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Abstract—The integration of multisensory, particularly the 

fusion of visual and tactile inputs, plays a crucial role in human 

perception and environment interaction. Despite its importance, 

the neural mechanisms underlying visuo-haptic integration 

remain poorly understood. This study investigates the brain's 

functional connectivity during visuo-haptic tasks within virtual 

environments using electroencephalography (EEG) and graph 

theoretical analysis. We collected EEG data from participants 

engaged in tasks requiring simultaneous processing of visual 

and tactile stimuli. Functional connectivity was constructed 

from the EEG signals, and we analyzed key graph theoretical 

metrics to characterize the network’s properties. Specifically, in 

the tactile-only condition, we observed decreased global 

efficiency and small-worldness in both beta and theta frequency 

bands, accompanied by an increase in characteristic path length. 

In addition, strength, local efficiency, and clustering coefficient 

were diminished in the tactile-only condition, compared to 

conditions with visual input. However, we found no significant 

differences in brain network topology across different tactile 

feedback modalities. These results provide novel insights into 

how the brain’s dynamic coordination of multisensory inputs 

and establish a solid foundation for future investigations of 

visuo-haptic processing using graph theoretical approaches. 
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I. INTRODUCTION 

The integration of visual and haptic information is 
fundamental to human perception and interaction with the 
environment. Visuo-haptic interaction, which combines visual 
input with tactile sensation and proprioception, enables us to 
perform complex tasks ranging from simple object 
manipulation to sophisticated motor skills [1]. This 
multisensory integration process relies on intricate neural 
networks that coordinate information from different sensory 
modalities, yet the underlying mechanisms of these networks 
remain incompletely understood. 

Recent advances in neuroimaging and 
electrophysiological techniques have opened new avenues for 
investigating brain function and connectivity. 
Electroencephalography (EEG), with its high temporal 
resolution, offers a unique opportunity to investigate the rapid 
dynamics of neural processes during visuo-haptic interaction 
[2, 3]. Moreover, the application of graph theory to 
neuroscience has emerged as a powerful approach to 

characterize the complex network properties of the brain, 
providing insights into its functional organization and 
information processing capabilities [4]. This approach 
represents brain activity as a network where EEG electrodes 
serve as nodes, and functional connections between brain 
regions form edges. Various network metrics, such as 
clustering coefficient, strength, and efficiency, can then be 
calculated to characterize the network's properties [5]. 

While previous studies have investigated either visuo-
haptic integration or graph theoretical analysis of EEG data 
separately [6-9], there remains a significant gap in research 
that combines these approaches to elucidate functional 
connectivity patterns during visuo-haptic tasks within virtual 
environments. This study aims to bridge this gap by 
employing graph theoretical analysis of EEG-based functional 
connectivity to examine the neural mechanisms involved in 
visuo-haptic interactions. Specifically, we focus on 
characterizing the functional connectivity networks associated 
with visuo-haptic interactions using EEG and graph theorical 
approaches. Our goal is to examine how network properties 
change under varying conditions of haptic feedback 
processing. Furthermore, we investigate the frequency-
specific changes in network topology during visuo-haptic 
tasks, providing insights into the underlying neural 
mechanisms that facilitate sensory integration. 

II. METHODS 

A. Participants 

Thirteen healthy volunteers participated in this study. All 
participants were right-handed and had normal or corrected-
to-normal vision. None of the participants reported a history 
of neurological or psychiatric disorders. Written informed 
consent was obtained from all participants before the 
experiment. The study protocol was approved by the Kyung 
Hee University Institutional Review Board (IRB: #KHGIRB-
23-427). 

B. Experimental Setup and Protocol 

The study used a mixed-methods approach to investigate 
visuo-haptic integration mechanisms across both virtual and 
physical environments. The experimental protocol was 
structured into two primary phases: (1) virtual reality (VR) 
interactions, which systematically evaluated the influence of 



varying haptic feedback modalities in virtual environments 
and (2) real-world interactions, which examined the reciprocal 
relationship between visual input and haptic feedback under 
controlled conditions. In the VR phase, participants engaged 
with virtual interfaces while receiving different levels of 
haptic feedback, allowing for the assessment of how tactile 
sensations influence user performance and perception in 
virtual spaces. The real-world phase investigated the 
complementary aspect by manipulating visual input 
conditions during physical interactions, enabling the 
examination of how visual information modulates haptic 
perception and motor control. Both experiments utilized a 
numeric keypad typing task as the standardized interaction 
paradigm. All participants completed the conditions in a 
predetermined sequence to maintain consistent experimental 
progression and control for order effects.  

During the VR interactions, participants were equipped 
with a head-mounted display (HMD; Meta Quest 3) and 
performed typing operations on virtual keypads within a 
carefully designed VR environment. The experimental 
protocol comprised four distinct input methods, each testing 
different aspects of haptic interaction: (i) natural hand tracking 
without haptic feedback, which relied solely on the HMD's 
built-in hand tracking capabilities (NoHaptic); (ii) standard 
VR controller interaction using the Meta Quest 3 controller, 
providing basic vibrotactile feedback (BasicHaptic); (iii) 
enhanced tactile feedback delivered through specialized 
haptic gloves (bHaptics TactGlove), which provided localized 
vibrotactile sensations to fingertips during key presses 
(EnhancedHaptic); and (iv) a synchronized digital twin 
configuration where participants' real-world typing actions 
were precisely mirrored in the virtual environment, creating a 
direct correspondence between physical and virtual 
interactions (TwinHaptic). 

During the real-world interactions, participants performed 
standardized typing tasks on physical numeric keypads under 
three distinct visual conditions to examine the relationship 
between visual input and tactile perception. The conditions 
were (i) tactile-only condition (TO), where participants were 
blindfolded to isolate pure tactile feedback without visual 
input; (ii) mixed-reality condition (MR), where participants 
viewed a VR environment precisely synchronized with 
physical objects through digital twin technology, enabling the 
manipulation of visual representation while maintaining 
consistent tactile feedback; and (iii) natural-vision condition 
(NV), where participants had unobstructed visual access to the 
physical keypad, serving as a baseline for natural visuo-haptic 
integration. 

C. EEG Data Acquisition  

EEG data were continuously recorded using an Emotiv 
EPOC+ wireless headset equipped with 14 Ag/AgCl 
electrodes positioned according to the International 10-20 
system (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, and AF4). Reference electrodes were placed at P3 and P4 

and electrode impedances were maintained below 5 kΩ, with 
saline solution applied as needed to ensure optimal signal 
conductivity.  

Raw EEG signals were digitized at a sampling rate of 128 
Hz with a 16-bit resolution. Signal quality was continuously 
monitored through the Emotiv SDK interface, with markers 
automatically inserted to indicate any periods of poor signal 
quality (impedance >10 kΩ or signal artifacts). Sessions were 
paused and electrodes readjusted if signal quality dropped 
below acceptable thresholds. EEG data were collected 
continuously during each condition, resulting in a total of 91 
EEG recordings across all conditions (13 participants × 7 
conditions). 

D. EEG Preprocessing  

EEG data preprocessing was performed using the open-
source EEGLAB toolbox in MATLAB environment (R2024a). 
The preprocessing pipeline followed a systematic approach to 
ensure data quality and reliability. Initially, electrical line 
noise was removed using a 60 Hz notch filter with a 2 Hz 
bandwidth. The data then underwent rigorous channel quality 
assessment, where channels were identified as problematic if 
they met any of the following conditions: flatline periods 
exceeding 5 seconds, z-scored noise-to-signal ratio above a 
threshold of 4, or inability to be predicted from neighboring 
channels for at least 80% of the recording duration [10]. To 
address signal drift, a high-pass filter ranging from 0.25 to 
0.75 Hz was applied, followed by re-referencing to the 
average reference to minimize reference bias. Artifact 
removal was accomplished through independent component 
analysis (ICA) using extended infomax algorithm, where 
components representing non-neural activity (such as eye 
movements, muscle artifacts, or electrical noise) were 
automatically identified and removed if their artifact 
probability exceeded 80%. Subsequently, any previously 
identified bad channels were reconstructed through 
interpolation based on the signal patterns of surrounding good 
channels. After completing the preprocessing pipeline, 10 
datasets were excluded from further analysis due to 
persistently poor signal quality identified during the quality 
assessment process. For subsequent analyses, the EEG data 
were categorized into conventional frequency bands: delta 
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), 
and gamma (30-50 Hz). 

E. Functional Connectivity Construction 

We constructed undirected, weighted functional 
connectivity by calculating coherence between all pairs of 
EEG channels at each frequency band. Coherence quantifies 
the degree of synchronization between two signals, ranging 
from 0 (no synchronization) to 1 (complete synchronization). 
For each frequency band, we generated a 14×14 coherence 
matrix, resulting in 81 coherence matrices per frequency band. 
Across all frequency bands, we obtained a total of 405 
functional connectivity matrices. Each matrix element �ÿĀ 
represents the coherence value (weight) between channel ÿ and 
channel Ā
F. Graph Theoretical Analysis 

To analyze the topological characteristics of the brain 
networks during visuo-haptic tasks, we computed eight graph 
theoretical measures [11]: characteristic path length (L), 
global efficiency (GE), small-worldness (SW), strength (S), 
betweenness centrality (BC), eigenvector centrality (EC), 
local efficiency (LE), and clustering coefficient (CC). These 

 
Fig. 1. Experimental setup where participants use a haptic glove in a 
virtual environment while wearing a head-mounted display (HMD). 

 



metrics were calculated using the Brain Connectivity Toolbox 
[5]. 

G. Statistical Analysis 

To compare graph theoretical measures between visual 
and tactile tasks, we conducted a one-way analysis of variance 
(ANOVA), followed by post-hoc pairwise comparisons using 
Games-Howell tests. The false discovery rate (FDR) 
correction  was applied to control for multiple comparisons 
[12]. Statistical significance was determined at a p-value 
threshold of 0.05.  

III. RESULTS 

A. Global Network Measures  

Fig. 2 shows three global network measures (characteristic 
path length, global efficiency, and small-worldness) during 
the VR and real-world interactions. During the real-world 
interactions, in the both theta and beta bands, both global 
efficiency and small-worldness were significantly reduced in 
the TO condition compared to the MR and NV conditions. In 
the theta band, we found that characteristic path length was 
significantly higher in the TO condition compared to both the 
MRI and NV conditions in the theta band. However, no 
significant differences were found in any of the global 
measures for the VR interactions.   

B. Local Network Measures 

Graph theoretical analysis revealed significant differences 
in local network measures (CC, LE, BC, EC, and S) across 
different experimental conditions. Most notable differences 
were observed in the beta and theta frequency bands during 
real-world interactions (Fig. 3). In Fig. 3(A), the TO condition 
exhibited distinct patterns of network topology compared to 
the MR condition. For example, in the beta band, the TO 
condition showed significant decreases in CC, LE, and S in 
the temporal (T8), parietal (P8), and frontal (F7, F3, FC6, FC5) 
regions. However, an increase in EC was observed in the alpha 
band in the TO condition. In Fig. 3(B), compared to the NV 
condition, the TO condition showed lower CC, LE, and S in 
the frontal (F7, F4, FC5, FC6), temporal (T7, T8), and 
occipital (O1) regions in the theta band. Similarly, in the beta 
band, the TO condition displayed reduced CC, LE, and S in 

the frontal (FC5, FC6), temporal (T7, T8), and parietal (P8) 
regions, along with higher BC in the occipital (O1) region. 
Similarly, in the gamma band, reduced strength was found in 
the frontal (FC6) region was observed in the TO condition.  

In the analysis of VR interaction, minimal differences 
were observed between different haptic feedback methods, 
with one notable exception: in the delta band, higher EC in the 
temporal region (T7) during the EnhancedHaptic condition 
was observed compared to the TwinHaptic condition, 
suggesting potentially enhanced sensory processing with 
specialized haptic feedback. 

IV. DISCUSSION 

Our findings suggest that the visual input plays a crucial 
role in shaping brain network dynamics during visuo-haptic 
interactions. The significant decrease in global efficiency and 
increase in characteristic path length in the theta and beta 
frequency bands during the TO condition indicate reduced 
information processing efficiency and increased neural 
transmission delays. The lower small-worldness during the 
TO condition implies a less efficient and specialized network, 
suggesting that the brain may rely on less efficient processing 
strategies when visual input is absent. Interestingly, the type 
of haptic input did not significantly impact brain network 
dynamics in VR, suggesting that the brain may process tactile 
information similarly regardless of the specific input device.  

In the TO condition, we found decreased CC and LE in the 
parietal (P8) and temporal (T8) areas in the beta band, 
compared to the MR condition. Also, the TO condition 
showed reduced  CC, LE, and S in the frontal (FC5, FC6), 
temporal (T7, T8), and parietal (P8) in the beta band, 
compared to the NV condition. Similarly, in the theta band, 
lower CC, LE, and S were identified in the temporal (T7, T8), 
frontal (F7, F4, FC5, FC6), and occipital (O1) regions in the 
TO condition. These findings highlight the importance of 
these regions in visual processing and suggest that their 
network activity diminishes in the absence of visual input [13]. 

Our results showed that different haptic input methods 
have a similar impact on brain network dynamics during VR 
interactions, suggesting that the specific type of haptic input 

 
Fig. 2.  Global graph theoretical measures across different visuo-haptic tasks for each frequency band: (A) characteristic path length, (B) global efficiency 
and (C) small-worldness during the VR interactions as well as (D) characteristic path length (E) global efficiency and (F) small-worldness during the real-
world interactions.  



did not appear to significantly affect the overall brain network 
topology. This implies that both haptic gloves and controllers 
can effectively provide tactile feedback that is perceived 
similarly to real-world touch.  

V. CONCLUSION 

This study investigated the topological characteristics of 
EEG-based functional brain networks during varied visual 
and tactile input conditions. Through graph theoretical 
analysis of brain network connectivity, we found distinct 
patterns of brain network topology across different 
experimental conditions. In real-world interactions, 
significant differences were observed in beta and theta 
frequency bands during the tactile-only condition compared 
to conditions with visual input. Notably, the presence of 
visual input was associated with increased node centrality 
primarily in the frontotemporal regions, likely reflecting 
enhanced multisensory processing and integration. However, 
the specific effects of different tactile feedback modalities, 
including direct hand tracking, controller, and haptic glove, 
on brain network topology was less pronounced. This finding 
suggests that current haptic technology may simulate natural 
tactile sensations in virtual environments, achieving neural 
responses similar to bare-hand interactions.  

Future research should focus on the neural mechanisms 
underlying visuo-haptic integration by investigating the role 
of specific brain regions and the temporal dynamics of brain 
network connectivity. Additionally, exploring the impact of 
varied haptic feedback parameters (intensity, duration, 
frequency) on brain network dynamics could provide further 
insights into the neural basis of multisensory integration. 
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