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Abstract—Effective resource management in wireless com-
munication systems is a critical requirement, given the interfer-
ence challenges and the need for efficient allocation strategies.
Graph Neural Networks (GNNs) have emerged as powerful
tools for tackling this problem due to their scalability and
ability to generalize over complex graph-structured data, like
that found in wireless networks. However, the computational
complexity of GNNs on large-scale systems limits their real-
time deployment. Recent advances in quantum computing and
quantum machine learning (QML) offer a promising solution
by leveraging the unique properties of quantum systems
to reduce computational overhead. This paper proposes a
Quantum Graph Neural Network (QGNN) model specifically
designed for a wireless communication scenario, implemented
as a variational quantum circuit (VQC) to realize the message-
passing mechanism integral to GNNs. Applied to a supervised
resource management task in a wireless network, the pro-
posed QGNN demonstrates encouraging results, showcasing
its potential as a scalable and efficient approach for real-time
resource management in future wireless systems.

Index Terms—Quantum Graph Neural Network, Quantum
Machine Learning, Resource Management, Wireless Commu-
nication

I. INTRODUCTION

Resource management is a central challenge in wireless
communication, with demands for efficient frequency and
power allocation intensifying as network densities increase
[1]. Recent advancements in machine learning (ML) have
enabled dynamic and adaptive resource allocation strategies,
offering real-time solutions that traditional models could
not achieve. Among ML models, Graph Neural Networks
(GNNs) stand out for their exceptional scalability and gen-
eralization capabilities in managing graph-structured data
[2], [3], like the interference relationships among User
Equipments (UEs) in cellular networks. GNNs model these
relationships by passing messages among neighboring nodes
(representing UEs), thus capturing the network’s structural
dependencies to optimize resource allocation. However,
training GNNs often meets a challenge due to the high com-
putational requirements of their iterative message-passing
operations, especially as the network scale increases.

Recently quantum computing has made some improve-
ment in compared with classical processor. Quantum ma-
chine learning leverages the advantage of both the efficiency
of machine learning techniques and the power of quantum
computing, showing the potential to realize more powerful
artificial intelligence [4]. As a fundamental tool of quan-
tum machine learning, the quantum neural network (QNN)
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Fig. 1: System Model with 1 BS and 5 UEs.

has been widely researched and applied in various areas,
including pattern recognition [5], automatic control [6],
signal processing [7], and more. Various QNN models have
been proposed in the literature [8], reflecting the diverse
approaches in this rapidly evolving field.

In this paper, we propose a Quantum Graph Neural
Network (QGNN) model that integrates quantum compu-
tation into GNN architectures, allowing efficient message-
passing on quantum circuits. Specifically, we design a vari-
ational quantum circuit (VQC) capable of implementing the
message-passing mechanism of GNNs, using the principles
of quantum amplitude encoding and entanglement to capture
interactions among network nodes. The proposed QGNN
model is applied to a supervised resource management
scenario in a wireless network, where simulation results
reveal promising accuracy in interference management and
resource allocation, highlighting the potential of quantum-
enhanced GNNs for wireless communication.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular network where multiple User
Equipments (UEs) communicate with a single Base Station
(BS). Each UE experiences interference from other UEs
in the network due to the shared wireless medium. When
each UE connects to the BS, an interference component
I0 is added to the total interference for every active UE.
This interference reflects the cumulative effect of other UEs
transmitting within the same frequency band, which impacts
the Signal-to-Interference-plus-Noise Ratio (SINR) for each
user.

The SINR for a given UE n is expressed as:

SINRn =
p · αn · hn∑

i ̸=n αi · I0 + n0
(1)

where p represents the transmit power of each UE, assumed
to be constant across all UEs, and αn is a binary variable
indicating whether UE n is actively transmitting (αn = 1) or
not (αn = 0). The term hn denotes the channel gain for UE
n, which quantifies the quality of the wireless link between
the UE and the BS. The interference factor I0 represents
the contribution of each transmitting UE to the interference
experienced by other UEs in the network, while n0 is the



Fig. 2: Architecture of QGNN.

noise power, assumed to be constant and independent across
UEs.

The objective of this model is to maximize the total
SINR across all UEs by optimizing the binary transmission
decisions α. This optimization seeks to enhance network
performance by managing interference and maximizing the
signal quality for each UE. The problem can be formulated
as follows:

max
α

N∑
n=1

SINRn (2a)

s.t. αn ∈ {0, 1}, ∀n = 1, 2, . . . , N. (2b)

This optimization problem aims to find the optimal trans-
mission strategy α that maximizes the total SINR across
all UEs, thereby improving overall network performance by
effectively managing interference.

III. QUANTUM GRAPH NEURAL NETWORK

In this section, we design the Quantum Graph Neural
Network (QGNN) architecture, as shown in Fig. 2, which
implements message passing within a quantum circuit. The
architecture includes quantum encoding, quantum graph
convolutional layers, and a measurement step, with iterative
parameter updating.
A. Quantum Encoding

Quantum encoding is an essential process for transform-
ing classical data into quantum states that can be processed
by a quantum circuit. In this work, we employ amplitude
encoding, a technique that embeds classical feature vectors
into the amplitude of quantum states. Given a classical
feature vector x = [x1, x2, . . . , x2n ]

T of dimension 2n, the
corresponding quantum state |x⟩ can be represented as:

|x⟩ = 1

C

2n∑
i=1

xi|i⟩, (3)

where C =
√∑2n

i=1 |xi|2 is a normalization factor en-
suring that the quantum state has unit norm. This approach
allows efficient encoding of classical data using fewer
qubits, as an n-qubit system can encode 2n values. We
use the AmplitudeEmbedding function from the PennyLane
package to implement this encoding in our simulations.
B. Quantum Graph Convolutional Layer

The Quantum Graph Convolutional (QG) layer is inspired
by the classical graph convolution operation, where each
vertex aggregates information from its neighbors. After
amplitude encoding, a graph represented as G = (V,A)
with vertices V and adjacency matrix A is transformed
into quantum graph data Gq = (Vq, A). Here, Vq =

Fig. 3: Quantum Graph Convolutional Layer

{|v1⟩, |v2⟩, . . . , |vN ⟩} is the set of quantum states represent-
ing the vertices’ features.

In the QG layer, the adjacency matrix A remains classical,
while each quantum state |vi⟩ encodes a feature vector for
vertex i. The layer’s implementation follows three steps:

1) The topology of the graph, encoded by A, is repre-
sented using N(N − 1)/2 qubits, with each element
of A corresponding to a specific qubit in the states
|0⟩ or |1⟩.

2) A unitary operation U is applied to pairs of quantum
states |vi⟩ and |vj⟩ connected in the graph, using
n two-qubit gates to capture the interaction between
features.

3) The layer uses controlled-U gates, where each control
qubit corresponds to an element of A, to manage
connections between vertices.

An example is shown in Fig. 3.(a), where a four-vertex
graph with 2-dimensional features per vertex is encoded
using six qubits for A and four additional qubits for ver-
tex features. This setup captures the graph structure in a
quantum-efficient manner, enabling scalable and complex
graph operations on quantum hardware.

IV. NUMERICAL RESULTS AND EVALUATION

In this simulation, we employed an exhaustive search
technique to determine the optimal SINR values for the
given wireless communication scenario. These optimal
SINR values were then used as the ground truth in a
supervised training framework to train the QGNN. By using
the optimal solution as the target, we aimed to guide the
QGNN in learning to approximate the best possible resource
allocation strategy for maximizing SINR.

The performance of the QGNN model, as shown in Fig. 4,
highlights its effective supervised training and generaliza-
tion capabilities. The training SINR steadily increases across
epochs, reflecting the model’s ability to capture interference
dynamics and optimize resource allocation effectively. The
small gap between training and testing SINR indicates
strong generalizability to unseen data, a critical attribute
for real-world applications. While the model does not fully
reach the optimal SINR benchmark due to the inherent
limitations of supervised learning, it achieves values very
close to the benchmark, particularly in later epochs. This



Fig. 4: Training result of the QGNN under supervised
setting.

demonstrates the QGNN’s potential as a practical and
efficient approach for resource management in wireless
networks.

To assess the performance of the QGNN model, we
conducted evaluations across 1000 realizations of system
localization and channel conditions. This extensive testing
allowed us to gauge the robustness and generalization ability
of the model under diverse scenarios. Remarkably, the
QGNN achieved an accuracy rate of 98% in approximating
the optimal SINR values. This high accuracy demonstrates
the model’s effectiveness in adapting to variations in net-
work conditions, highlighting its potential for real-world
applications in wireless communication resource manage-
ment.
A. Scalability Evaluation

In this scalability evaluation, we consider a system con-
sisting of 5 UEs. For a fully connected network of 5 UEs,
each pair of UEs requires an edge connection, resulting in a
total of 5×(5−1)

2 = 10 edges. In our QGNN implementation,
each edge requires a dedicated qubit to represent the adja-
cency relationship. Additionally, each node feature requires
a separate qubit, adding 5 more qubits for the 5 UEs.
Consequently, the total number of qubits required becomes
15 for this setup, with the number increasing rapidly as the
network size grows.

Furthermore, as shown in Fig. 5, the number of quantum
gates required also increases as the system size scales.
Notably, this increase is not linear due to the additional
SWAP gates needed to cover interactions between adjacent
nodes. These SWAP gates are necessary to manage qubit
connectivity, especially in physical quantum devices with
limited qubit interconnections. The non-linear growth in
gate count further underscores the scalability challenges
inherent in this approach, as larger networks would require
an exponentially greater number of gates and qubits to rep-
resent both node features and edge connections efficiently.

This scalability issue highlights the computational chal-
lenges associated with applying QGNNs to larger networks.
Future work may need to explore alternative strategies, such
as sub-graph decomposition or optimized quantum circuit
designs, to make QGNNs more feasible for larger-scale
wireless communication systems.

V. CONCLUSION

In this work, we presented a simple implementation of
a Quantum Graph Neural Network (QGNN) for wireless

Fig. 5: Number of quantum gates required with increasing
UEs, illustrating the non-linear growth due to SWAP gates
for adjacency management.

communication resource management. The QGNN model
demonstrated promising results, effectively learning to ap-
proximate the optimal SINR through supervised training.
By leveraging quantum computation, the QGNN offers an
alternative approach to traditional machine learning models,
potentially reducing the computational burden associated
with large-scale graph data.

However, the scalability of the QGNN remains a signifi-
cant challenge. As the size of the network and the number
of UEs increase, the computational resources required for
the quantum encoding and graph convolutional layers grow
rapidly. This limitation restricts the practical deployment of
QGNNs in large-scale wireless networks and highlights the
need for scalable quantum algorithms that can manage the
complexity of vast communication graphs.

To address these scalability issues, future work may
explore sub-graph decomposition techniques, where the
overall network is divided into smaller, more manageable
sub-graphs. Each sub-graph can then be processed individ-
ually, potentially reducing the computational requirements
of the quantum circuits. This approach could facilitate the
practical application of QGNNs to large-scale wireless com-
munication systems, making quantum-enhanced resource
management a feasible option in real-world scenarios.
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