Defending Against High-Intensity Adversarial
Perturbations in Deep Neural Networks: A Robust
Swin Transformer Approach

Francois Chan
Royal Military College

Quang Le
University of Ottawa

Abstract—High-intensity adversarial perturbations present sig-
nificant challenges to the reliability of deep learning models,
underscoring the urgent need for robust and adaptive defense
mechanisms. These perturbations notably impact the feature
extraction process within models. In this paper, we propose
the Robust Swin Transformer (RST), an end-to-end trainable
model that employs a Double-Branch (DB) attention mechanism
to effectively extract both robust and non-robust features across
various representation levels. To enhance resilience against adver-
sarial attacks, we implement a tailored combination of robust and
non-robust loss functions, demonstrating that non-robust features
correlate with multiple fake classes, which can be optimized by
adjusting the non-robust loss. During inference, predictions are
made by fusing representation features from all model stages,
striking a balance between accuracy and robustness. Extensive
experiments on CIFAR-10, SVHN, and MSTAR datasets show
that RST outperforms the standard Swin Transformer with
adversarial training and other advanced methods, achieving up to
a9.86 % accuracy improvement against PGD attacks, particularly
under high-intensity perturbations.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely adopted
in various fields, particularly in image classification tasks.
However, the vulnerability of DNNs to adversarial attacks,
which exploit weaknesses in their operation and impact their
accuracy, is a significant concern. Various methods have been
employed to defend against attacks and enhance the robust-
ness of DNNSs, including data preprocessing, generalization,
and adversarial training [1]. Nevertheless, the utilization of
adversarial methods for defence presents certain challenges.

One significant challenge in addressing adversarial attacks is
their diversity, which varies based on the algorithms employed
and the attacker’s knowledge of the target model [2]. These
attacks can be classified as white-box, where the attacker
has full access to the model’s parameters, or black-box,
where knowledge is limited [3]. Consequently, distinct attack
generators utilize different initial parameters and requirements.
Among the critical shared parameters, perturbation intensity,
defined through norm-based formulations, is particularly influ-
ential [4]. Even minor pixel-level perturbations can propagate
to higher-level features, severely degrading model performance
[5]. In this paper, we define robust features as those that dis-
tinctly characterize a class, while non-robust features comprise
background information that is more susceptible to adversarial
perturbations. The proposed Robust Swin Transformer (RST)
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effectively classifies these two feature groups, enabling more
robust decision-making in the presence of various attacks,
including both white-box and black-box settings.

Among conventional adversarial methods, adversarial train-
ing is one of the most effective defences. However, it is sensi-
tive to adversarial diversity and requires careful balancing of
robustness and accuracy. Additionally, internal factors such as
neural layer components and architectural design significantly
influence the robustness of DNNs. To tackle these challenges,
the RST integrates a novel Double-Branch (DB) attention
mechanism, enabling the extraction of both robust and non-
robust features across multiple representation levels. To further
enhance resilience against adversarial attacks, a combination
of loss functions is employed, ensuring a clear distinction
between robust and non-robust components. A comprehensive
analysis of features at various stages of the model bolsters
overall robustness against high-intensity perturbation attacks.
Experiments under various adversarial attack scenarios demon-
strate that the proposed method mitigates the trade-off between
robustness and accuracy more effectively than the traditional
adversarial training method. This paper presents an end-to-end
trainable transformer-based model demonstrating significant
robustness against adversarial threats. The contributions of this
research are summarized as follows:

e Design the RST model with a DB attention mechanism,
enabling the extraction of robust and non-robust fea-
tures across multiple levels of representation. This model
achieves robustness against various adversarial attacks.

o Formulate a composite loss function integrating robust,
non-robust, and reconstruction losses. The analysis shows
that optimizing the non-robust loss, which correlates with
multiple fake classes, enhances overall efficacy. During
inference, we examine the fusion of outputs to achieve
an optimal balance between robustness and accuracy.

o Experimental evaluations are conducted on the im-
age classification task using three datasets, CIFAR-10,
SVHN, and MSTAR. The proposed method’s perfor-
mance is assessed against a range of white-box and black-
box attacks. Results consistently highlight the superiority
of the proposed approach, demonstrating exceptional per-
formance and robust resilience in most scenarios.



II. RELATED WORKS
A. Adversarial Attacks

Adversarial attacks intentionally exploit vulnerabilities in
DNNs by introducing subtle perturbations that lead to mis-
classifications. These attacks are quantified using norms to
measure perturbation magnitudes and fall into three main
categories: gradient-based attacks, such as the Fast Gradient
Sign Method (FGSM) [6], which use gradients to generate
adversarial samples; constrained optimization-based attacks,
like Projected Gradient Descent (PGD) [6, 7], which treat ad-
versarial generation as an optimization problem; and gradient-
free (black-box) attacks, utilizing methods like random search
or evolutionary algorithms, making them model-agnostic, as
seen in Square Attack [8] and Pixle [9].

B. Adversarial Training

Significant research has focused on adversarial defence
techniques to enhance the robustness of DNNs against at-
tacks. A commonly used method is standard adversarial train-
ing, including approaches like PGD [6], TRADES [10], and
MART [11]. PGD training uses iterative perturbations based
on gradients, while TRADES balances adversarial robustness
and natural accuracy through regularization. MART employs
margin-based loss functions to improve resilience. Addition-
ally, advanced loss functions, such as the Latent Feature Rela-
tion Consistency (LFCR) approach, ensure consistency among
latent features [12]. While these methods focus on modifying
the loss function, they do not leverage the underlying neural
architecture. As a result, the feature extraction architecture
and output format remain unchanged, rendering these methods
heavily dependent on the adversarial training samples.

C. Feature Extraction as Adversarial Defense

Advanced defence mechanisms beyond standard adversarial
training have integrated feature extraction techniques [13].
DNNs are trained to extract robust global and local features,
as non-robust features significantly contribute to adversarial
examples [14]. A distillation approach based on the Infor-
mation Bottleneck framework addresses both robust and non-
robust features [15]. Zhang et al. proposed hierarchical feature
alignment for robust learning from clean and adversarial
samples, while Wang et al. demonstrated a method to segregate
robust and non-robust features. Cao et al. introduced the
Feature Pyramid Network (FePN) to enhance robust feature
learning; however, it requires additional storage for robust im-
ages and lacks experimental validation against high-intensity
perturbations. Kim et al. presented the Feature Separation and
Recalibration (FSR) method, which recalibrates attention to
emphasize resilient characteristics [16]. While this approach
is similar to ours, it extracts non-robust features based solely
on a single fake class. In practice, background and outlier
information in images are inherently uncertain, potentially
leading to multiple fake classes. We assert that utilizing
appropriate groupings of fake classes can enhance non-robust
feature extraction and improve overall performance.

III. METHODS

The RST model utilizes a hierarchical structure similar to
the Swin Transformer (ST) for multi-scale feature extraction
[17], as detailed in Section III-A. The original architecture,
however, supports only a single information flow, hindering
the differentiation between robust and non-robust features. To
address this, we introduced the RST block with DB attention
for simultaneous extraction of both information flows, as
detailed in Section III-B. This yields robust and non-robust
outputs, along with their combined reconstruction output. A
tailored loss function guides training to produce a final robust
prediction, as shown in Sections III-C and III-D.

A. Hierarchical and Multiple-stage Structure

As shown in Fig. 1, the main structure consists of [V stages,
beginning with a patch embedding block that partitions the in-
put, followed by ST blocks [17], an RST block, a classification
network, and a reconstruction network. This structure enhances
defensive capabilities by integrating global and local features
for comprehensive learning and distillation. The RST model
extracts robust and non-robust features in pairs, ensuring that
robust features preserve essential information for accurate
predictions, while non-robust features are linked to redundant
information, such as outliers and background.

In the initial stage, input data is duplicated into two states
after passing through the embedding block, each containing
robust and non-robust information. One state undergoes ST
blocks to produce the initial robust feature, while the other
serves as the initial non-robust feature. These features are then
processed by the RST block to generate a new pair, resulting
in both robust and non-robust outputs. This process is iterated
through subsequent stages, with robust features retaining the
critical information necessary for decision-making. Inspired
by [16], which emphasizes the value of non-robust features in
model predictions, a final pair of features is combined using a
reconstruction network to generate the reconstruction feature.

B. Double-Branch Attention

The RST block, unlike the ST block, features two branches
with a bottleneck at the DB attention stage (see Fig. 2). This
design allows the reconstruction of robust and non-robust
states. The RST block uses a general attention mechanism
to learn global dependencies and extract features. Its main
operational steps are as follows:

In the initial stage, a "Mapping QKV” block projects a pair
of robust and non-robust states, producing four tensors: query
q, key k, value v, and robust mask r.
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In (1), ¢ denotes the stage order, and W ,, represents the linear
layer parameters. The robust mask is activated by a sigmoid
function to constrain its values between 0 and 1. The key
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Fig. 1: RST architecture.

tensor and robust mask are then processed through the "Robust
Masking” block to produce robust and non-robust keys.

i1 = o(ric)oki )
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In (2), o is the sigmoid function, and o denotes the Hadamard
product. The key tensor captures features of both robust and
non-robust dimensions. The Hadamard product with the robust
mask generates two keys, enabling the production of robust
state f] and non-robust state f;'".
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In (4), ”Attn” refers to the primary attention mechanism in
a transformer model, with a representing either r or nr.
Most attention mechanisms utilize g, k, and v, enabling the
proposed DB operation to be easily adapted for extracting
robust and non-robust features in other transformers.
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Fig. 2: RST block and DB attention structure.

C. Model Outputs and Loss Functions

As shown in Fig. 1, the model generates a pair of ro-
bust and non-robust features at each stage, which are then
passed through the reconstruction network to produce the

reconstructed feature. Each stage also processes the features
with a classification head to output probabilities for all classes.
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In (6), ¢ indicates the stage order, p, denotes output proba-
bilities, and 6, ~, and 3 correspond to feature extraction, the
classification head for stage i, and the reconstruction block,
respectively. The classification head comprises linear layers,
ReLU activations, and a Softmax layer for class probabilities,
while the reconstruction block uses a gating technique with
weights W g linked to a linear layer for data reconstruction.

To effectively acquire robust and non-robust features, our
approach utilizes a combination of loss functions: robust
loss, non-robust loss, and reconstruction loss. The robust loss
is computed using cross-entropy functions that consider the
ground truth class of the input.
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In (7), w; denotes the weight for stage i, p] represents the
probability vector for the K classes, and py, indicates the
ground truth probabilities, set to 1 for the true class and O for
others. This setup ensures that extracted robust features focus
on the true class, enhancing the model’s discriminative ability.

Previous research has focused on extracting robust features
[13] or learning non-robust features from a single high-
probability fake class [16]. However, non-robust features can
be influenced by the image background, confusing the model
and causing misclassifications, especially with unstable multi-
ple classes. To address this, we show that using multiple fake
classes enhances feature extraction. Specifically, we introduce
the hyperparameter k, which determines the number of fake
classes ¢! *" for the non-robust features.

e/ = argtopk (p}") = argtopk (y(fI'")). ®)
Ctruefclfake Ctruegc{ake



In (8), cf ake denotes the subset of k fake classes with the
highest probabilities at stage ¢, obtained via the “argtopk”
operation, where k < K. Meanwhile, c!"“¢ represents the true
class. The ground truth probability for the non-robust output
based on the classes in c{ ake can be defined as follows:
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otherwise.
By assigning equal values to all k£ fake classes, the model
is encouraged to learn highly uncertain non-robust features,
leveraging Shannon’s entropy principles [18]. This approach
fosters ambiguity and randomness in the non-robust fea-
ture representation, aligning with information theory. Conse-
quently, the non-robust loss can be derived as follows:
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where "KL” refers to the Kullback-Leibler divergence. To
guide the learning phase of the proposed method, we apply a
combination of robust, non-robust, and reconstruction losses.

(10)
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D. Fusion Inference

During inference, we evaluate the integration of robust, non-
robust, and final reconstruction outputs as probabilities for
K classes. This enables us to assess the trade-off between
robustness and accuracy in our method. Analyzing this output
fusion offers insights into the balance between the model’s
resilience to adversarial attacks and its predictive accuracy.
The final results are summarized as follows:
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IV. EXPERIMENTS
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A. Model Configuration

Key hyperparameters, such as the number of stages, layers,
window and kernel size are predetermined based on the ST
tiny version [17]. The main distinction is replacing the last ST
block in each stage with the RST block, enabling the extraction
of robust and non-robust features.

RST configuration: The number of stage N = 4; the num-
bers of layers for stages L = (2,2, 6,2); the hidden channels
C = 96; the weights for stages W = (0.5,0.8,1.1,1.5).

Learning hyperparameters: the maximum number of
epochs T = 300, the batch size B = 64, the optimizer Adam
(learning rate [ = 0.0001, decay rate d = 0.99).

B. Datasets

MSTAR is a radar dataset, collected in 1998 and sponsored
by DARPA and AFRL, comprising 6874 SAR images of 10
military vehicle types. CIFAR-10 contains images categorized
into ten distinct classes. Each image is 32 x 32 pixels in size,
featuring three colour channels (RGB) with pixel intensities.
SVHN consists of over 600000 colour images of house
numbers captured from Google Street View.

C. Hyperparameter Tuning

We focus on optimizing the number of fake classes for non-
robust feature extraction while keeping parameters fixed. By
training the model with various hyperparameter combinations,
we aim to identify the configuration that maximizes perfor-
mance. Accuracy results across different fake class sets are
detailed in Section IV-A. Training uses adversarial examples
with a perturbation intensity of ¢ = 16/255, while validation
includes clean data and PGD examples with ¢ = 8/255 and
16/255. Experiments explore the impact of different fake
class numbers, as shown in Fig. 3, where ki denotes a set
of (i,4,1,1) for each stage. We defined two fake class sets:
setA = (7,5,3,1) and setB = (1,3,5,7).
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Fig. 3: Analysis of Accuracy Across Different Sets of Numbers
of Fake Classes of Non-Robust Features.

Fig. 3 illustrates performance variations across different
k sets for the MSTAR, SVHN, and CIFAR-10 datasets,
highlighting the significance of hyperparameter tuning. Per-
formance fluctuations are more pronounced in MSTAR and
SVHN than in CIFAR-10, suggesting a strong link between
the number of fake classes and the extraction of non-robust
features. The configuration setA = (7,5,3,1) achieves the
highest performance for MSTAR, with optimal values of £ = 5
for CIFAR-10 and £k = 9 for SVHN. The effectiveness of
setA indicates that fewer fake classes enhance the extraction
of higher-level non-robust features. These insights will inform
our selection of fake classes in future experiments.

D. Trade-off between Robustness and Accuracy

Fusion Inference. In the context of adversarial methods,
accuracy refers to the evaluation metric when testing the model
with clean data, while robustness values are obtained from
evaluating the model’s performance on adversarial examples.



To investigate this trade-off, we assess fusion inference with
various types. Table I highlights the relationship between

TABLE I: Accuracy results of MSTAR dataset with different
inference types.

RST p,y: | Clean Data | PGD._g /255 | PGD_32/255
pre 99.39 95.01 69.07
p” 98.39 96.32 76.42
p" —p"" 97.91 96.78 78.02
pe+p  —p" | 99.29 96.53 76.92

accuracy and robustness, shaped by the model’s features.
The reconstruction output achieves the highest accuracy on
clean data but lacks robustness against adversarial examples.
Combining robust and non-robust features enhances resilience,
while merging all features strikes a balance, yielding the
second-best metrics for accuracy and robustness. We will use
this inference approach in future experiments.

TABLE II: Accuracy results of MSTAR dataset with models
trained with different PGD samples perturbation intensity.

RST p, ¢ Clean Data | PGD._g/255 | PGD.—32/255
RST (e = 8/255) 99.31 97.23 73.45
ST + AT (e = 8/255) 98.55 96.78 45.12
RST (e = 16/255) 99.29 96.53 76.92
ST + AT (e = 16/255) | 98.24 93.61 58.06
RST (e = 32/255) 99.11 95.12 79.26
ST + AT (e = 32/255) | 95.82 91.28 65.74

Training perturbation intensity: We analyze the relation-
ship between the perturbation intensity of training samples
and the model’s performance by training the RST using PGD
samples generated with different perturbation intensities. To
further assess the trade-off between accuracy and robustness,
we compare the proposed method with the ST model utilizing
adversarial training. Table II shows the trade-off between
accuracy and robustness with perturbation intensity. Lower
intensity boosts accuracy but reduces robustness, while higher
intensity enhances robustness at the cost of accuracy. The RST
model outperforms conventional methods, achieving a superior
balance with less sensitivity to perturbations.

E. Adversarial Diversity

Different perturbation intensities. We analyze adversarial
diversity by examining the effects of varying perturbation
intensities and types of attacks. First, we evaluate the RST
model trained with PGD examples at a perturbation intensity
of € = 16/255. We then compare its performance with PGD
examples generated at different ¢ values. For a comprehensive
assessment, we also implement ST with adversarial training
and ST with FSR for comparative analysis.

Fig. 4 shows that the RST model achieves the highest
accuracy with clean data and exhibits superior robustness. As
perturbation intensity increases, its shallower slopes indicate
reduced sensitivity compared to other models. These results
highlight the RST’s resilience against adversarial attacks while
maintaining accuracy across perturbation levels.

Different adversarial attacks: To evaluate adversarial diver-
sity, we assess the method in white-box and black-box settings,
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Fig. 4: Accuracy results of the proposed methods and the base-
line under PGD attack with varying perturbation intensities.

using the /o, norm for perturbation intensities. All models are
trained with PGD samples at ¢ = 16/255 and tested with
various attacks at different € values. In white-box settings, we
implement PGD, FGSM, and VMIFGSM attacks with a step
size of 4/255 for 10 iterations. In black-box settings, we use
square and pixel attacks, allowing up to 500 queries.

In conclusion, Table III shows the RST method’s supe-
rior performance compared to the baseline, achieving better
results across various datasets and adversarial scenarios. In
the MSTAR dataset, RST attains the highest accuracy with
clean data, outperforming competitors in 7 of 8 cases against
PGD (e = 32/255), VMIFGSM (e = 32/255), and Square
(e = 32/255) attacks. It also excels in the CIFAR-10 dataset,
particularly in black-box settings, and demonstrates strong
robustness on the SVHN dataset against high-intensity per-
turbation attacks (¢ = 32/255).

V. CONCLUSION

In this paper, we proposed the Robust Swin Transformer
(RST), a novel transformer model that employs a Double-
Branch (DB) attention mechanism to extract both robust and
non-robust features. Experimental results demonstrate that the
RST achieves an excellent balance between accuracy and
robustness, exhibiting strong performance against a variety of
white-box and black-box attacks. However, challenges persist
in adapting this approach to other transformer models and in
managing the additional computational costs associated with
equipping the RST with the necessary weights. In future work,
we aim to design a general feature distillation framework that
can be integrated into a wide range of classification models,
not limited to transformer-based architectures, to enhance
robust feature extraction.
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