

Real-Time Optimization and Lightweight Architecture of Face

Detection Models for Embedded Systems

Min Ki Son

 Convergence Security for Automobile

Soonchunhyang University

Asan, Republic of Korea

minki133@sch.ac.kr

Seungkeun Park

Smart Automotive Engineering Department

Soonchunhyang University

Asan, Republic of Korea
keiny@sch.ac.kr

Abstract—This study presents optimization and

lightweighting techniques to improve the performance of real-

time face detection models in resource-constrained

environments such as embedded systems. The selected model,

RetinaFace, based on the MobileNetV1 0.25 backbone, was

streamlined into SlimLite and RFBLite networks, and the

components and layers of the model were efficiently

restructured to effectively reduce model size and inference time.

These optimizations achieved a balanced trade-off between

performance and real-time processing capabilities in a resource-

constrained environment. The ONNX optimization further

improved the inference speed of the RetinaFace model by

approximately 37.7%, reducing the average inference time from

524.89 ms to 327.24 ms on an embedded platform (Raspberry Pi

4). In addition, resource efficiency was maximized by reducing

the input resolution to 320x240, resulting in an additional 67.5%

reduction in inference time to 106.16 ms while maintaining face

detection accuracy. This demonstrates that the model retains its

detection capabilities even at reduced input resolution, ensuring

reliable performance. Accuracy evaluations were performed

using the WIDER FACE dataset, highlighting the importance of

tailoring optimization strategies to achieve optimal performance

in constrained environments. This research is expected to

broaden the applicability of lightweight face detection models,

enabling potential integration in areas such as software-defined

vehicles (SDVs), multi-object tracking, gesture recognition, and

advanced driver assistance systems (ADAS).

Keywords—face detection, embedded systems, real-time

processing, model optimization, lightweight network

I. INTRODUCTION

Computer vision technology plays an important role in the

perception system of Autonomous Vehicles (AVs), focusing

on the recognition of the external environment. This includes

tasks such as detecting road signs, identifying pedestrians,

and predicting vehicle trajectories. However, interest in in-

vehicle perception technology has recently increased with the

emergence of the concept of Software-Defined Vehicles

(SDVs) [1], which integrate hardware and software to allow

flexible deployment of functionality and software-based

updates. In-vehicle perception technology can be used in a

variety of areas, including monitoring driver status, detecting

objects in the vehicle, and analyzing passenger behavior.

Driver monitoring systems are an important example of this

technology, as they are essential for detecting and responding

to potentially dangerous situations such as driver inattention

or drowsiness. This requires technology that can accurately

recognize faces in real time and accurately estimate

landmarks such as the eyes, nose, and mouth.

In the confined environment of a vehicle, achieving high-

speed processing and accuracy is essential to effectively

perform face detection and landmark estimation. However,

the space and power-constrained nature of the in-vehicle

environment limits the feasibility of using high-performance

GPUs or large servers, necessitating lightweight and

optimized models capable of real-time processing on

compact embedded devices.

To meet these requirements, this research focuses on

optimizing real-time face detection performance while

maintaining accuracy in resource-constrained environments.

The RetinaFace model [2], known for its high accuracy in

face detection, was chosen as the basis for exploring

performance optimization and lightweighting techniques for

embedded vehicle applications. While the original

RetinaFace model uses MobileNetV1 0.25 [3] as a backbone

for partial lightweighting, further structural simplifications

and layer adjustments are needed to achieve reduced model

size and inference time without sacrificing detection accuracy.

The paper is organized as follows: Section II reviews

related work, Section III outlines the proposed lightweighting

and optimization methods, Section IV describes the

experimental setup and results, and Section V discusses the

conclusions and future research directions.

II. RELATED WORK

A. Face Detection

Face detection is the task of automatically identifying the
location of a face in an image or video frame, while landmark
estimation predicts the positions of key facial features on the
detected face. Recent advances in deep learning, particularly
Convolutional Neural Networks (CNN) [4] and other neural
network-based models, have achieved impressive results in
these tasks. A significant area of research has focused on
developing lightweight and optimized models, especially for
real-time performance in resource-constrained environments.

BlazeFace, introduced by Bazarevsky et al. (2019) [5], is
a lightweight face detection model developed by Google that
is specifically optimized for real-time processing on resource-
constrained devices such as mobile platforms. By using
Depthwise Separable Convolutions [6], BlazeFace reduces the
computational burden; however, its simplified structure may
degrade performance when detecting small faces or faces at
different angles in complex environments.

SCRFD (Sample and Computation Redistribution Face
Detector), introduced by Guo et al. (20-21) [7], improves face
detection performance by employing sample and computation
redistribution strategies to achieve high performance in
various environments. However, the complex structure of
SCRFD, which requires multiple optimization techniques, can
lead to increased computational cost, potentially limiting its
application in highly resource-constrained environments.

While current face detection models are designed for
lightweight, real-time processing, each has its own limitations.
To address these limitations, RetinaFace was developed by

combining multi-task learning [8] with Feature Pyramid
Network (FPN) [9] and Single Stage Headless (SSH) [10]
modules to achieve accurate detection of faces of different
sizes and angles. This configuration enables real-time
performance even in resource-constrained environments.

B. Landmark Estimation

Landmark estimation, which involves accurately predicting
the positions of key facial features (e.g., eyes, nose, mouth),
plays a critical role in applications such as face detection,
expression analysis, and emotion recognition. Various
methods have been proposed to improve the efficiency and
accuracy in this area.

Multi-Task Cascaded Convolutional Networks (MTCNN),
proposed by Zhang et al. (2016) [11], performs face detection
and landmark estimation simultaneously. MTCNN uses a
three-stage neural network (proposal network, refinement
network, output network), which progressively refines the
locations of the face and its landmarks. Although it offers high
accuracy and fast processing speed, MTCNN's large number
of parameters and high computational complexity can hinder
performance in resource-constrained environments.

3D Dense Face Alignment model proposed by Guo et al.
(2020) [12] addresses the limitations of 2D landmark
estimation by exploiting 3D facial information, which enables
accurate landmark positioning despite rotations or tilts.
However, incorporating 3D information adds computational
cost, making it less suitable for resource-constrained
environments such as embedded systems.

III. PROPOSED METHOD

To improve the real-time processing efficiency of the

RetinaFace model in resource-constrained environments, this

study presents three key approaches: (1) Modifying the

MobileNetV1 backbone to incorporate the SlimLite and

RFBLite networks, (2) Reconfiguring model layers and

components for greater efficiency, and (3) Applying advanced

lightweighting techniques, including ONNX conversion, to

maximize model efficiency. These methods aim to

significantly reduce model size and computational load while

maintaining detection accuracy, thereby facilitating real-time

performance on constrained hardware.

A. Modification of the MobileNetV1 Backbone

Current RetinaFace model integrates Feature Pyramid

Network (FPN) and Single Stage Headless (SSH) modules to

support multi-resolution feature maps. Building on the

lightweight design of MobileNetV1 with Depthwise

Separable Convolutions, we introduce two streamlined

network structures: SlimLite and RFBLite networks.

SlimLite Network

SlimLite is optimized for real-time processing in

constrained environments using MobileNetV1-based

lightweighting techniques. To simplify the model, the FPN

and SSH modules are removed and replaced by three

streamlined convolutional blocks:

 Conv-BN Activation Block (conv_bn): This block,
consisting of a 3x3 convolution, batch normalization
(BN) [13], and ReLU activation [14], stabilizes and
improves the initial feature extraction.

 Depthwise Convolution Block (conv_dw): Uses
Depthwise Separable Convolution, applying a 3x3
filter to each input channel independently, followed by
a 1x1 convolution for channel merging, increasing
speed and reducing computational load.

 Depthwise Separable 2D Convolution (depth_conv2d):
Efficient grouped convolutions optimize feature
information while maintaining a lightweight structure.

Unlike the original RetinaFace model, which combines
multi-resolution feature maps, the SlimLite Network relies on
a single-scale feature map for prediction. Sequential conv1
through conv4 blocks extract basic features, while conv_dw
blocks from conv5 through conv11 generate deeper features
for a single-scale map. The conv12 block refines features for
bounding box regression, classification, and landmark
regression, with a multi-box configuration defining layers for
each task, enabling efficient prediction with minimal
resources. By eliminating complex feature combination
processes, SlimLite Network reduces model complexity,
increasing processing speed and resource efficiency. Fig. 1
illustrates this optimized structure, effectively demonstrating
the achievement of model lightweighting under constrained
settings.

RFBLite Network

RFBLite Network is designed to enhance the real-time
processing performance of the RetinaFace model in resource-
constrained environments. Like SlimLite Network, RFBLite
is optimized for efficient operation on limited hardware, but it
uniquely incorporates the Receptive Field Block (RFB)
module [15] to enable accurate face detection over a range of
sizes without complex multi-scale feature combinations. This
network consists of the following core components:

 Receptive Field Block (RFB) Module: Replacing the
SSH module, the RFB module contains three branches
that capture features with distinct receptive fields,
enabling effective face detection across multiple sizes
without multi-scale processing.

 Single module for multi-scale feature extraction: As a
single multi-scale feature extraction module, the
BasicRFB module captures features of different sizes
in parallel, streamlining the network, reducing
memory usage, and maximizing computational
efficiency. Each branch (branch0, branch1, branch2)
uses different filter sizes and dilation rates to optimize
feature extraction.

Structurally, RFBLite is similar to SlimLite in that the
initial convolution layers (conv1 to conv4) extract basic
features, while the blocks from conv5 to conv7 and the
BasicRFB module (conv8) focus on extracting intermediate
and high-level features, resulting in a single-scale feature map.
The final prediction layers (conv9 to conv14) refine features
for bounding box regression, classification, and landmark
regression, with a multi-box configuration for efficient task-
specific outputs. As shown in Fig. 2, this architecture provides
a lightweight model that maximizes real-time processing
performance in resource-constrained environments.

B. RetinaFace Base Model Modification

To further improve efficiency and real-time performance

in resource-constrained environments, the RetinaFace model

has been redesigned to focus on lightweighting key

components. The original RetinaFace model uses FPN and

SSH modules to combine multi-resolution feature maps for

face detection of different sizes. Specific lightweighting

strategies were applied to optimize these modules for

embedded system performance.

Lightweight FPN Module

To reduce the FPN module's computation cost and memory

consumption, the dimensions of the input and output channels

have been reduced. Specifically, the original input channels

were reduced from [64, 128, 256] to [32, 64, 128], and the

output channel was reduced from 64 to 32, thereby reducing

the computational requirements for each layer. This

optimization streamlined the input-output configurations for

both output layers (output1, output2, output3) and merge

layers (merge1, merge2) to [32 → 32, 64 → 32, 128 → 32]

and [32 → 32], respectively.

SSH Module Simplification

Further reductions in computation cost and memory usage

have been achieved in the SSH module by reducing the

channel dimensions. The input channel size has been reduced

from 32 to 16, and the output channel size has been reduced

from 64 to 32, effectively reducing the computational load

while maintaining accuracy. These adjustments significantly

improve real-time processing capability without

compromising model performance.

Together, these lightweighting modifications increase the

efficiency of the FPN and SSH modules, enabling the

redesigned RetinaFace model to achieve robust real-time face

detection and analysis in highly resource-constrained

environments, highlighting the benefits of a streamlined,

lightweight network structure.

C. Advanced Optimization Techniques for Model Efficiency

To further improve model efficiency and maintain real-

time performance in resource-constrained environments,

ONNX conversion was applied. This conversion strategy

streamlines the model structure, reduces computational load

and memory consumption, and extends its applicability to a

variety of practical environments.

ONNX Conversion [16]

ONNX is an open standard that enhances model portability

and enables compatibility between different deep learning

frameworks and hardware platforms. In this study, the

RetinaFace model was converted to the ONNX format to

streamline the model structure, remove unnecessary

computations during inference, and thereby increase the

processing speed. This conversion significantly improves the

applicability and usability of the model in a variety of

practical environments.

IV. EXPERIMENTS

A. Dataset

Model performance was evaluated using the WIDER

FACE dataset [17], a large-scale dataset designed to reflect

different conditions in face detection tasks. The dataset

contains 32,203 images and 393,703 face bounding boxes,

and is characterized by high variability in face size, pose,

expression, occlusion, and illumination. It is divided into

three difficulty levels—Easy, Medium, and Hard—based on

Edge Box detection rates, which categorize samples from

clearly visible faces (Easy) to complex, occluded faces

Figure 1. SlimLite Network

Figure 2. RFBLite Network

(Hard), allowing for a progressively stringent evaluation of

model performance.

The evaluation used 3,287 validation images from the

WIDER FACE dataset. Model performance was measured

using Average Precision (AP) at each difficulty level, a

metric that balances precision and recall, providing a critical

measure of the proposed lightweighting and optimization

strategies under varying conditions.

B. Model Parameters

To evaluate the effectiveness of the lightweighting

approaches described in Section III, the number of

parameters and the computational load (FLOPs) of each

model were analyzed. Compared to the base MobileNetV1

0.25 model, the modified MobileNetV1 0.25 model achieved

a reduction of approximately 73%, while the SlimLite and

RFBLite networks showed reductions of approximately 77%

and 58%, respectively. These results highlight the impact of

the lightweighting strategies in reducing model complexity

and resource consumption. Detailed figures are shown in

Table I.

C. Face Detection Accuracy

Face detection accuracy was evaluated using the WIDER

FACE validation dataset, with performance summarized in

Table II and Fig. 3. The base MobileNetV1 0.25 model

achieved the highest AP score of 0.811 on the Easy level, and

also performed well on the Medium and Hard levels, with

scores of 0.697 and 0.376, respectively.

SlimLite Network, optimized for reduced computational

load, had lower AP scores of 0.749, 0.611, and 0.291 for Easy,

Medium, and Hard levels, respectively, reflecting a trade-off

between computational efficiency and detection performance.

These results indicate that SlimLite Network maintains

reasonable detection accuracy while supporting real-time

processing in resource-constrained environments.

D. Real-Time Inference

Real-time inference was tested in two environments: a

standard PC with an Intel(R) Core(TM) i7-14700F CPU (2.10

GHz), 32GB RAM, and a 64-bit operating system, and a

Raspberry Pi 4 Model B with 4GB RAM. In the PC

environment, the models were tested in a CPU-only setting to

evaluate processing efficiency. The Raspberry Pi 4, which

represents a resource-constrained environment similar to

TABLE I. PARAMETERS AND FLOPS OF DIFFERENT MODELS

Methods Parameters (K) FLOPs (M)

MobileNetV1 0.25 (base) 426.608 193.870

MobileNetV1 0.25 (modified) 115.216 68.606

RFBLite 136.54 81.18

SlimLite 110.58 49.09

TABLE II. PERFORMANCE COMPARISON OF DIFFERENT MODELS ON

THE WIDER FACE VALIDATION DATASET (AP SCORES)

Methods EASY Medium Hard

MobileNetV1 0.25 (base) 0.811 0.697 0.376

MobileNetV1 0.25 (modified) 0.769 0.658 0.331

RFBLite 0.793 0.677 0.337

SlimLite 0.749 0.611 0.291

automotive embedded systems, was chosen to evaluate the

models' ability to meet real-time requirements in a

constrained hardware setup. This setup is consistent with the

requirements of Software-Defined Vehicles (SDVs), and

highlights the need for efficient face detection models

optimized for real-time performance in resource-constrained

environments.

i7-14700F CPU Environment

In the i7-14700F CPU environment, the MobileNetV1 0.25

modified model demonstrated approximately 21.9% faster

inference performance than the MobileNetV1 0.25 base

model (Table III), with an average inference time of 22.69 ms

compared to 29.06 ms for the base model. Although

lightweighting effectively reduced parameters, the SlimLite

and RFBLite networks had slightly longer inference times of

28.35 ms and 24.39 ms, respectively, due to architectural

adjustments or unoptimized operations that affected

performance.

Raspberry Pi 4 Environment

The results of the real-time inference test on Raspberry Pi 4
are shown in Table IV. SlimLite Network achieved the fastest
performance with an average inference time of 2472.33 ms,
while the modified MobileNetV1 0.25 model took 26.9%
longer at 3137.07 ms. This suggests that the SlimLite Network
may be more suitable for environments with limited resources.

(a) Easy Level (b) Medium Level (c) Hard Level

Figure 3. Precision-Recall (PR) curves of different models on the WIDER FACE Validation Dataset for Easy, Medium, and Hard Levels

TABLE III. INFERENCE TIMES (MS) OF DIFFERENT MODELS ON I7-

14700F CPU ENVIRONMENT

Methods
Min

Time(ms)

Max

Time(ms)

Avg

Time(ms)

bileNetV1 0.25 (base) 20.49 63.08 29.06

MobileNetV1 0.25 (modified) 18.02 40.83 22.68

RFBLite 20.69 37.69 24.39

SlimLite 26.76 49.24 28.36

TABLE IV. INFERENCE TIMES (MS) OF DIFFERENT MODELS ON

RASPBERRY PI 4 ENVIRONMENT

Methods
Min

Time(ms)

Max

Time(ms)

Avg

Time(ms)

MobileNetV1 0.25 (base) 3366.90 4260.90 3876.98

MobileNetV1 0.25 (modified) 2346.38 3716.65 3137.07

RFBLite 2367.59 2939.28 2725.15

SlimLite 2299.42 2882.68 2472.33

In summary, while the MobileNetV1 0.25 (modified)
model achieved approximately 21.9% improvement in the i7-
14700F CPU environment, the SlimLite Network showed
approximately 36.2% faster inference time on Raspberry Pi 4.
These results suggest that each model performs optimally
depending on specific resource conditions and hardware
capabilities, highlighting the importance of selecting a model
tailored to application environments.

ONNX Real-Time Inference

Previous performance evaluations suggested that

additional optimization was needed to maintain real-time

processing performance for the proposed models under

various conditions. To address this need, Open Neural

Network Exchange (ONNX) optimization techniques were

applied to improve model inference speed and reduce latency.

Specifically, the ONNX optimization was validated in the

Raspberry Pi 4 environment, and the performance was further

evaluated at a resolution of 320 x 240, taking into account the

system memory and computational capacity (Table V and Fig.

5).

ONNX-optimized MobileNetV1 0.25 modified model

achieved an average inference time of 327.24 ms, which

represents a significant performance improvement over the

pre-optimization state. The ONNX-optimized MobileNetV1

0.25 base and RFBLite models achieved average inference

times of 524.89 ms and 432.05 ms, respectively. Notably,

reducing the resolution of the MobileNetV1 0.25 modified to

320x240, as shown in Figure 4, achieved the fastest average

inference time of 106.16 ms.

This demonstrates that ONNX conversion and resolution

tuning can significantly improve real-time performance in

resource-constrained environments.
While the SlimLite Network previously showed the fastest

performance in the Raspberry Pi 4 environment, the modified
MobileNetV1 0.25 model showed superior performance after
ONNX optimization. The limited performance improvement
for the SlimLite Network after ONNX optimization may be
due to its already lightweight structure, which reduces
potential optimization gains, or possible interactions with
existing techniques that affect parallel processing or memory
utilization efficiency.

TABLE V. INFERENCE TIMES WITH ONNX OPTIMIZATION ON

RASPBERRY PI 4

Methods
Min

Time(ms)

Max

Time(ms)

Avg

Time(ms)

MobileNetV1 0.25 (base) 514.10 535.39 524.89

MobileNetV1 0.25 (modified) 314.48 404.26 327.24

RFBLite 417.20 493.08 432.05

SlimLite 515.57 569.19 548.80

MobileNetV1 0.25

(modified, 320x240)
91.12 120.07 106.16

(a) MobileNetV1 0.25 (base) (b) MobileNetV1 0.25 (modified)

(c) RFBLite (d) SlimLite

Figure 5. Real-time Inference Times of Different Models with ONNX Optimization (Raspberry Pi 4 Environment)

Figure 4. Real-Time Inference Times for MobileNetV1 0.25

(modified) with ONNX Optimization at a 320x240 Resolution

These results emphasize that additional optimization does
not always guarantee performance improvement, and
highlight the importance of selecting an appropriate
optimization strategy tailored to the specific application
environment.

V. CONCLUSION

This study introduced and evaluated various optimization

and lightweighting techniques to improve the performance of

real-time face detection models in resource-constrained

environments. Using the WIDER FACE dataset, we

evaluated the effectiveness of the SlimLite Network and the

RFBLite Network - both based on a lightweight RetinaFace

model with a MobileNetV1 0.25 backbone - and applied

techniques such as ONNX optimization to improve model

efficiency.

The performance evaluation showed that the SlimLite and

RFBLite networks, designed with lightweight architectures,

significantly reduced the number of parameters and

computational load while maintaining real-time performance

in resource-constrained environments. In the Raspberry Pi 4

environment, SlimLite initially showed the fastest

performance, but after applying ONNX optimization, the

modified MobileNetV1 0.25 model outperformed it. This

finding suggests that ONNX optimization may have a limited

impact on models that are already lightweight, such as

SlimLite, but can significantly improve the performance of

models such as the modified MobileNetV1 0.25.

In particular, when the resolution of the modified

MobileNetV1 0.25 model was reduced to 320x240, it

achieved the fastest average inference time of 106.16 ms,

demonstrating that real-time performance can be

significantly improved by adjusting image resolution,

lightweighting, and optimizing the model in a resource-

constrained environment. These results highlight the fact that

optimal performance can vary greatly depending on resource

conditions and hardware performance, and emphasize the

need to choose an appropriate optimization strategy for the

application environment.

This study presents effective approaches for optimizing

real-time face detection performance in resource-constrained

environments, such as Software-Defined Vehicles (SDVs),

and provides insights into the effectiveness and limitations of

each technique. To maximize real-time performance, it is

essential to tailor optimization strategies to the specific

characteristics and resource constraints of the application

environment. Future research will explore more advanced

optimization methods and investigate the potential for

integrating these lightweight face detection models with

multi-object tracking, gesture recognition, and Advanced

Driver Assistance Systems (ADAS), thereby broadening their

practical applicability.

VI. ACKNOWLEDGMENTS

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (RS-2023-

00245084), Institute for Information & communications

Technology Planning & Evaluation (IITP) grant funded by

the Korea government (MSIT) (No. 2022-0-01197,

Convergence security core talent training business

(Soonchunhyang University))

VII. REFERENCES

[1] Fengjunjie Pan, Jianjie Lin, Markus Rickert. 2024. Automatic Platform
Configuration and Software Integration for Software-Defined Vehicles.
arXiv:2408.02127.

[2] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia,
Stefanos Zafeiriou. 2019. RetinaFace: Single-stage Dense Face
Localisation in the Wild. arXiv:1905.00641.

[3] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv:1704.04861.

[4] O'Shea, K., & Nash, R. 2015. An Introduction to Convolutional Neural
Networks.arXiv:1511.08458.

[5] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik
Raveendran, and Matthias Grundmann. 2019. BlazeFace: Sub-
millisecond Neural Face Detection on Mobile GPUs. In Proceedings of
the CVPR Workshop on Computer Vision for Augmented and Virtual
Reality, Long Beach, CA, USA. arXiv:1907.05047.

[6] Chollet, F. 2017. Xception: Deep Learning with Depthwise Separable
Convolutions.arXiv:1610.02357.

[7] Jia Guo, Jiankang Deng, Alexandros Lattas, and Stefanos Zafeiriou.
2021. Sample and Computation Redistribution for Efficient Face
Detection. arXiv:2105.04714.

[8] Crawshaw, M. 2020. Multi-Task Learning with Deep Neural Networks:
A Survey. arXiv:2009.09796.

[9] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie,
S. 2017. Feature Pyramid Networks for Object Detection.
arXiv:1612.03144.

[10] Najibi, M., Samangouei, P., Chellappa, R., & Davis, L. 2017. SSH:
Single Stage Headless Face Detector. arXiv:1708.03979.

[11] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. 2016.
Joint Face Detection and Alignment using Multi-task Cascaded
Convolutional Networks. Submitted to IEEE Signal Processing Letters.
arXiv:1604.02878.

[12] Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei, and Stan
Z. Li. 2020. Towards Fast, Accurate and Stable 3D Dense Face
Alignment. In Proceedings of the European Conference on Computer
Vision (ECCV 2020). arXiv:2009.09960.

[13] Ioffe, S., & Szegedy, C. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.
arXiv:1502.03167.

[14] Agarap, A. F. 2018. Deep Learning using Rectified Linear Units
(ReLU). arXiv:1803.08375.

[15] Liu, S., Huang, D., & Wang, Y. 2018. Receptive Field Block Net for
Accurate and Fast Object Detection. arXiv:1711.07767.

[16] Lin, W.-F., Tsai, D.-Y., Tang, L., Hsieh, C.-T., Chou, C.-Y., Chang,
P.-H., & Hsu, L. 2019. ONNC: A Compilation Framework Connecting
ONNX to Proprietary Deep Learning Accelerators. In Proceedings of
the 2019 IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS), Hsinchu, Taiwan, March 18-20, 2019.
IEEE.

[17] Yang, S., Luo, P., Loy, C. C., & Tang, X. 2015. WIDER FACE: A Face
Detection Benchmark. arXiv:1511.06523.

