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Abstract—This paper studies deep learning (DL)-based energy
efficiency maximization (EEM) in multi-simultaneous transmis-
sion and reflection-reconfigurable intelligent surfaces (STAR-
RISs) assisted massive multiple-input multiple-output (mMIMO)-
non-orthogonal multiple access (NOMA) networks. We formulate
the EEM problem to jointly optimize the precoding matrix
and STAR-RIS phase shifts subject to the power budget at the
base station, STAR-RIS phase shift constraints, and minimum
quality-of-service (QoS) requirements. The formulated EEM
problem belongs to the mixed-integer programming class, which
is difficult to solve optimally. Thus, we develop an alternative
optimization approach by dividing the original EEM problem
into two sub-problems such as phase shift and beamforming
optimization, and solve them alternatively. A bisection search
algorithm is proposed to solve the phase shift optimization, while
the inner approximation method is employed to address the
non-convex beamforming problem through our newly tractable
transformations. To enable real-time optimization, we design a
DL framework that predicts optimal phase shifts and precoding
matrices under various parameter settings. Simulation results
demonstrate that the DL-based approach accurately predicts the
optimal solutions and is significantly faster than conventional
methods. We also evaluate the impact of the essential parameters
on the system’s performance.

Index Terms—CNN, energy efficiency, mMIMO, NOMA, non-
convex optimization, phase shift, STAR-RIS.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) and non-
orthogonal multiple access (NOMA) are key technologies
for achieving high spectral efficiency (SE) [1] and energy
efficiency (EE) [2] in the next-generation of wireless networks.
However, as the number of users and antennas at the base
station (BS) increases, the computational complexity of the
resource allocation task also increases. To address this, deep
learning (DL) has been extensively applied for tasks such
as power allocation [3] and channel estimation [4] with fast
processing times. Nonetheless, larger cell dimensions or obsta-
cles between the BS and users can degrade signal quality. To
solve this limitation, simultaneously transmitting and reflecting
reconfigurable intelligent surfaces (STAR-RISs) have been
introduced to extend coverage and enhance signal quality

by flexibly configuring their elements and supporting 360°
coverage [5]. However, optimizing phase shifts is challenging
due to the large number of STAR-RIS elements. To tackle this
issue, a DL-based framework has been proposed to achieve
optimal phase shifts in mMIMO-NOMA networks [1].

Leveraging the potential synergy of STAR-RIS, mMIMO-
NOMA networks, and DL techniques, this paper focuses on
maximizing EE in mMIMO-NOMA networks with multiple
STAR-RISs to enhance signal quality at the users, followed
by a DL-based framework for real-time resource allocation.
The integration of DL and STAR-RIS within these networks
offers improved system performance with low complexity and
processing time. However, the impact of a combination of DL
and STAR-RIS on addressing the EE problem in mMIMO-
NOMA networks remains underexplored in existing research.
Thus, we consider a downlink of multiple users in mMIMO-
NOMA systems, where multiple STAR-RISs are deployed to
assist the incident waves from the BS to the desired users. The
main contributions of the paper are as follows:

o We formulate the energy efficiency maximization (EEM)
subject to the minimum individual data rate, maximum
power budget, and phase shift at the STAR-RIS con-
straints. Solving this problem is highly challenging since
it involves non-linear mixed-integer programming.

o To address the formulated problem, we begin by relaxing
the discrete variable (phase shift) into a continuous one
and decomposing it into two sub-problems: beamforming
and phase shift. We propose a bisection-based search
algorithm to solve the phase shift sub-problem and the
inner approximation method to handle the beamforming
sub-problem.

e To enable real-time operation, we develop a DL frame-
work using a CNN model to predict the optimal solution
under the developed algorithm.

o Simulation results show that the EE improvement of
the considered system, while the proposed DL-based
framework accurately predicts the optimal solution to the



EEM problem as the conventional method but within a
short execution time. Additionally, the impacts of the
essential parameters are evaluated thoroughly.

Notation: a, a, A denote the scalar, vectors, and matrices,
respectively. diag(A), ||.||, (.)* are diagonal matrix, Euclidean
norm of A, complex comjugate, respectively. R and C repre-
sent real part and complex numbers, respectively.

II. SYSTEM MODEL

A. System Description

We consider a downlink multi-users in multi-STAR-RIS-
assisted mMIMO-NOMA networks as illustrated in Fig. 1,
where a BS is deployed to serve simultaneously a set of near
users N = {UE,|n = 1,..., N} and a set of far users F =
{UEf|f =1,...,F} via a set of STAR-RISs K = {SRy|k =
1,..., K} using NOMA transmission. The BS, UE,,, and UE;
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Fig. 1. The considered multi-STAR-RIS mMIMO-NOMA system.

are equipped with Mg > 1, M,, > 1, and My > 1 antennas,
respectively. We consider mode switching (MS) at the STAR-
RIS, where it is equipped with MY + M = M, passive
elements allocating M'" for transmission and M} = M,. for
reflecting parts [6]. We assume the considered cell is divided
into three regions virtually, where BS is deployed in the center
of the cell. UE,, and UE; are deployed randomly at region 1
and region 3, while the STAR-RIS is deployed randomly at the
edge of the region 1. In the considered system, only UE,, has
direct communication to BS, whereas no direct communication
between BS to UE since natural obstacles in the region 2. It
should be noted that UE,, has better channel condition than
UE; since UE,, has two communication links.

B. STAR-RIS-assisted mMIMO

The BS transmits the signal x to UE,, and UE;, which
can be written as x =3y Wyz, + 3 o p Wz s, where
W,, € CMesxd and W € CMesxd are the linear precoding
from BS to UE, and UEy, respectively, z, € C4*1 and
zp € C with 1 < d < min{Mps, M,,, M;} are the
data information for UE,, and UEy, respectively. We define
W, £ [Wn]nej\/" W, S [Wf]fe]—', and W £ [W1W2] to
simplify the notation.

The equivalent channel gains between the BS and UE,,
denoted by G,,(®), and BS and UE;, denoted by G/(¥),
are expressed, respectively, as

én(@) = GB,n + Z GB,k@ka,na (1)
keX
G(¥) = Z G PGy, f, (2)
kEK

where Gg,, € CMnxMss s channel gain from BS to UE,,
Gp € CM:"xMszs g channel gain from BS to SRy with
reflection/transmission part, G, ,, € CM»*M:" is channel gain
from SRy, with reflection part to UE,, and Gy, ; € CMs x M
is channel gain from SR with transmission part to UEy.
The ® is the phase shift matrix of SRy with diagonal
reflection matrix being ® = diag(aid1, -, apprdane),
where et @prt = et with O, aer € (0,27] and W
is the phase shift matrix of SRy with diagonal transmis-
sion matrix being ¥ = diag(ait1,- -, aps=thpe), where
e = 70N with Oy pee € (0,27], while o is
phase shift amplitude of reflection/transmission. In this paper,
we consider the phase shift amplitude to be maximum (i.e.,
Qprt = Qe = 1). And also, we consider the phase shift of
transmission/reflection at each element of the STAR-RIS that
is a discrete values so that the number of phase shifts is subject
to the phase shift resolution. Then, the resolution of the phase
shift at each STAR-RIS can be written as n = 2b where b is
the number of bits used to quantize the number of phase shift
levels [7]. Consequently, a set of discrete phase shift values at
each element can be expressed as

where 6\ = 2m/n with A\ = {$,%}. The channel coefficient
matrix G = \/[)TJG, G € {GB)mG&k,Gk?n,Gka}, where
pg and G denote the large-scale and small-scale fadings,
respectively.

The signal received by UE, and UE; can be
expressed, respectively, as y, = G, ()W, z, +
Zn'eN\{n}AGn(‘p)Wn’xn' + Zfe]—' GfE<I>)fof + g,
yr = Gr(O)Wyzy + > perp Gr(®)Wpay +
Y nen Gn(¥)W, iz, + ny, where n,, and ny are additive
white Gaussian noise at UE,, and UEy, respectively, where
n ~ CN(0,10%) with 02 € {Jg,afp} and zero mean. From
the NOMA principle, the SINR at UE,, to subtract the UE
signal using successive interference cancellation (SIC) can be
expressed as

Ty Hé’n(cp)waQ
(W, @) = —— L, “4)
Zn, f (W, ‘I))
Zf’e}‘\{f} ||Gn((I))Wf’H2 +
Then, the SINR of UE,, to

where Z, ;(W,®) =
Zne/\/ HGn((I))WnHQ + 0721-
decode its own signal as

G (B)W.o 2

T (W, @) = ma (%)

SrerIGa(@)W|? +

nn(W, @)

[1]

where



Ywearin} [Gn(@)Wo |2 + o2 Different from UE,,
UE/; can decode its own signal directly yielding a SINR as
- |G (T)W |2
v (W, W) = T (6)
! ‘:‘f»f(wv )
where Z; (W, ¥) = Y perin G @)W e|? +
> nen |G (@)W, |2 + 2. The downlink SE of UE,, and
UE; in nat/sec/Hz can be expressed, respectively, as

Ro(W, ®) = In(l + 7% (W,®)), VneN, ()

n

Ry(W,¥) =In(1 4+~ (W, ¥)), VfeF. @8

C. Energy Efficiency Maximization

The main goal of this paper is to maximize the EE per-
formance in the considered system subject to individual SE,
maximum power budget at BS, and phase shift at STAR-RIS
constraints. To obtain the EE, we consider the total hardware
power consumption of the system as

P =(|W1|?+||Wa|?)e! + Mps Pig" + Pt

+ MTPftat + Z anstat + Z pr;tat’ )
neN feF

where € € (0, 1] represents transmit power efficiency, ng"
denote the dynamic power consumption at BS, which cor-
relates to the power radiation of all circuits in each active
radio-frequency chain, P5¥" is the static power at BS used
for a cooling system, while Pstat pstat and Pj‘?t“t denote the
hardware static power at SR, UE,,, and UEy, respectively.
Then, we denote the total power circuit in the system as
Pgt _ MBSP]tgign + P]gtsat + Mrpﬁtat + Zne./\/' anstat 4
> jer My Pgte*. Therefore, the EEM can be formulated as

P1 : Original Problem
ZnGN Rn(W, @) + Zfe}' 7Q’f(vva )

A
N (AR A D 2y

(10a)

st. R.(W,®)>R,, VneN, (10b)
R;(W,®) >Ry, VfeF, (10c)
[[Wo| 2+ [IW[|* < Pas, (10d)

Pprt € Q, Y € Q, (10e)

st + Qe = 1, (10f)

Qprt € {0,1}, Qpr € {0,1}, (10g)

where constraints (10b) and (10c) are the QoS for the SE
of UE, and UE; must be greater than the pre-defined
minimum requirement R, > 0 and R ¢ = 0, respectively.
Constraint (10d) indicates the total power of all users in
the system that must be less than equal to the maximum
power budget at BS. Constraint (10e) indicates the phase
shift at STAR-RIS that has a discrete value. Constraints (10f)
and (10g) represent the MS working criteria of STAR-RIS,
which is restricted to a binary value. Thus, it is clear that the
objective function in (15a) is non-convex with respect to W1,
W,, ® and ¥ is belonging to the class of mixed-integer non-

convex programming class, which presents very challenges in
finding its optimal solution.

III. THE PROPOSED EEM ALGORITHM

Actually, solving problem (10) is more complex than the
spectral efficiency problem in [1] since the EEM is mixed
integer non-convex fraction programming, which requires ex-
ponential complexity in finding its optimal solution. Nonethe-
less, we will show that the proposed algorithm based on the
IA method can efficiently solve the formulated EEM problem
through our transformations. One of the techniques to address
the discrete property is by relaxing it to a continuous one.
Thus, the relaxed form of problem (10) can be approximated
as

P2 : Relaxed

Sen Ru(W, ) + e Ry (W, 9)
(1WA 2 + [[Wa[2)e T + P&zt

EEMs- 2
W =

(11a)
st G € (0,27, (11b)
(10b), (10c), (10d), (101), (10g). (11c)

It should be noted that the problem (11) is fractional form
and non-convex. To address this problem, we decouple prob-
lem (11) into phase shift optimization and beamforming opti-
mization sub-problems and then address them alternatively.

A. Phase Shift Optimization Sub-Problem

In this paper, we address the phase shift optimization
sub-problem by fixing the beamforming variable. Thus, the
problem (11) can be re-expressed as

P3 : Phase Shift :

Rn @ R ‘I’
max EEMs-~ £ 2nen Rn(®) > rer Ry(®)
i (N + F)emt + P& (N + Fle ! + P
(122)
s.t.  (10b), (10c), (10f), (10g), (11b). (12b)

It can be shown that in the problem (12) the objective
function (12a) is concave while constraint (11b) is a linear
constraint. To address this problem efficiently, we propose a
Bisection Search Algorithm-based approach in Alg. 1.

Algorithm 1 The Proposed Bisection Search algorithm to
Solve sub-Problem (12)
Input: £, [.
Output: &}, ¥;.
Initialize the lower and upper bounds of ¢ and ;

1: repeat

2:  Calculate ¢* = (¢" + ¢V)/2; ™ = (- +¢Y)/2

3: Update ¢yt (6%); Uypre (V)

4:  Solve the problem (12);

5: until Convergence

It should be noted that since the optimal solution of phase
shift is continuous values, it cannot be directly applied to
the originally formulated problem. To address this issue,



we introduce the round function to the problem (12) after
achieving the optimal values as

& =16 +A], VkeK, (13)
where £€*) € {®7, ¥}, and A = (360/7)/2 is the rounding
step size. Once we achieve the optimal phase shift values,
the beamforming optimization sub-problem will be solved

alternately, which will be explained in the following sub-
section.

B. Beamforming Optimization Sub-Problem

Now, we are in the position of solving the beamforming
optimization sub-section. To approximate the non-convex parts
iteratively, we introduce a new auxiliary variable T > 0 which
satisfies the constraint

(IW]l? + [Wa]*)e ! + PEF < T, (14)
From the optimal value of phase shift obtained by solving
Alg. 1, the problem (11) can be re-expressed as
P4 : Beamforming
max EEMy £ )~ R, (
neN
s.t.  (10b), (10c), (10d).
We introduce another new auxiliary variables e
{en,es}nen rer being soft energy efficiencies and -~

{Yn,Vf}nen, rer being SINRs of UE, and UEy, respec-
tively. The problem (15) can be rewritten as

W)/T+ Y Rp(W

feF

1> 1>

W3 EEMs- 2 %en + Jé;ef (16a)
st. e (W) > 1/p, (16b)
Vet (W) > 1/, (16¢)
In(141/7,)/YT > ey, (16d)
1n(1+1/’yf)/T > ey, (16¢)

ln(l +1/v,) >R (16f)
In(1+1/v7) >R (16g)

(10d), (14). (16h)

To derive a more tractable form, we introduce w £ {wm F>
0}nenr, fer Which satisfy the convex constraint |G, W 4[> <
wn. . Let x(®) represent the feasible point of z at the -th
iteration of the iterative algorithm. By following Lemmas 1
and 2 in [8], the constraint (16b) can be approximated at the
k-th iteration as

Znn (W) /7 < £ (W), (17)
where |G, W,[2 > 2R{(G, W) (G,W,)} —
G W2 2 (W), E.(W) < Yer

(2 /TSN + (X072)/2) + Leny oy 1GaWall? +

2
o5

By doing the same way like (17), constraint (16c) can be
approximated as

(18)

Er. 1 (W) /vy < (W),

where [|G,W,[2 >
IG, W2 2 1 (W),
The function In(1 + 1/4)/Y in left hand side (LHS) of
constraints (16d) and (16e) is convex in (7, Y) which can be
approximated at ((*), Y(%)) point as [9, Eq. (18)]
In(1+1/y) _ 2n(1+ 1/7") 1
T = T (%) T ) (k) 1)
= /(T () 1)) ~ (1 -+ 1/50)T/ (T2
2 B (~,7), VT >0, ) > 0. (19)
For the two last constraints (16f) and (16g), they can be
approximated as [1, Eq. (34)]
In(141/7) > (1 + (")) + (* + 1)1
Y+ DT E AR G). 0
Based on the explanation above, we can approximate the

problem (16) by the following convex problem at iteration
K+ 1:

P5 : Convex Problem

2R {(Gy W) (GyW )} —

Waax - EEMy: ES %en + ;e f (21a)
st. |HWp|?2<wnyp, VneN, ffeF, (2lb)
B®) (4, T) > e,, VYneN, (21¢)

BW (ys, ) >ep, VfEF, (21d)

AW (y) >R, VneN, (21e)

AW (ys) >Ry, VfEF, 21D

(10d), (14), (17), (18). 21g)

In the end, we can summarize the proposed iterative algorithm
with low complexity in Alg. 2 including Alg. 1.

Algorithm 2 : Proposed IA Algorithm to Solve Problem (10)

1: Initialization: Set (W, ®, ¥) := 0, and generate an initial
feasible point (W) Y0 ~(0) ,(0)) randomly;

2: Output: EEMs-~ and (W*, ®*, ¥*).
3: repeat

4:  Find ®* and ¥* using Algorithm 1;

5

[§

7

Solve problem (21) to achieve (W™*, Y™ ~* w™);
: until Convergence
: Calculate EEMs~ in (10) based on (W*, &*, ¥*);

IV. DEEP LEARNING FRAMEWORK FOR EEM PROBLEM

In this section, we propose a novel DL-based CNN model
framework for the EEM problem in multi-STAR-RIS-assisted
mMIMO-NOMA networks as illustrated in Fig. 2. As shown
in Fig. 2(a), the CNN model learns by off-line the relationship
between the input parameter from problem (10) and optimal
solution as target variables, which is achieved from Alg. 2.
The scaling function is applied to standardize input data
between 0 and 1, ensuring stable gradient flow and faster
convergence of the CNN model. After completing the learning
process, the trained deep CNN model comprising weights
and biases can be utilized to predict the optimal precoding
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Fig. 2. The proposed DL-based CNN framework to the EE problem

matrix and the phase shift at the STAR-RISs whenever new
input parameters become available at the input model in real-
time with high accuracy as shown in Fig. 2(b). Contrasting
the conventional approach, the formulated problem must be
addressed by Alg. 2 to achieve the optimal solutions of the
phase shift of transmission/reflection at the STAR-RISs and the
precoding matrix. In the proposed DL framework, we consider
small-scale fading G, position of all users {UEESS,UE?SS},
position of all STAR-RISs SRfSS, the number of far users F,
the number of STAR-RISs R, the number of near users IV,
the number of antennas at BS Mpg, the number of antennas
at users {M,,, M}, the number of elements at STAR-RIS M,
and the number of bits quantization b as the input parameters
of CNN model to predict precoding matrix of near user W,,,
the precoding matrix of far user W, and phase shift of
transmission and reflection at STAR-RIS {®,., ®,.} as output
parameters. Thus, the input dimension of the CNN model is
R(MT X MBS) + N(Mn X MBS)(Mn X M,/Q) + F(Mf X
M, /2) 4+ 2N + 2F + 2R + 8, while the output dimension is
(N + F)(Mps x d) + RM,. The scaling is also applied in
the predicting phase to normalize the input data for the CNN
model, while inverse scaling restores the predicted values to
their original scale for accurate results.

I—) RD 2
Input

—>»{Conv (1 x 1)

L > rp1
Conv. layer

_+§ /@ @»@, ﬁlReLU

(1x3) (1x3) (1x1)

Output

| Concat

Fig. 3. The architecture of the Deep CNN design.

Fig. 3 illustrates the proposed model architecture of the
deep CNN design, where the deep CNN model is devel-
oped with two main residual dense (RD) parallel-connected
blocks. These blocks are designed to effectively capture input

deeper features by establishing multi-level connections among
feature maps. Each RD block is configured with multiple
convolutional layers, ensuring enhanced feature extraction and
efficient gradient flow. Within the RD blocks, the 1 x 1
dimensional convolution layer is applied to reduce dimen-
sionality while preserving essential features. The outputs from
various layers are aggregated using a concatenation (concat)
layer, ensuring a comprehensive fusion of features at different
processing stages. The fully connected (fc) layer transforms
the extracted features into the final prediction space. Dense
connections within the RD blocks mitigate the vanishing gradi-
ent problem, accelerate convergence, and enable more effective
learning. Additionally, the use of multiple RD blocks addresses
potential overfitting, fostering better generalization. This de-
sign ensures that the model provides accurate and efficient
predictions, even in real-time applications, by leveraging the
strengths of residual dense learning and feature aggregation.
Moreover, we used the rectified linear unit (ReLU) as an
activation function while all convolution and fc layers were
configured with 64 kernels and neurons, respectively.

V. SIMULATION RESULTS

To demonstrate the performance of the proposed algorithms
in solving the formulated problem in multi-STAR-RISs-assited
mMIMO-NOMA networks, we set the simulation parameters
as follows: cell dimension 500 m x 500 m, R, = Ry =1
bps/Hz, d; = 200 m, d = 100 m, M, = M; = 10, ng"
= 10 dBm, P§" = 15 dBm, and P:'t = P}ft“t =5 dBm.
The convex problem is solved using the SDPT3 solver and
the YALMIP toolbox within the MATLAB environment [1].
A dataset is generated with a ratio of 90:10, which is used for
training and testing, respectively.

Fig. 4(a) demonstrates the effectiveness of Alg. 2 in solving
problem (10) under varying maximum power budgets and
number of BS antennas. The Alg. 2 converges to the optimal
values within 10 iterations by consistently finds improved
solutions in each iteration. As the maximum power budget
increases, the average EE also improves, reflecting the propor-
tional relationship between EE performance and SE, as defined
by the objective function (15a). Additionally, increasing the
number of BS antennas further enhances the average EE by
leveraging the higher degrees of freedom (DoF) available in
the network.

Fig. 4(b) shows the impact of the epoch on the root
mean square error (RMSE) with a variation datasets. As
depicted in Fig. 4(b), the RMSE decreases as the number of
epochs increases due to the DL model refining its weights
and biases throughout the learning process. The proposed
CNN model achieves the lowest RMSE, surpassing the DNN
model [6], demonstrating its superior ability to approximate
high-dimensional datasets. Furthermore, all models (DNN and
CNN) trained with a larger dataset outperform the one trained
with a smaller dataset, as it can learn more features and
patterns from the additional data.

Fig. 4(c) illustrates the average EE as a function of the
number of STAR-RISs K with varying numbers of STAR-
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Fig. 4. Convergence of Alg. 2, RMSE versus epoch and impact of K on the average EE

RIS elements. As the number of STAR-RISs increases, the
average EE improves due to the enhanced signal quality at the
users. Similarly, increasing the number of STAR-RIS elements
further boosts the average EE since it allows the system to
better focus the desired signal toward the users. Moreover,
the conventional without (w/0) NOMA is the worst performer
since it requires separate time-frequency resources for each
user. Additionally, the DL-based approach accurately predicts
the optimal precoding matrix and phase shifts at the STAR-
RIS, enabling it to achieve strong EE performance.

TABLE I
THE EXECUTION TIME OF ALG. 2 VERSUS DL-BASED APPROACHES

Number of UEs  Alg. 2-based  DL-based
8 523s 0.0127 s
12 78.6 s 0.0129 s
16 102.1 s 0.0131 s

In the end, we evaluate the execution time of the DL-based
approach in obtaining the optimal solution as shown in Table I.
The results indicate that the DL-based approach achieves the
optimal solution with a less execution time, even as the number
of users increases. In contrast, the Alg. 2-based approach takes
significantly longer as the number of users grows. The reason
is that the DL-based approach leverages a mapping function
to directly predict the optimal value, whereas the Alg. 2-based
approach requires multiple iterations to obtain the optimal
solution, resulting in higher execution time.

VI. CONCLUSIONS

This paper studied DL-based EEM in STAR-RISs-assisted
mMIMO-NOMA networks. We formulated the problem of
jointly optimizing the precoding matrix and STAR-RIS phase
shifts to maximize energy efficiency, subject to the BS’s power
budget, STAR-RIS phase shift constraints, and minimum QoS
requirements belonging to the mixed-integer programming
class. To address this problem, we decoupled it into two
sub-problems, phase shift, and beamforming optimization,
addressing them separately. For phase shift optimization, we
employed a bisection search algorithm, while the beamforming
problem was transformed into a more tractable non-convex
form and solved using an IA based on the inner approximation

method. To enable real-time optimization, we designed a
DL framework to predict optimal phase shifts and precoding
matrices under various parameter settings. Simulation results
demonstrated that the DL-based approach accurately predicted
optimal solutions and performed significantly faster than con-
ventional methods. We also evaluated the impact of essential
parameters on the system’s performance.
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