32 — 32], respectively.

SSH Module Simplification

Further reductions in computation cost and memory usage
have been achieved in the SSH module by reducing the
channel dimensions. The input channel size has been reduced
from 32 to 16, and the output channel size has been reduced
from 64 to 32, effectively reducing the computational load
while maintaining accuracy. These adjustments significantly
improve real-time  processing capability  without
compromising model performance.

Together, these lightweighting modifications increase the
efficiency of the FPN and SSH modules, enabling the
redesigned RetinaFace model to achieve robust real-time face
detection and analysis in highly resource-constrained

environments, highlighting the benefits of a streamlined,
lightweight network structure.

C. Advanced Optimization Techniques for Model Efficiency

To further improve model efficiency and maintain real-
time performance in resource-constrained environments,
ONNX conversion was applied. This conversion strategy
streamlines the model structure, reduces computational load
and memory consumption, and extends its applicability to a
variety of practical environments.

ONNX Conversion [16]

ONNX is an open standard that enhances model portability
and enables compatibility between different deep learning
frameworks and hardware platforms. In this study, the
RetinaFace model was converted to the ONNX format to
streamline the model structure, remove unnecessary
computations during inference, and thereby increase the
processing speed. This conversion significantly improves the
applicability and usability of the model in a variety of
practical environments.

IV. EXPERIMENTS

A. Dataset

Model performance was evaluated using the WIDER
FACE dataset [17], a large-scale dataset designed to reflect
different conditions in face detection tasks. The dataset
contains 32,203 images and 393,703 face bounding boxes,
and is characterized by high variability in face size, pose,
expression, occlusion, and illumination. It is divided into
three difficulty levels—Easy, Medium, and Hard—based on
Edge Box detection rates, which categorize samples from
clearly visible faces (Easy) to complex, occluded faces
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(Hard), allowing for a progressively stringent evaluation of
model performance.

The evaluation used 3,287 validation images from the
WIDER FACE dataset. Model performance was measured
using Average Precision (AP) at each difficulty level, a
metric that balances precision and recall, providing a critical
measure of the proposed lightweighting and optimization
strategies under varying conditions.

B. Model Parameters

To evaluate the effectiveness of the lightweighting
approaches described in Section III, the number of
parameters and the computational load (FLOPs) of each
model were analyzed. Compared to the base MobileNetV1
0.25 model, the modified MobileNetV1 0.25 model achieved
a reduction of approximately 73%, while the SlimLite and
RFBLite networks showed reductions of approximately 77%
and 58%, respectively. These results highlight the impact of
the lightweighting strategies in reducing model complexity
and resource consumption. Detailed figures are shown in
Table I.

C. Face Detection Accuracy

Face detection accuracy was evaluated using the WIDER
FACE validation dataset, with performance summarized in
Table II and Fig. 3. The base MobileNetV1 0.25 model
achieved the highest AP score of 0.811 on the Easy level, and
also performed well on the Medium and Hard levels, with
scores of 0.697 and 0.376, respectively.

SlimLite Network, optimized for reduced computational
load, had lower AP scores 0f0.749,0.611, and 0.291 for Easy,
Medium, and Hard levels, respectively, reflecting a trade-off
between computational efficiency and detection performance.
These results indicate that SlimLite Network maintains
reasonable detection accuracy while supporting real-time
processing in resource-constrained environments.

D. Real-Time Inference

Real-time inference was tested in two environments: a
standard PC with an Intel(R) Core(TM) i7-14700F CPU (2.10
GHz), 32GB RAM, and a 64-bit operating system, and a
Raspberry Pi 4 Model B with 4GB RAM. In the PC
environment, the models were tested in a CPU-only setting to
evaluate processing efficiency. The Raspberry Pi 4, which
represents a resource-constrained environment similar to

Easy

TABLE L PARAMETERS AND FLOPS OF DIFFERENT MODELS

Methods Parameters (K) FLOPs (M)
MobileNetV1 0.25 (base) 426.608 193.870
MobileNetV1 0.25 (modified) 115.216 68.606
RFBLite 136.54 81.18
SlimLite 110.58 49.09

TABLE II. PERFORMANCE COMPARISON OF DIFFERENT MODELS ON
THE WIDER FACE VALIDATION DATASET (AP SCORES)
Methods EASY Medium Hard
MobileNetV1 0.25 (base) 0.811 0.697 0.376
MobileNetV1 0.25 (modified) 0.769 0.658 0.331
RFBLite 0.793 0.677 0.337
SlimLite 0.749 0.611 0.291

Medium

automotive embedded systems, was chosen to evaluate the
models' ability to meet real-time requirements in a
constrained hardware setup. This setup is consistent with the
requirements of Software-Defined Vehicles (SDVs), and
highlights the need for efficient face detection models
optimized for real-time performance in resource-constrained
environments.

i7-14700F CPU Environment

In the 17-14700F CPU environment, the MobileNetV1 0.25
modified model demonstrated approximately 21.9% faster
inference performance than the MobileNetV1 0.25 base
model (Table III), with an average inference time of 22.69 ms
compared to 29.06 ms for the base model. Although
lightweighting effectively reduced parameters, the SlimLite
and RFBLite networks had slightly longer inference times of
28.35 ms and 24.39 ms, respectively, due to architectural
adjustments or unoptimized operations that affected
performance.

Raspberry Pi 4 Environment

The results of the real-time inference test on Raspberry Pi 4
are shown in Table IV. SlimLite Network achieved the fastest
performance with an average inference time of 2472.33 ms,
while the modified MobileNetV1 0.25 model took 26.9%
longer at 3137.07 ms. This suggests that the SlimLite Network
may be more suitable for environments with limited resources.

Hard
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Figure 3. Precision-Recall (PR) curves of different models on the WIDER FACE Validation Dataset for Easy, Medium, and Hard Levels



TABLE IIL

INFERENCE TIMES (MS) OF DIFFERENT MODELS ON 17-

14700F CPU ENVIRONMENT
Min Max Avg
Methods Time(ms) | Time(ms) | Time(ms)
bileNetV1 0.25 (base) 20.49 63.08 29.06
MobileNetV1 0.25 (modified) 18.02 40.83 22.68
RFBLite 20.69 37.69 24.39
SlimLite 26.76 49.24 28.36
TABLE IV. INFERENCE TIMES (MS) OF DIFFERENT MODELS ON
RASPBERRY P14 ENVIRONMENT
Min Max Avg
Methods Time(ms) | Time(ms) | Time(ms)
MobileNetV1 0.25 (base) 3366.90 4260.90 3876.98
MobileNetV1 0.25 (modified) 2346.38 3716.65 3137.07
RFBLite 2367.59 2939.28 2725.15
SlimLite 2299.42 2882.68 2472.33

In summary, while the MobileNetV1 0.25 (modified)
model achieved approximately 21.9% improvement in the i7-
14700F CPU environment, the SlimLite Network showed
approximately 36.2% faster inference time on Raspberry Pi 4.
These results suggest that each model performs optimally
depending on specific resource conditions and hardware
capabilities, highlighting the importance of selecting a model
tailored to application environments.

ONNX Real-Time Inference

Previous performance evaluations suggested that
additional optimization was needed to maintain real-time
processing performance for the proposed models under
various conditions. To address this need, Open Neural
Network Exchange (ONNX) optimization techniques were
applied to improve model inference speed and reduce latency.

Specifically, the ONNX optimization was validated in the
Raspberry Pi 4 environment, and the performance was further
evaluated at a resolution of 320 x 240, taking into account the

system memory and computational capacity (Table V and Fig.

5).
ONNX-optimized MobileNetV1 0.25 modified model
achieved an average inference time of 327.24 ms, which
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represents a significant performance improvement over the
pre-optimization state. The ONNX-optimized MobileNetV 1
0.25 base and RFBLite models achieved average inference
times of 524.89 ms and 432.05 ms, respectively. Notably,
reducing the resolution of the MobileNetV1 0.25 modified to
320x240, as shown in Figure 4, achieved the fastest average
inference time of 106.16 ms.

This demonstrates that ONNX conversion and resolution
tuning can significantly improve real-time performance in
resource-constrained environments.

While the SlimLite Network previously showed the fastest
performance in the Raspberry Pi 4 environment, the modified
MobileNetV1 0.25 model showed superior performance after
ONNX optimization. The limited performance improvement
for the SlimLite Network after ONNX optimization may be
due to its already lightweight structure, which reduces
potential optimization gains, or possible interactions with
existing techniques that affect parallel processing or memory
utilization efficiency.

TABLE V.  INFERENCE TIMES WITH ONNX OPTIMIZATION ON
RASPBERRY P14
Min Max Avg
Methods Time(ms) | Time(ms) | Time(ms)
MobileNetV1 0.25 (base) 514.10 535.39 524.89
MobileNetV1 0.25 (modified) 314.48 404.26 327.24
RFBLite 417.20 493.08 432.05
SlimLite 515.57 569.19 548.80
MobileNetV1 0.25

(modified, 320x240) 91.12 120.07 106.16
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Figure 4. Real-Time Inference Times for MobileNetV1 0.25
(modified) with ONNX Optimization at a 320x240 Resolution
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Figure 5. Real-time Inference Times of Different Models with ONNX Optimization (Raspberry Pi 4 Environment)



These results emphasize that additional optimization does
not always guarantee performance improvement, and
highlight the importance of selecting an appropriate
optimization strategy tailored to the specific application
environment.

V. CONCLUSION

This study introduced and evaluated various optimization
and lightweighting techniques to improve the performance of
real-time face detection models in resource-constrained
environments. Using the WIDER FACE dataset, we
evaluated the effectiveness of the SlimLite Network and the
RFBLite Network - both based on a lightweight RetinaFace
model with a MobileNetV1 0.25 backbone - and applied
techniques such as ONNX optimization to improve model
efficiency.

The performance evaluation showed that the SlimLite and
RFBLite networks, designed with lightweight architectures,
significantly reduced the number of parameters and
computational load while maintaining real-time performance
in resource-constrained environments. In the Raspberry Pi 4
environment, SlimLite initially showed the fastest
performance, but after applying ONNX optimization, the
modified MobileNetV1 0.25 model outperformed it. This
finding suggests that ONNX optimization may have a limited
impact on models that are already lightweight, such as
SlimLite, but can significantly improve the performance of
models such as the modified MobileNetV1 0.25.

In particular, when the resolution of the modified
MobileNetV1 0.25 model was reduced to 320x240, it
achieved the fastest average inference time of 106.16 ms,
demonstrating that real-time performance can be
significantly improved by adjusting image resolution,
lightweighting, and optimizing the model in a resource-
constrained environment. These results highlight the fact that
optimal performance can vary greatly depending on resource
conditions and hardware performance, and emphasize the
need to choose an appropriate optimization strategy for the
application environment.

This study presents effective approaches for optimizing
real-time face detection performance in resource-constrained
environments, such as Software-Defined Vehicles (SDVs),
and provides insights into the effectiveness and limitations of
each technique. To maximize real-time performance, it is
essential to tailor optimization strategies to the specific
characteristics and resource constraints of the application
environment. Future research will explore more advanced
optimization methods and investigate the potential for
integrating these lightweight face detection models with
multi-object tracking, gesture recognition, and Advanced
Driver Assistance Systems (ADAS), thereby broadening their
practical applicability.
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