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Abstract—The integration of multisensory, particularly the
fusion of visual and tactile inputs, plays a crucial role in human
perception and environment interaction. Despite its importance,
the neural mechanisms underlying visuo-haptic integration
remain poorly understood. This study investigates the brain's
functional connectivity during visuo-haptic tasks within virtual
environments using electroencephalography (EEG) and graph
theoretical analysis. We collected EEG data from participants
engaged in tasks requiring simultaneous processing of visual
and tactile stimuli. Functional connectivity was constructed
from the EEG signals, and we analyzed key graph theoretical
metrics to characterize the network’s properties. Specifically, in
the tactile-only condition, we observed decreased global
efficiency and small-worldness in both beta and theta frequency

bands, accompanied by an increase in characteristic path length.

In addition, strength, local efficiency, and clustering coefficient
were diminished in the tactile-only condition, compared to
conditions with visual input. However, we found no significant
differences in brain network topology across different tactile
feedback modalities. These results provide novel insights into
how the brain’s dynamic coordination of multisensory inputs
and establish a solid foundation for future investigations of
visuo-haptic processing using graph theoretical approaches.
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I. INTRODUCTION

The integration of visual and haptic information is
fundamental to human perception and interaction with the
environment. Visuo-haptic interaction, which combines visual
input with tactile sensation and proprioception, enables us to
perform complex tasks ranging from simple object
manipulation to sophisticated motor skills [1]. This
multisensory integration process relies on intricate neural
networks that coordinate information from different sensory
modalities, yet the underlying mechanisms of these networks
remain incompletely understood.

Recent advances in neuroimaging and
electrophysiological techniques have opened new avenues for
investigating brain function and connectivity.
Electroencephalography (EEG), with its high temporal
resolution, offers a unique opportunity to investigate the rapid
dynamics of neural processes during visuo-haptic interaction
[2, 3]. Moreover, the application of graph theory to
neuroscience has emerged as a powerful approach to

characterize the complex network properties of the brain,
providing insights into its functional organization and
information processing capabilities [4]. This approach
represents brain activity as a network where EEG electrodes
serve as nodes, and functional connections between brain
regions form edges. Various network metrics, such as
clustering coefficient, strength, and efficiency, can then be
calculated to characterize the network's properties [5].

While previous studies have investigated either visuo-
haptic integration or graph theoretical analysis of EEG data
separately [6-9], there remains a significant gap in research
that combines these approaches to elucidate functional
connectivity patterns during visuo-haptic tasks within virtual
environments. This study aims to bridge this gap by
employing graph theoretical analysis of EEG-based functional
connectivity to examine the neural mechanisms involved in
visuo-haptic interactions. Specifically, we focus on
characterizing the functional connectivity networks associated
with visuo-haptic interactions using EEG and graph theorical
approaches. Our goal is to examine how network properties
change under varying conditions of haptic feedback
processing. Furthermore, we investigate the frequency-
specific changes in network topology during visuo-haptic
tasks, providing insights into the underlying neural
mechanisms that facilitate sensory integration.

II. METHODS

A. Participants

Thirteen healthy volunteers participated in this study. All
participants were right-handed and had normal or corrected-
to-normal vision. None of the participants reported a history
of neurological or psychiatric disorders. Written informed
consent was obtained from all participants before the
experiment. The study protocol was approved by the Kyung
Hee University Institutional Review Board (IRB: #KHGIRB-
23-427).

B. Experimental Setup and Protocol

The study used a mixed-methods approach to investigate
visuo-haptic integration mechanisms across both virtual and
physical environments. The experimental protocol was
structured into two primary phases: (1) virtual reality (VR)
interactions, which systematically evaluated the influence of
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Fig. 1. Experimental setup where participts use a haptic gove ina
virtual environment while wearing a head-mounted display (HMD).

varying haptic feedback modalities in virtual environments
and (2) real-world interactions, which examined the reciprocal
relationship between visual input and haptic feedback under
controlled conditions. In the VR phase, participants engaged
with virtual interfaces while receiving different levels of
haptic feedback, allowing for the assessment of how tactile
sensations influence user performance and perception in
virtual spaces. The real-world phase investigated the
complementary aspect by manipulating visual input
conditions during physical interactions, enabling the
examination of how visual information modulates haptic
perception and motor control. Both experiments utilized a
numeric keypad typing task as the standardized interaction
paradigm. All participants completed the conditions in a
predetermined sequence to maintain consistent experimental
progression and control for order effects.

During the VR interactions, participants were equipped
with a head-mounted display (HMD; Meta Quest 3) and
performed typing operations on virtual keypads within a
carefully designed VR environment. The experimental
protocol comprised four distinct input methods, each testing
different aspects of haptic interaction: (i) natural hand tracking
without haptic feedback, which relied solely on the HMD's
built-in hand tracking capabilities (NoHaptic); (ii) standard
VR controller interaction using the Meta Quest 3 controller,
providing basic vibrotactile feedback (BasicHaptic); (iii)
enhanced tactile feedback delivered through specialized
haptic gloves (bHaptics TactGlove), which provided localized
vibrotactile sensations to fingertips during key presses
(EnhancedHaptic); and (iv) a synchronized digital twin
configuration where participants' real-world typing actions
were precisely mirrored in the virtual environment, creating a
direct correspondence between physical and virtual
interactions (TwinHaptic).

During the real-world interactions, participants performed
standardized typing tasks on physical numeric keypads under
three distinct visual conditions to examine the relationship
between visual input and tactile perception. The conditions
were (i) tactile-only condition (T0), where participants were
blindfolded to isolate pure tactile feedback without visual
input; (ii) mixed-reality condition (MR), where participants
viewed a VR environment precisely synchronized with
physical objects through digital twin technology, enabling the
manipulation of visual representation while maintaining
consistent tactile feedback; and (iii) natural-vision condition
(NV), where participants had unobstructed visual access to the
physical keypad, serving as a baseline for natural visuo-haptic
integration.

C. EEG Data Acquisition

EEG data were continuously recorded using an Emotiv
EPOC+ wireless headset equipped with 14 Ag/AgCl
electrodes positioned according to the International 10-20
system (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4). Reference electrodes were placed at P3 and P4

and electrode impedances were maintained below 5 kQ, with
saline solution applied as needed to ensure optimal signal
conductivity.

Raw EEG signals were digitized at a sampling rate of 128
Hz with a 16-bit resolution. Signal quality was continuously
monitored through the Emotiv SDK interface, with markers
automatically inserted to indicate any periods of poor signal
quality (impedance >10 k€ or signal artifacts). Sessions were
paused and electrodes readjusted if signal quality dropped
below acceptable thresholds. EEG data were collected
continuously during each condition, resulting in a total of 91
EEG recordings across all conditions (13 participants x 7
conditions).

D. EEG Preprocessing

EEG data preprocessing was performed using the open-
source EEGLAB toolbox in MATLAB environment (R2024a).
The preprocessing pipeline followed a systematic approach to
ensure data quality and reliability. Initially, electrical line
noise was removed using a 60 Hz notch filter with a 2 Hz
bandwidth. The data then underwent rigorous channel quality
assessment, where channels were identified as problematic if
they met any of the following conditions: flatline periods
exceeding 5 seconds, z-scored noise-to-signal ratio above a
threshold of 4, or inability to be predicted from neighboring
channels for at least 80% of the recording duration [10]. To
address signal drift, a high-pass filter ranging from 0.25 to
0.75 Hz was applied, followed by re-referencing to the
average reference to minimize reference bias. Artifact
removal was accomplished through independent component
analysis (ICA) using extended infomax algorithm, where
components representing non-neural activity (such as eye
movements, muscle artifacts, or electrical noise) were
automatically identified and removed if their artifact
probability exceeded 80%. Subsequently, any previously
identified bad channels were reconstructed through
interpolation based on the signal patterns of surrounding good
channels. After completing the preprocessing pipeline, 10
datasets were excluded from further analysis due to
persistently poor signal quality identified during the quality
assessment process. For subsequent analyses, the EEG data
were categorized into conventional frequency bands: delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),
and gamma (30-50 Hz).

E. Functional Connectivity Construction

We constructed undirected, weighted functional
connectivity by calculating coherence between all pairs of
EEG channels at each frequency band. Coherence quantifies
the degree of synchronization between two signals, ranging
from O (no synchronization) to 1 (complete synchronization).
For each frequency band, we generated a 14 X 14 coherence
matrix, resulting in 81 coherence matrices per frequency band.
Across all frequency bands, we obtained a total of 405
functional connectivity matrices. Each matrix element A;;
represents the coherence value (weight) between channel i and
channel j.

F. Graph Theoretical Analysis

To analyze the topological characteristics of the brain
networks during visuo-haptic tasks, we computed eight graph
theoretical measures [11]: characteristic path length (L),
global efficiency (GE), small-worldness (SW), strength (S),
betweenness centrality (BC), eigenvector centrality (EC),
local efficiency (LE), and clustering coefficient (CC). These
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Fig. 2. Global graph theoretical measures across different visuo-haptic tasks for each frequency band: (A) characteristic path length, (B) global efficiency
and (C) small-worldness during the VR interactions as well as (D) characteristic path length (E) global efficiency and (F) small-worldness during the real-

world interactions.

metrics were calculated using the Brain Connectivity Toolbox

[5]
G. Statistical Analysis

To compare graph theoretical measures between visual
and tactile tasks, we conducted a one-way analysis of variance
(ANOVA), followed by post-hoc pairwise comparisons using
Games-Howell tests. The false discovery rate (FDR)
correction was applied to control for multiple comparisons
[12]. Statistical significance was determined at a p-value
threshold of 0.05.

III. RESULTS

A. Global Network Measures

Fig. 2 shows three global network measures (characteristic
path length, global efficiency, and small-worldness) during
the VR and real-world interactions. During the real-world
interactions, in the both theta and beta bands, both global
efficiency and small-worldness were significantly reduced in
the TO condition compared to the MR and NV conditions. In
the theta band, we found that characteristic path length was
significantly higher in the TO condition compared to both the
MRI and NV conditions in the theta band. However, no
significant differences were found in any of the global
measures for the VR interactions.

B. Local Network Measures

Graph theoretical analysis revealed significant differences
in local network measures (CC, LE, BC, EC, and S) across
different experimental conditions. Most notable differences
were observed in the beta and theta frequency bands during
real-world interactions (Fig. 3). In Fig. 3(A), the TO condition
exhibited distinct patterns of network topology compared to
the MR condition. For example, in the beta band, the TO
condition showed significant decreases in CC, LE, and S in
the temporal (T8), parietal (P8), and frontal (F7, F3, FC6, FC5)
regions. However, an increase in EC was observed in the alpha
band in the TO condition. In Fig. 3(B), compared to the NV
condition, the TO condition showed lower CC, LE, and S in
the frontal (F7, F4, FC5, FC6), temporal (T7, T8), and
occipital (O1) regions in the theta band. Similarly, in the beta
band, the TO condition displayed reduced CC, LE, and S in

the frontal (FC5, FC6), temporal (T7, T8), and parietal (P8)
regions, along with higher BC in the occipital (O1) region.
Similarly, in the gamma band, reduced strength was found in
the frontal (FC6) region was observed in the TO condition.

In the analysis of VR interaction, minimal differences
were observed between different haptic feedback methods,
with one notable exception: in the delta band, higher EC in the
temporal region (T7) during the EnhancedHaptic condition
was observed compared to the TwinHaptic condition,
suggesting potentially enhanced sensory processing with
specialized haptic feedback.

IV. DISCUSSION

Our findings suggest that the visual input plays a crucial
role in shaping brain network dynamics during visuo-haptic
interactions. The significant decrease in global efficiency and
increase in characteristic path length in the theta and beta
frequency bands during the TO condition indicate reduced
information processing efficiency and increased neural
transmission delays. The lower small-worldness during the
TO condition implies a less efficient and specialized network,
suggesting that the brain may rely on less efficient processing
strategies when visual input is absent. Interestingly, the type
of haptic input did not significantly impact brain network
dynamics in VR, suggesting that the brain may process tactile
information similarly regardless of the specific input device.

In the TO condition, we found decreased CC and LE in the
parietal (P8) and temporal (T8) areas in the beta band,
compared to the MR condition. Also, the TO condition
showed reduced CC, LE, and S in the frontal (FC5, FC6),
temporal (T7, T8), and parietal (P8) in the beta band,
compared to the NV condition. Similarly, in the theta band,
lower CC, LE, and S were identified in the temporal (T7, T8),
frontal (F7, F4, FCS5, FC6), and occipital (O1) regions in the
TO condition. These findings highlight the importance of
these regions in visual processing and suggest that their
network activity diminishes in the absence of visual input [13].

Our results showed that different haptic input methods
have a similar impact on brain network dynamics during VR
interactions, suggesting that the specific type of haptic input
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Fig. 3. Topographical maps showing the statistical comparisons of local network measures for each frequency band: (A) t-values representing the
differences in local measures between the tactile-only and mixed-reality conditions and (B) t-values representing the differences in local measures between
the tactile-only and natural-vision conditions. BC = betweenness centrality; EC = eigenvector centrality; CC = clustering coefficient; LE = local efficiency;

S = strength.

did not appear to significantly affect the overall brain network
topology. This implies that both haptic gloves and controllers
can effectively provide tactile feedback that is perceived
similarly to real-world touch.

V. CONCLUSION

This study investigated the topological characteristics of
EEG-based functional brain networks during varied visual
and tactile input conditions. Through graph theoretical
analysis of brain network connectivity, we found distinct
patterns of brain network topology across different
experimental conditions. In real-world interactions,
significant differences were observed in beta and theta
frequency bands during the tactile-only condition compared
to conditions with visual input. Notably, the presence of
visual input was associated with increased node centrality
primarily in the frontotemporal regions, likely reflecting
enhanced multisensory processing and integration. However,
the specific effects of different tactile feedback modalities,
including direct hand tracking, controller, and haptic glove,
on brain network topology was less pronounced. This finding
suggests that current haptic technology may simulate natural
tactile sensations in virtual environments, achieving neural
responses similar to bare-hand interactions.

Future research should focus on the neural mechanisms
underlying visuo-haptic integration by investigating the role
of specific brain regions and the temporal dynamics of brain
network connectivity. Additionally, exploring the impact of
varied haptic feedback parameters (intensity, duration,
frequency) on brain network dynamics could provide further
insights into the neural basis of multisensory integration.
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