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Abstract—This study presents optimization and 

lightweighting techniques to improve the performance of real-

time face detection models in resource-constrained 

environments such as embedded systems. The selected model, 

RetinaFace, based on the MobileNetV1 0.25 backbone, was 

streamlined into SlimLite and RFBLite networks, and the 

components and layers of the model were efficiently 

restructured to effectively reduce model size and inference time. 

These optimizations achieved a balanced trade-off between 

performance and real-time processing capabilities in a resource-

constrained environment. The ONNX optimization further 

improved the inference speed of the RetinaFace model by 

approximately 37.7%, reducing the average inference time from 

524.89 ms to 327.24 ms on an embedded platform (Raspberry Pi 

4). In addition, resource efficiency was maximized by reducing 

the input resolution to 320x240, resulting in an additional 67.5% 

reduction in inference time to 106.16 ms while maintaining face 

detection accuracy. This demonstrates that the model retains its 

detection capabilities even at reduced input resolution, ensuring 

reliable performance. Accuracy evaluations were performed 

using the WIDER FACE dataset, highlighting the importance of 

tailoring optimization strategies to achieve optimal performance 

in constrained environments. This research is expected to 

broaden the applicability of lightweight face detection models, 

enabling potential integration in areas such as software-defined 

vehicles (SDVs), multi-object tracking, gesture recognition, and 

advanced driver assistance systems (ADAS). 
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I. INTRODUCTION 

Computer vision technology plays an important role in the 

perception system of Autonomous Vehicles (AVs), focusing 

on the recognition of the external environment. This includes 

tasks such as detecting road signs, identifying pedestrians, 

and predicting vehicle trajectories. However, interest in in-

vehicle perception technology has recently increased with the 

emergence of the concept of Software-Defined Vehicles 

(SDVs) [1], which integrate hardware and software to allow 

flexible deployment of functionality and software-based 

updates. In-vehicle perception technology can be used in a 

variety of areas, including monitoring driver status, detecting 

objects in the vehicle, and analyzing passenger behavior. 

Driver monitoring systems are an important example of this 

technology, as they are essential for detecting and responding 

to potentially dangerous situations such as driver inattention 

or drowsiness. This requires technology that can accurately 

recognize faces in real time and accurately estimate 

landmarks such as the eyes, nose, and mouth. 

In the confined environment of a vehicle, achieving high-

speed processing and accuracy is essential to effectively 

perform face detection and landmark estimation. However, 

the space and power-constrained nature of the in-vehicle 

environment limits the feasibility of using high-performance 

GPUs or large servers, necessitating lightweight and 

optimized models capable of real-time processing on 

compact embedded devices. 

To meet these requirements, this research focuses on 

optimizing real-time face detection performance while 

maintaining accuracy in resource-constrained environments. 

The RetinaFace model [2], known for its high accuracy in 

face detection, was chosen as the basis for exploring 

performance optimization and lightweighting techniques for 

embedded vehicle applications. While the original 

RetinaFace model uses MobileNetV1 0.25 [3] as a backbone 

for partial lightweighting, further structural simplifications 

and layer adjustments are needed to achieve reduced model 

size and inference time without sacrificing detection accuracy. 

The paper is organized as follows: Section II reviews 

related work, Section III outlines the proposed lightweighting 

and optimization methods, Section IV describes the 

experimental setup and results, and Section V discusses the 

conclusions and future research directions. 

II. RELATED WORK 

A. Face Detection  

Face detection is the task of automatically identifying the 
location of a face in an image or video frame, while landmark 
estimation predicts the positions of key facial features on the 
detected face. Recent advances in deep learning, particularly 
Convolutional Neural Networks (CNN) [4] and other neural 
network-based models, have achieved impressive results in 
these tasks. A significant area of research has focused on 
developing lightweight and optimized models, especially for 
real-time performance in resource-constrained environments. 

BlazeFace, introduced by Bazarevsky et al. (2019) [5], is 
a lightweight face detection model developed by Google that 
is specifically optimized for real-time processing on resource-
constrained devices such as mobile platforms. By using 
Depthwise Separable Convolutions [6], BlazeFace reduces the 
computational burden; however, its simplified structure may 
degrade performance when detecting small faces or faces at 
different angles in complex environments. 

SCRFD (Sample and Computation Redistribution Face 
Detector), introduced by Guo et al. (20-21) [7], improves face 
detection performance by employing sample and computation 
redistribution strategies to achieve high performance in 
various environments. However, the complex structure of 
SCRFD, which requires multiple optimization techniques, can 
lead to increased computational cost, potentially limiting its 
application in highly resource-constrained environments. 

While current face detection models are designed for 
lightweight, real-time processing, each has its own limitations. 
To address these limitations, RetinaFace was developed by 



combining multi-task learning [8] with Feature Pyramid 
Network (FPN) [9] and Single Stage Headless (SSH) [10] 
modules to achieve accurate detection of faces of different 
sizes and angles. This configuration enables real-time 
performance even in resource-constrained environments. 

B. Landmark Estimation 

Landmark estimation, which involves accurately predicting 
the positions of key facial features (e.g., eyes, nose, mouth), 
plays a critical role in applications such as face detection, 
expression analysis, and emotion recognition. Various 
methods have been proposed to improve the efficiency and 
accuracy in this area. 

Multi-Task Cascaded Convolutional Networks (MTCNN), 
proposed by Zhang et al. (2016) [11], performs face detection 
and landmark estimation simultaneously. MTCNN uses a 
three-stage neural network (proposal network, refinement 
network, output network), which progressively refines the 
locations of the face and its landmarks. Although it offers high 
accuracy and fast processing speed, MTCNN's large number 
of parameters and high computational complexity can hinder 
performance in resource-constrained environments. 

3D Dense Face Alignment model proposed by Guo et al. 
(2020) [12] addresses the limitations of 2D landmark 
estimation by exploiting 3D facial information, which enables 
accurate landmark positioning despite rotations or tilts. 
However, incorporating 3D information adds computational 
cost, making it less suitable for resource-constrained 
environments such as embedded systems. 

III. PROPOSED METHOD 

To improve the real-time processing efficiency of the 

RetinaFace model in resource-constrained environments, this 

study presents three key approaches: (1) Modifying the 

MobileNetV1 backbone to incorporate the SlimLite and 

RFBLite networks, (2) Reconfiguring model layers and 

components for greater efficiency, and (3) Applying advanced 

lightweighting techniques, including ONNX conversion, to 

maximize model efficiency. These methods aim to 

significantly reduce model size and computational load while 

maintaining detection accuracy, thereby facilitating real-time 

performance on constrained hardware. 

A. Modification of the MobileNetV1 Backbone 

Current RetinaFace model integrates Feature Pyramid 

Network (FPN) and Single Stage Headless (SSH) modules to 

support multi-resolution feature maps. Building on the 

lightweight design of MobileNetV1 with Depthwise 

Separable Convolutions, we introduce two streamlined 

network structures: SlimLite and RFBLite networks. 

SlimLite Network 

SlimLite is optimized for real-time processing in 

constrained environments using MobileNetV1-based 

lightweighting techniques. To simplify the model, the FPN 

and SSH modules are removed and replaced by three 

streamlined convolutional blocks: 

 

 Conv-BN Activation Block (conv_bn): This block, 
consisting of a 3x3 convolution, batch normalization 
(BN) [13], and ReLU activation [14], stabilizes and 
improves the initial feature extraction. 

 Depthwise Convolution Block (conv_dw): Uses 
Depthwise Separable Convolution, applying a 3x3 
filter to each input channel independently, followed by 
a 1x1 convolution for channel merging, increasing 
speed and reducing computational load. 

 Depthwise Separable 2D Convolution (depth_conv2d): 
Efficient grouped convolutions optimize feature 
information while maintaining a lightweight structure. 

Unlike the original RetinaFace model, which combines 
multi-resolution feature maps, the SlimLite Network relies on 
a single-scale feature map for prediction. Sequential conv1 
through conv4 blocks extract basic features, while conv_dw 
blocks from conv5 through conv11 generate deeper features 
for a single-scale map. The conv12 block refines features for 
bounding box regression, classification, and landmark 
regression, with a multi-box configuration defining layers for 
each task, enabling efficient prediction with minimal 
resources. By eliminating complex feature combination 
processes, SlimLite Network reduces model complexity, 
increasing processing speed and resource efficiency. Fig. 1 
illustrates this optimized structure, effectively demonstrating 
the achievement of model lightweighting under constrained 
settings. 

RFBLite Network 

RFBLite Network is designed to enhance the real-time 
processing performance of the RetinaFace model in resource-
constrained environments. Like SlimLite Network, RFBLite 
is optimized for efficient operation on limited hardware, but it 
uniquely incorporates the Receptive Field Block (RFB) 
module [15] to enable accurate face detection over a range of 
sizes without complex multi-scale feature combinations. This 
network consists of the following core components: 

 Receptive Field Block (RFB) Module: Replacing the 
SSH module, the RFB module contains three branches 
that capture features with distinct receptive fields, 
enabling effective face detection across multiple sizes 
without multi-scale processing. 

 Single module for multi-scale feature extraction: As a 
single multi-scale feature extraction module, the 
BasicRFB module captures features of different sizes 
in parallel, streamlining the network, reducing 
memory usage, and maximizing computational 
efficiency. Each branch (branch0, branch1, branch2) 
uses different filter sizes and dilation rates to optimize 
feature extraction. 

Structurally, RFBLite is similar to SlimLite in that the 
initial convolution layers (conv1 to conv4) extract basic 
features, while the blocks from conv5 to conv7 and the 
BasicRFB module (conv8) focus on extracting intermediate 
and high-level features, resulting in a single-scale feature map. 
The final prediction layers (conv9 to conv14) refine features 
for bounding box regression, classification, and landmark 
regression, with a multi-box configuration for efficient task-
specific outputs. As shown in Fig. 2, this architecture provides 
a lightweight model that maximizes real-time processing 
performance in resource-constrained environments. 

B. RetinaFace Base Model Modification 

To further improve efficiency and real-time performance 

in resource-constrained environments, the RetinaFace model 

has been redesigned to focus on lightweighting key 



components. The original RetinaFace model uses FPN and 

SSH modules to combine multi-resolution feature maps for 

face detection of different sizes. Specific lightweighting 

strategies were applied to optimize these modules for 

embedded system performance. 

Lightweight FPN Module 

To reduce the FPN module's computation cost and memory 

consumption, the dimensions of the input and output channels 

have been reduced. Specifically, the original input channels 

were reduced from [64, 128, 256] to [32, 64, 128], and the 

output channel was reduced from 64 to 32, thereby reducing 

the computational requirements for each layer. This 

optimization streamlined the input-output configurations for 

both output layers (output1, output2, output3) and merge 

layers (merge1, merge2) to [32 → 32, 64 → 32, 128 → 32] 

and [32 → 32], respectively. 

SSH Module Simplification 

Further reductions in computation cost and memory usage 

have been achieved in the SSH module by reducing the 

channel dimensions. The input channel size has been reduced 

from 32 to 16, and the output channel size has been reduced 

from 64 to 32, effectively reducing the computational load 

while maintaining accuracy. These adjustments significantly 

improve real-time processing capability without 

compromising model performance. 

Together, these lightweighting modifications increase the 

efficiency of the FPN and SSH modules, enabling the 

redesigned RetinaFace model to achieve robust real-time face 

detection and analysis in highly resource-constrained 

environments, highlighting the benefits of a streamlined, 

lightweight network structure. 

C. Advanced Optimization Techniques for Model Efficiency 

To further improve model efficiency and maintain real-

time performance in resource-constrained environments, 

ONNX conversion was applied. This conversion strategy 

streamlines the model structure, reduces computational load 

and memory consumption, and extends its applicability to a 

variety of practical environments. 

ONNX Conversion [16] 

ONNX is an open standard that enhances model portability 

and enables compatibility between different deep learning 

frameworks and hardware platforms. In this study, the 

RetinaFace model was converted to the ONNX format to 

streamline the model structure, remove unnecessary 

computations during inference, and thereby increase the 

processing speed. This conversion significantly improves the 

applicability and usability of the model in a variety of 

practical environments. 

IV. EXPERIMENTS 

A. Dataset 

Model performance was evaluated using the WIDER 

FACE dataset [17], a large-scale dataset designed to reflect 

different conditions in face detection tasks. The dataset 

contains 32,203 images and 393,703 face bounding boxes, 

and is characterized by high variability in face size, pose, 

expression, occlusion, and illumination. It is divided into 

three difficulty levels—Easy, Medium, and Hard—based on 

Edge Box detection rates, which categorize samples from 

clearly visible faces (Easy) to complex, occluded faces 

 
Figure 1. SlimLite Network 

 
Figure 2. RFBLite Network 



(Hard), allowing for a progressively stringent evaluation of 

model performance. 

The evaluation used 3,287 validation images from the 

WIDER FACE dataset. Model performance was measured 

using Average Precision (AP) at each difficulty level, a 

metric that balances precision and recall, providing a critical 

measure of the proposed lightweighting and optimization 

strategies under varying conditions. 

B. Model Parameters 

To evaluate the effectiveness of the lightweighting 

approaches described in Section III, the number of 

parameters and the computational load (FLOPs) of each 

model were analyzed. Compared to the base MobileNetV1 

0.25 model, the modified MobileNetV1 0.25 model achieved 

a reduction of approximately 73%, while the SlimLite and 

RFBLite networks showed reductions of approximately 77% 

and 58%, respectively. These results highlight the impact of 

the lightweighting strategies in reducing model complexity 

and resource consumption. Detailed figures are shown in 

Table I. 

C. Face Detection Accuracy 

Face detection accuracy was evaluated using the WIDER 

FACE validation dataset, with performance summarized in 

Table II and Fig. 3. The base MobileNetV1 0.25 model 

achieved the highest AP score of 0.811 on the Easy level, and 

also performed well on the Medium and Hard levels, with 

scores of 0.697 and 0.376, respectively. 

SlimLite Network, optimized for reduced computational 

load, had lower AP scores of 0.749, 0.611, and 0.291 for Easy, 

Medium, and Hard levels, respectively, reflecting a trade-off 

between computational efficiency and detection performance. 

These results indicate that SlimLite Network maintains 

reasonable detection accuracy while supporting real-time 

processing in resource-constrained environments. 

D. Real-Time Inference 

Real-time inference was tested in two environments: a 

standard PC with an Intel(R) Core(TM) i7-14700F CPU (2.10 

GHz), 32GB RAM, and a 64-bit operating system, and a 

Raspberry Pi 4 Model B with 4GB RAM. In the PC 

environment, the models were tested in a CPU-only setting to 

evaluate processing efficiency. The Raspberry Pi 4, which 

represents a resource-constrained environment similar to  

TABLE I.  PARAMETERS AND FLOPS OF DIFFERENT MODELS 

Methods Parameters (K) FLOPs (M) 

MobileNetV1 0.25 (base) 426.608 193.870 

MobileNetV1 0.25 (modified) 115.216 68.606 

RFBLite 136.54 81.18 

SlimLite 110.58 49.09 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON 

THE WIDER FACE VALIDATION DATASET (AP SCORES) 

Methods EASY Medium Hard 

MobileNetV1 0.25 (base) 0.811 0.697 0.376 

MobileNetV1 0.25 (modified) 0.769 0.658 0.331 

RFBLite 0.793 0.677 0.337 

SlimLite 0.749 0.611 0.291 

 

automotive embedded systems, was chosen to evaluate the 

models' ability to meet real-time requirements in a 

constrained hardware setup. This setup is consistent with the 

requirements of Software-Defined Vehicles (SDVs), and 

highlights the need for efficient face detection models 

optimized for real-time performance in resource-constrained 

environments. 

i7-14700F CPU Environment 

In the i7-14700F CPU environment, the MobileNetV1 0.25 

modified model demonstrated approximately 21.9% faster 

inference performance than the MobileNetV1 0.25 base 

model (Table III), with an average inference time of 22.69 ms 

compared to 29.06 ms for the base model. Although 

lightweighting effectively reduced parameters, the SlimLite 

and RFBLite networks had slightly longer inference times of 

28.35 ms and 24.39 ms, respectively, due to architectural 

adjustments or unoptimized operations that affected 

performance. 

Raspberry Pi 4 Environment 

The results of the real-time inference test on Raspberry Pi 4 
are shown in Table IV. SlimLite Network achieved the fastest 
performance with an average inference time of 2472.33 ms, 
while the modified MobileNetV1 0.25 model took 26.9% 
longer at 3137.07 ms. This suggests that the SlimLite Network 
may be more suitable for environments with limited resources.      

         
(a)   Easy Level                                                     (b)   Medium  Level                                                     (c)   Hard Level 

 

Figure 3. Precision-Recall (PR) curves of different models on the WIDER FACE Validation Dataset for Easy, Medium, and Hard Levels 



TABLE III.  INFERENCE TIMES (MS) OF DIFFERENT MODELS ON I7-   

14700F CPU ENVIRONMENT 

Methods 
Min 

Time(ms) 

Max 

Time(ms) 

Avg 

Time(ms) 

bileNetV1 0.25 (base) 20.49 63.08 29.06 

MobileNetV1 0.25 (modified) 18.02 40.83 22.68 

RFBLite 20.69 37.69 24.39 

SlimLite 26.76 49.24 28.36 

TABLE IV.  INFERENCE TIMES (MS) OF DIFFERENT MODELS ON  

RASPBERRY PI 4 ENVIRONMENT 

Methods 
Min 

Time(ms) 

Max 

Time(ms) 

Avg 

Time(ms) 

MobileNetV1 0.25 (base) 3366.90 4260.90 3876.98 

MobileNetV1 0.25 (modified) 2346.38 3716.65 3137.07 

RFBLite 2367.59 2939.28 2725.15 

SlimLite 2299.42 2882.68 2472.33 

 

In summary, while the MobileNetV1 0.25 (modified) 
model achieved approximately 21.9% improvement in the i7-
14700F CPU environment, the SlimLite Network showed 
approximately 36.2% faster inference time on Raspberry Pi 4. 
These results suggest that each model performs optimally 
depending on specific resource conditions and hardware 
capabilities, highlighting the importance of selecting a model 
tailored to application environments. 

ONNX Real-Time Inference 

Previous performance evaluations suggested that 

additional optimization was needed to maintain real-time 

processing performance for the proposed models under 

various conditions. To address this need, Open Neural 

Network Exchange (ONNX) optimization techniques were 

applied to improve model inference speed and reduce latency. 

Specifically, the ONNX optimization was validated in the 

Raspberry Pi 4 environment, and the performance was further 

evaluated at a resolution of 320 x 240, taking into account the 

system memory and computational capacity (Table V and Fig. 

5).   

ONNX-optimized MobileNetV1 0.25 modified model 

achieved an average inference time of 327.24 ms, which 

represents a significant performance improvement over the 

pre-optimization state. The ONNX-optimized MobileNetV1 

0.25 base and RFBLite models achieved average inference 

times of 524.89 ms and 432.05 ms, respectively. Notably, 

reducing the resolution of the MobileNetV1 0.25 modified to 

320x240, as shown in Figure 4, achieved the fastest average 

inference time of 106.16 ms. 

This demonstrates that ONNX conversion and resolution 

tuning can significantly improve real-time performance in 

resource-constrained environments. 
While the SlimLite Network previously showed the fastest 

performance in the Raspberry Pi 4 environment, the modified 
MobileNetV1 0.25 model showed superior performance after 
ONNX optimization. The limited performance improvement 
for the SlimLite Network after ONNX optimization may be 
due to its already lightweight structure, which reduces 
potential optimization gains, or possible interactions with 
existing techniques that affect parallel processing or memory 
utilization efficiency.   

TABLE V.  INFERENCE TIMES WITH ONNX OPTIMIZATION ON 

RASPBERRY PI 4 

Methods 
Min 

Time(ms) 

Max 

Time(ms) 

Avg 

Time(ms) 

MobileNetV1 0.25 (base) 514.10 535.39 524.89 

MobileNetV1 0.25 (modified) 314.48 404.26 327.24 

RFBLite 417.20 493.08 432.05 

SlimLite 515.57 569.19 548.80 

MobileNetV1 0.25  

(modified, 320x240) 
91.12 120.07 106.16 

 
(a)   MobileNetV1 0.25 (base)                                                            (b)   MobileNetV1 0.25 (modified) 

 

  
(c)   RFBLite                                                                                             (d)   SlimLite 

 

Figure 5. Real-time Inference Times of Different Models with ONNX Optimization (Raspberry Pi 4 Environment) 

 
Figure 4. Real-Time Inference Times for MobileNetV1 0.25 

(modified) with ONNX Optimization at a 320x240 Resolution 

 

 



These results emphasize that additional optimization does 
not always guarantee performance improvement, and 
highlight the importance of selecting an appropriate 
optimization strategy tailored to the specific application 
environment. 

V. CONCLUSION 

This study introduced and evaluated various optimization 

and lightweighting techniques to improve the performance of 

real-time face detection models in resource-constrained 

environments. Using the WIDER FACE dataset, we 

evaluated the effectiveness of the SlimLite Network and the 

RFBLite Network - both based on a lightweight RetinaFace 

model with a MobileNetV1 0.25 backbone - and applied 

techniques such as ONNX optimization to improve model 

efficiency. 

The performance evaluation showed that the SlimLite and 

RFBLite networks, designed with lightweight architectures, 

significantly reduced the number of parameters and 

computational load while maintaining real-time performance 

in resource-constrained environments. In the Raspberry Pi 4 

environment, SlimLite initially showed the fastest 

performance, but after applying ONNX optimization, the 

modified MobileNetV1 0.25 model outperformed it. This 

finding suggests that ONNX optimization may have a limited 

impact on models that are already lightweight, such as 

SlimLite, but can significantly improve the performance of 

models such as the modified MobileNetV1 0.25. 

In particular, when the resolution of the modified 

MobileNetV1 0.25 model was reduced to 320x240, it 

achieved the fastest average inference time of 106.16 ms, 

demonstrating that real-time performance can be 

significantly improved by adjusting image resolution, 

lightweighting, and optimizing the model in a resource-

constrained environment. These results highlight the fact that 

optimal performance can vary greatly depending on resource 

conditions and hardware performance, and emphasize the 

need to choose an appropriate optimization strategy for the 

application environment. 

This study presents effective approaches for optimizing 

real-time face detection performance in resource-constrained 

environments, such as Software-Defined Vehicles (SDVs), 

and provides insights into the effectiveness and limitations of 

each technique. To maximize real-time performance, it is 

essential to tailor optimization strategies to the specific 

characteristics and resource constraints of the application 

environment. Future research will explore more advanced 

optimization methods and investigate the potential for 

integrating these lightweight face detection models with 

multi-object tracking, gesture recognition, and Advanced 

Driver Assistance Systems (ADAS), thereby broadening their 

practical applicability. 
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