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Abstract—The merit in adapting a Graph Neural Network
(GNN) for image analysis is that it can capture long-range
dependencies between distant parts of the image. This is par-
ticularly important in domains such as medical imaging, where
it is crucial to distinguish between organs and/or normal and
abnormal regions for a disease diagnosis. While GNNs offer
significant benefits, they necessitate preprocessing techniques to
effectively represent images as graphs. Several techniques are
proposed in the literature to address this; however, their reliance
on human intervention limits their applications. Therefore, this
work proposes a data aided technique that complements the
model with prior knowledge of the abnormal region location
within the image. Specifically, we divide an image into patches
and use a deep learning-based segmentation model to extract
the mask of abnormal regions to learn patch, mask, and position
embeddings for graph construction. This graph is fed into a GNN
for multiclass classification of breast cancer in ultrasound images.
Simulation analysis shows that the proposed segmentation-aided
GNN model achieved better classification performance in terms
of various evaluation metrics compared to existing models. For
example, compared to existing GNN models that do not require
additional data, our model achieved 4% better accuracy score.

Index Terms—GNN, medical image, classification

I. INTRODUCTION

Deep learning (DL) models keep improving for natural
image classification in terms of their performance, number of
parameters, floating-point operations, and training and infer-
ence speed. Consequently, their applications are extended to
other computer vision-related domains. Several studies have
implemented such DL models for medical image analysis. For
example, ResNet [1] was used to detect colorectal cancer using
colon glands images [2], MobileNet [3] was used for detecting
brain tumours using MRI images [4], InceptionResNet [5]
was used to detect COVID19 infection using X-ray and MRI
images [6], VGG [7] was used to detect breast cancer in
histopathology images [8], DenseNet [9] was used for medical
image classification using mammography and osteosarcoma
histology images [10], and EfficientNet [11] was used to detect
tuberculosis in X-ray images [12].

In medical imaging, it is often challenging to train a DL
model from scratch due to the scarcity of data. To deal with
this, transfer learning and data augmentation techniques can
be leveraged, as demonstrated in [13]. Besides data deficiency,
medical image classification poses other challenges, such as
medical images often being low-resolution grayscale images
of internal body structure. In these images, organs and blood

vessels frequently exhibit similar intensities, thus complicating
the classification process. Therefore, Graph Neural Networks
(GNN) are proposed that can distinguish different organs
while capturing long-range dependencies between distant parts
within the image. For example, [14] proposed a data-aided
GNN model for chest X-ray image classification that uses
gaze-point data to learn information relevant to a disease.
Incorporating gaze-points data with their GNN model achieved
better performance than their counterparts; however, generat-
ing such data requires expert intervention, thus limiting the
applications of such data-aided GNN models.

In this paper, we introduce a data-aided method that uses
a segmentation mask of an image to prepare it as an input
for a GNN-based ultrasound image (USI) classification. The
USI is initially processed to generate a masked image where
some pixel intensity values are set to zero, while others remain
non-zero [15]. The mask is for the tumor only, i.e., the USI
that has tumor used segmentation to create the mask, the
normal class has no mask. In our proposed system, the first
step is patch embedding, in which the USI images and the
segmented masks are converted into patches, which are then
processed by a transformer model to extract features from
them. Alongside the patch embedding, positional embedding
and mask embedding are utilized to construct a graph. This
graph is subsequently fed into a GNN, which utilizes the
entire graph in what is known as a graph-level task to make
predictions. Compared to our previous work [15], where we
implemented a segmentation-aided GNN model for disease
classification in chest X-ray images, we implemented it for a
multiclass tumor classification in ultrasound images. Also, in
our previous work, supplementary data was used to distinguish
organs (that is, lungs) from the rest of the image, in this work,
it is used to distinguish normal and abnormal regions (that is,
tumor) to complement the GNN model with prior knowledge
of the tumor location within the image. For comparison, we
evaluate the performance of our model using metrics such as
accuracy, precision, F1 score, recall, and specificity.

II. PROPOSED METHOD

This section provides an overview of the architecture of our
proposed segmentation aided classification model for disease
diagnosis in BUSI using GNNs. The overall schematic of our
proposed model is outlined in Fig. 1, which is divided into two
main modules: the graph generation module and GNN-based
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Fig. 1: An illustration of the proposed segmentation-aided
classification scheme that utilizes image segmentation mask
to give it a graph representation for GNN-based disease
prediction in ultrasound images.

classification module. The first module construct a graph by
using the actual image and its corresponding mask while the
second module uses this generated graph for classification. The
GNN updates and aggregates data from the node to create an
intricate feature matrix of the entire graph. The whole graph
is used for the prediction task, which is known as graph level
classification. Each stage of this process is outlined below.

A. Graph Representation

For graph representation, the proposed method utilizes two
types of input data: the BUSI and its corresponding mask.
The mask data, which isolates the tumor area, differs from
the typical regular grid structure of an image. Additionally,
this mask serves as the source of attention information. To
construct a graph, the mask and image data are transformed
into feature vectors using the following embedding system.

1) Patch Embedding: In an image Jj, ., the dimensions,
comprising the number of rows and columns, can be expressed
as the products of two integers, with h = p X ¢ for rows and
w = 7 X ¢ for columns. Consequently, the image can be divided
into P = p x r square blocks, where each block contains ¢
pixels [15]. An image J € R**" is divided into P patches,
denoted as X = {x1,x2,...,bp}, with each patch z; € R9*¢
for j =1,2,..., P. For each patch z;, a feature vector f; €
RP is derived to encapsulate local image characteristics [16]:

Y/ = A(xy), (1)

where A(+) is a function designed to extract features from im-
age patches, as outlined in [16]. For enhanced computational

efficiency, we consider each patch as a graph node rather than
treating individual pixels as nodes.

2) Mask Embedding: This subsection elaborates on the
mask creation and embedding methods employed in our sys-
tem. In the domain of medical image analysis, segmentation
distinguishes pixels that represent lesions or organs from those
that form the background [15]. The isolation of these regions
focuses attention on the areas of interest, ensuring that only
tumor regions are emphasized, thereby reducing the likelihood
of erroneous identifications by the model. For this purpose,
deep learning-based automatic segmentation models can be
leveraged to eliminate the experts intervention. Similar to the
input image, the masked image is also partitioned into patches
of size M x M. Following [14], each patch P; in the masked
image is processed in (2) to represent its attention features.

Y=Y mis;t)), )

(sj,t;)EP;

where, mys, ;) is a pixel value at position (s;,t;) in the
masked image and YjT is the processed mask.

3) Position Embedding: GNN considers features as un-
ordered nodes during graph processing, thus we employ the
position embedding technique described in [17] to retain the
positional information of the original image. The positional
embedding approach involves two steps. Initially, a learnable
absolute positional encoding vector (e; € RP) is added to the
feature vector (YJJ —&—YjT). Subsequently, the relative positional
distance between nodes, computed as e;frej, is utilized as a
distance metric within the k-nearest neighbor algorithm to
identify adjacent nodes for graph construction.

B. Graph Construction

A graph G = {V, E'} is constructed using the set of vertices
(V) and edges (E) defined in (3) and (4), respectively. The
vertices V' are composed of the mask embedding Y;’, position
embedding Y;T and graph feature vector v;

v; =Y + YT t e 3)
To define the edges of the graph, we use k-nearest neighbors
E = {(vi,v) | v € K(v)). 4)

The K (v;) represents the neighbors of v;.

C. Graph Neural Network

The proposed model includes L graph processing blocks,
which draw inspiration from [17]. These blocks incorporate an
average pooling layer along with a graph classification head,
enhanced by multiple fully connected (FC) layers and a graph
convolution layer (GCN) as detailed in [18]. If a graph is
denoted as N, with D-dimensional feature vectors, and the
input of the graph at block t is A* = [a, b, ..., ab] € RPXD,
the graph processing block outputs A € RP*D as:

U' = ga(y(¢1(2"))) + Z°, (5)
At = ¢4(p3(UY)) + U, (6)



Here, ¢ denotes the graph convolution and - denotes FC
layers. U? represents the intermediate output after the first
shortcut connection, and M' = ~;(V") is the input for
the graph convolution layer. Hence, the graph convolution
St = ~y(M?) is constructed as:

Ji =W max({mj —m} | j € K(m})}). 7

Here, W is the learnable weight matrix for updating features
of nodes. The aggregation used here is the max function,
which aggregates the maximum features from the i-th node’s
neighbors. Thus, the graph convolution aggregates neighbors’
feature information into the node feature, and finally, the
classification head, which is a series of FC layers with a
softmax function, predicts the probability of each category.

III. SIMULATION RESULTS
A. Experimental Setup

The experiments were conducted on a Windows PC
equipped with an Intel i5 CPU and an NVIDIA RTX 3060
GPU using PyTorch. The AdamW optimizer [19] was selected
for the experiments. For model hyperparameters, we followed
the training setup of [14]. Also, during training, the model
with the highest accuracy was saved as our best model.
For baselines, we considered a [14]’s GNN model and the
implementation of different CNN models in [13].

B. Dataset

For the experiments, we used a publicly available BUSI
dataset [20], which comprises 780 samples and their masks,
divided into three classes: Normal, Benign, and Malignant.
The original images are of size 933 x 571, all in grayscale,
which we resized to 224 x 224 using random center crop before
partitioning them into patches. Besides random cropping, we
applied random flip and rotation to the training set as our
data augmentation technique. Fig. 2. shows example images
from our dataset for each class along with their corresponding
masks and preprocessing to obtain mask embedding.

C. Performance Analysis

Table I summarizes a detailed performance of proposed
model in terms of parameters, data size, accuracy, preci-
sion, recall, Fl-score, and specificity. For the baseline, we
considered conventional CNN methods (such as DenseNet-
121, ResNet-50, MobileNet-V2, InceptionResNet-V2, VGG-
16, and Inception-V3 models) and [13] implemented on the
same dataset. The metric scores referenced are directly re-
ported from source [13], except for [14], which we obtained
by running their open-source code. Since gaze data was
unavailable for this dataset, we executed the code without
incorporating gaze data. Following the model architecture of
[14], our proposed model employs a transformer model to
learn patch embedding, and a GNN model to process graph
representation of an image for the classification. From Table I,
it is evident that our proposed method surpasses all the CNN
and GNN models except [9], whose accuracy is 1% better than
ours. This can attributed to their augmented dataset, which is

Fig. 2: Example images for each label from the dataset
with preprocessing results: (a) original ultrasound image, (b)
corresponding masks of the tumor region, (c) and (d) are center
cropped images and masks, respectively, (e) combination of
segmented regions of the cropped image and mask, and (f)
mask embeddings. Rows correspond to Benign, Malignant,
and Normal class examples, respectively.

5x larger than the one used in this study, and the large number
of parameters used in their model. Also, compared to [14]’s
GNN model, our proposed model achieved better performance
across all metrics. It is worth mentioning that their GNN
model is a data-aided model, which requires gaze-points data
to learn the abnormal region locations for better performance.
Supplementing this model with gaze may improve their model
performance. However, in practice, it is difficult to acquire
such gaze-points data without experts intervention. On the
other hand, proposed method can be readily extended to any
dataset by leveraging deep learning based segmentation model.
In addition, to analyze performance of proposed model for
different types tumors in comparison with existing GNN model
[14], Fig. 3. plots the confusion matrix and Receiver Operating
Characteristics (AUC) curves. It can be observed that proposed
method efficiently differentiated the benign and malignant
classes from the normal class.

IV. CONCLUSION

This paper proposed a novel segmentation-aided medical
image classification framework leveraging Graph Neural Net-
works (GNN). Our approach utilized ultrasound images and
their corresponding masked images to construct a graph, which
the GNN processes for disease classification. A fundamen-
tal limitation of existing data-aided GNN techniques is that
they require gaze points data, which is not always readily
available and rely on experts intervention to generate such
data. Proposed method deal with it by using deep learning-
based automatic mask generation to aid the GNN model in
classification. Results showed that proposed model is effective,
outperforming several deep learning and existing data-aided
techniques in terms of accuracy, precision, recall, Fl-score,
specificity and average AUC scores. In the future, we are
interested to implement a more efficient technique to process
the mask data for graph representation.



TABLE I: Performance analysis of proposed segmentation-aided classification model with existing deep learning techniques
on the same dataset using different evaluation metrics.

Methods Parameters (x10%) Data Size  Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%)
ResNet-50 [1] 26.6 85.08 80.92 81.16 81.00 89.54
MobileNet-V2 [3] 35 89.03 88.83 90.50 89.30 94.61
InceptionResNet-V2 [5] 55.9 92.61 88.17 92.00 89.50 95.82
VGG-16 [7] 138.4 3,900 93.97 92.83 94.83 90.50 97.59
Inception-V3 [21] 22.9 89.90 90.77 89.83 89.83 94.35
DenseNet-121 [9] 8.1 95.48 95.00 94.67 94.8 97.28
CNNTF [13] 2.789 92.46 94.06 92.59 92.59 92.15
GNN [14] 9.69 780 90.44 88.20 90.51 89.26 95.04
Proposed Method 2.2 94.50 92.62 91.73 92.16 94.88
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Fig. 3: Evaluation of proposed and [14]’s GNN model on the

BUSI dataset. For each model, the confusion matrix and ROC
curves are in the first and second columns, respectively. The
metrics in the first and second rows are for [14] and proposed
model, respectively. The labels 0, 1, and 2 represents the
Benign, Malignant and Normal classes in the dataset.
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