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Abstract—This study focuses on the classification of subretinal
fluid (SRF) accumulation in conditions such as Central Serous
Chorioretinopathy (CSC), Polypoidal Choroidal Vasculopathy
(PCV), and Vogt-Koyanagi-Harada (VKH) disease. Optical co-
herence tomography (OCT) is a widely used imaging modal-
ity by ophthalmologists to diagnose these conditions; however,
overlapping clinical features often make accurate differentiation
challenging. This work aims to develop a robust classification
model capable of making predictions from sequences of OCT
scans, leveraging a dataset of 642 records that include over
23,000 retinal OCT images obtained from Srinagarind Hospital
in Khon Kaen, Thailand. The model was trained and validated
using stratified 10-fold cross-validation, achieving an overall
classification accuracy of 96.57 %, with per-class precision, recall,
and F1 scores averaging 96.60%, 96.63%, and 96.60%, respec-
tively. Additionally, gradient-weighted class activation mapping
(Grad-CAM) was employed to highlight the anatomical regions
relevant to the model’s classification, which closely matched the
diagnostic features identified by ophthalmologists. These findings
indicate that the proposed approach holds substantial promise for
advancing automated retinal-choroidal disorder analysis, thereby
supporting clinical decision-making in ophthalmology.

Index Terms—Deep Learning, LSTM, CNN, Medical Image
Analysis, Retinal OCT Image, Subretinal Fluid Classification,
Central Serous Chorioretinopathy, Polypoidal Choroidal Vascu-
lopathy, Vogt-Koyanagi-Harada.

I. INTRODUCTION

Vision is essential for performing a wide range of tasks in
daily life, from navigating complex environments to engag-
ing in social interactions. Even fundamental activities, such
as reading or recognizing familiar faces, are dependent on
clear visual clarity. Unfortunately, many individuals experi-
ence visual impairment due to retinal conditions. Naqgeeb and
Naser [1] reported a significant increase in the admission rates
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for retinal and choroidal disorders in Australia, as determined
by their ecological analysis. One prominent type of retinal-
choroidal disorder involves the accumulation of subretinal
fluid (SRF), which impairs vision across various age groups
and populations. SRF is frequently associated with conditions
such as Central Serous Chorioretinopathy (CSC), Polypoidal
Choroidal Vasculopathy (PCV), and Vogt-Koyanagi-Harada
(VKH) diseases.

Traditionally, ophthalmologists utilize optical coherence
tomography (OCT) images to diagnose SRF conditions by
evaluating the retinal and choroidal layers through multiple
scans across the fovea. OCT employs both raster and radial
scanning techniques, each serving a specific role in capturing
the retinal architecture. Raster scans (Fig. la) consist of
parallel, evenly spaced lines, providing high-resolution cross-
sectional views that detail localized structures within the
retina. Conversely, radial scans (Fig. 1b) are organized in a
spoke-like configuration centered around the fovea, offering a
comprehensive geometric overview from multiple orientations.

(a) Raster Scan

(b) Radial Scan

Fig. 1: Comparison of OCT scanning techniques. (a) Raster
Scan: Parallel, high-resolution cross-sectional lines providing
detailed views of localized retinal structures. (b) Radial Scan:
Spoke-like arrangement around the fovea, offering comprehen-
sive orientation and geometric insights essential for detecting
subtle retinal abnormalities.



These complementary scanning methods enhance diagnostic
accuracy by enabling the detection of abnormalities that may
be missed using a single scanning approach. The analysis of
these images typically requires ophthalmologists to interpret
numerous scans, a process that may take approximately 15
minutes per patient, thereby increasing the potential for human
error and diagnostic delays. Despite advancements in OCT
technology, SRF disorders often present subtle and complex
features that remain challenging to differentiate, even for
experienced practitioners.

A. Related Work

Deep learning methodologies, particularly Convolutional
Neural Networks (CNNs), have gained prominence for au-
tomating image classification tasks, including OCT imaging in
ophthalmology. For instance, [2]-[5] proposed CNN models
for diagnosing choroidal neovascularization (CNV), diabetic
macular edema (DME), and drusen, achieving high levels
of accuracy, sensitivity, and specificity. Other studies have
utilized CNNs to detect and classify age-related macular
degeneration (AMD), successfully differentiating between dis-
eased and healthy retinas [6], [7]. Elkholy and Marzouk [8]
developed a CNN-based model trained to simultaneously clas-
sify DME, CNV, and AMD, achieving an impressive accuracy
of over 93%. These Artificial Intelligence (AI) techniques have
significantly reduced the time required for manual diagnosis
and mitigated issues related to inter-observer variability among
ophthalmologists.

Recurrent Neural Networks (RNNSs), and their variants such
as Long Short-Term Memory (LSTM) networks, have also
been employed in OCT image analysis to capture temporal
dependencies within sequential scans. This approach enhances
the analysis by leveraging consecutive scans, revealing contex-
tual details that are critical for evaluating disease progression
across tissue layers. For example, Wang et al. [9] introduced
a model that combined CNN-based feature extraction with
LSTM to classify OCT images, effectively demonstrating the
utility of RNNSs in temporal analysis.

In the context of SRF accumulation, Hassan et al. [10]
proposed a CNN-based approach for the automatic detection
of CSC from OCT images, achieving a precision ranging
from 92.39% to 98.91%. Khakhai et al. [11] developed CNN
models to classify CSC, PCV, VKH, and normal patients,
attaining an accuracy of 87.10%. However, a detailed analysis
of the confusion matrix indicated frequent misclassification
between CSC and PCV, underscoring the inherent challenges
in differentiating these two conditions due to overlapping
features. This limitation reflects a broader issue in existing
methodologies that primarily rely on single-line scans across
the fovea per patient, thereby restricting predictive accuracy
in complex cases. As illustrated in As illustrated in Fig. 2a,
an image of a PCV patient was misclassified as CSC due
to the absence of distinct disease characteristics in that par-
ticular image, whereas Fig. 2b depicted another scan of the
same patient showing the presence of these characteristics.
This underscores the challenges associated with relying solely

on single-line scans across the fovea, which may constrain
prediction accuracy in complex cases. Leveraging multiple
OCT scans across multiple foveal lines presents a promising
opportunity for more comprehensive analysis and improved
diagnostic performance.

(a) Central Scan — Misclassified (b) Peripheral Scan — Key Features

Fig. 2: Illustration of classification limitations in a single-
image model. (a) Central OCT scan passing through the foveal
region of a PCV patient, misclassified as CSC due to the
absence of distinct PCV morphological markers. (b) Peripheral
OCT scan from the same patient, exhibiting defining charac-
teristics of PCV that were missed in the central scan alone.

B. Contributions of this paper

We present an approach integrating CNN with LSTM
networks to analyze OCT raster and radial scan sequences
across multiple foveal lines. Our model achieved an overall
accuracy of 96.57%, outperforming existing CNN-based meth-
ods for SRF accumulation classification. The integration of
temporal analysis via LSTM networks enabled the model to
capture structural changes in retinal layers, thereby enhancing
differentiation between CSC, PCV, VKH, and normal cases.
Gradient-weighted class activation mapping (Grad-CAM) was
employed to identify relevant anatomical regions for classifi-
cation, aligning closely with diagnostic features identified by
ophthalmologists.

II. METHODOLOGY
A. Data Description

The dataset was obtained from the Department of Oph-
thalmology, Faculty of Medicine, Srinagarind Hospital, Khon
Kaen, Thailand, encompassing patient visits from January
2012 to 2022. The collection and use of this dataset were
reviewed and approved by the Khon Kaen University Ethics
Committee (approval number HE664021). The dataset was
annotated by experienced ophthalmologists, who classified
each case into one of four categories: CSC, PCV, VKH, or no
SRF (normal), thereby indicating whether the patient exhibited
one of the three pathological conditions or was classified as
normal.

The dataset comprises 371 unique patients, with some
patients having multiple visits, resulting in a total of 642
records, each representing a distinct set of images from a
single visit. Each patient visit involved diagnostic imaging
using both raster and radial scans. Specifically, each record
may contain a sequence of 19, 25, or 31 raster images, along
with a sequence of 6 or 12 radial images. In total, the study
utilized 15,977 raster images and 7,044 radial images.



B. Data Preprocessing

Each record initially contained a varying number of raster
and radial sequential images, leading to input with incon-
sistent dimensions, which posed significant challenges for
computational efficiency and model performance. To address
this, the number of sequential scans was standardized to 25
raster images and 12 radial images per record. Raster scans
were systematically ordered from bottom to top, while radial
scans were arranged beginning from the north direction and
proceeding in a clockwise manner. Where necessary, excess
scans were removed or additional scans were duplicated to
achieve uniformity across the dataset, thereby enhancing the
efficiency of the learning process and mitigating performance
inconsistencies.

To be specific, let A; (i = 1,...,n) represent the original
sequence of images of length n and let B; (j = 1,...,m)
denote the new sequence of images of desired length m.
To generate the new sequence, we select the j image in
the new sequence to correspond to the k" index of the
original sequence, where k = round(% - m). This process is
equivalent to performing a linear interpolation on the indices
of the original sequential images.

After standardizing the number of images, we conducted
image preprocessing by cropping a 600x600 pixel square
centered on the retinal region of the OCT scan, as illustrated
by the orange box in Fig. 3a. Subsequently, data augmentation
techniques were employed to expand the dataset and enhance
the model’s generalization capabilities. To simulate a diverse
range of imaging conditions, we applied adjustments in bright-
ness, horizontal flipping, and random rotations to the dataset
(Fig. 3b). Specifically, brightness adjustments involved setting
the alpha value to 0.75 (dimming) and 1.25 (brightening), as
shown in Fig. 3c. Furthermore, the images were horizontally
flipped (Fig. 3d) and randomly rotated within a range of -45
to 45 degrees (Fig. 3e).

C. Model Architecture

The model architecture comprises two primary components:
a feature extraction model and a classification model. The
feature extraction model utilizes a CNN to extract informative
features from retinal OCT images, while the classification
model processes these features to predict retinal-choroidal
disorders. Fig. 4 illustrates the overall model architecture.

1) Feature Extraction Model: The feature extraction model
employs a pre-trained EfficientNetB7, originally trained on
a diverse set of general images. In this study, the weights
of the layers from the 7% block onward were unfrozen to
allow for fine-tuning, enabling the model to adapt specifically
to the OCT dataset. The extracted feature maps were then
subjected to a global average pooling (GAP) layer to reduce
their spatial dimensions. Subsequently, fully-connected layers
were appended to refine these features, making them more
contextually relevant to OCT images. ReLU activation func-
tions were applied following each fully-connected layer, with
a dropout layer incorporated to mitigate overfitting and reduce

(c) Brightness

(d) Flipping (e) Rotating

Fig. 3: Data preprocessing and augmentations for input im-
ages. (a) Cropping a 600x600 pixel square centered on the
retinal region. (b-e) Data augmentation techniques applied to
enhance model generalizability: (c) Brightness adjustments;
(d) Horizontal flipping; and (e) Rotation within a range of -45
to 45 degrees

model complexity. A softmax layer was appended at the end
to produce class probabilities.

2) Classification Model: For each record, individual OCT
images from sequences of 25 raster and 12 radial scans
were processed through the feature extraction model, and
the extracted features were then input into the classification
model. Features from raster and radial scans were fed into
two separate two-layer LSTM networks to capture temporal
dependencies. The outputs from these LSTM networks were
concatenated, followed by fully-connected layers to produce
the final prediction. ReLLU activation functions were applied
after each LSTM layer, and softmax activation was used
after the final fully-connected layer to generate probabilistic
predictions. The output of the complete model was a proba-
bilistic classification into one of four categories: CSC, PCV,
VKH, or Normal, representing three abnormal subretinal fluid
accumulation conditions and a healthy condition.

D. Experimental Setup

In this study, we use a subject-wise stratified 10-fold cross-
validation during the model training for both the feature
extraction model and the classification model. First, the list of
371 patients is randomly divided into ten folds, each of which
consists of approximately 12 patients with CSC condition,
9 patients with PCV condition, 6 patients with VKH, and
11 perfectly normal patients. Be aware that certain patients
may have made multiple visits to the hospital, which lead to
different amounts of records in each fold. During each iteration
of the cross-validation process, one of the folds is fixed as the
test set, and the remaining folds are separated into eight folds
for training and one fold for validating. After repeating the
process ten times — one iteration per each fold, the confusion
matrices are aggregated and reported as the performance of
the model.
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Fig. 4: Model architecture, consisting of a feature extraction model (top) that captures spatial features relevant to retinal
structures, and a classification model (bottom) that utilizes these extracted features from sequential OCT images to classify

them into one of four categories: CSC, PCV, VKH, or Normal.

The implementation of both models leveraged the CUDA
parallel computing platform to expedite computations, using
an NVIDIA A100 GPU with 40GB of memory, Python ver-
sion 3.10.14, and Keras version 2.9.0. The Adam optimizer
was employed to train both models. The feature extraction
model was initialized with a learning rate of 102, which
was reduced by a factor of 0.2 after four epochs without
improvement. Similarly, the classification model was trained
with an initial learning rate of 1072, reduced by a factor of 0.4
after four epochs without improvement. The sparse categorical
cross-entropy loss function was utilized to optimize model
performance. A batch size of 64 was selected to enhance
computational efficiency, with training conducted for up to 100
epochs, incorporating early stopping if validation performance
failed to improve after ten epochs.

III. RESULTS AND DISCUSSION

A summary of the model’s predictive performance is pre-
sented in Table I. The proposed model achieved an over-
all accuracy of 96.57%, significantly outperforming previous
work [], which utilized a CNN trained on the same dataset
and reported an overall accuracy of 87.10%. The average per-
class precision, recall, and F1-score were 96.30%, 96.63%, and
96.60%, respectively, demonstrating robust predictive perfor-
mance. These metrics highlight the model’s high capability
in effectively differentiating among the four classes, including

the three pathological SRF conditions (CSC, PCV, VKH) and
normal cases. The incorporation of LSTM layers for temporal
analysis provided a notable advantage over previous CNN-
only approaches by enabling the model to capture complex
temporal dependencies inherent in sequential OCT images,
thus improving overall diagnostic accuracy.

To further interpret the results, we compared our work with
that of Kakai et al. [11], as both studies utilized the same
dataset, enabling a direct comparison. Their model encoun-
tered significant challenges in differentiating between CSC and
PCV, misclassifying 59 out of 528 PCV records as CSC and,
conversely, 34 out of 522 CSC records as PCV. This difficulty
likely stems from the shared morphological features between
CSC and PCV, which make distinguishing between these two
conditions particularly challenging. This observation is consis-
tent with previous studies by Lee et al. [12], which highlighted
the inherent challenges in accurately differentiating CSC from
PCV due to their overlapping morphological characteristics
of the choroid. In contrast, our model demonstrated a marked
improvement in differentiating between these two classes, with
only a few instances of misclassification. This underscores
the effectiveness of incorporating temporal analysis across
multiple sequential scans, which significantly enhanced the
model’s predictive performance.

To validate the models’ focus on relevant anatomical regions
and ensure the reliability of their outputs, Gradient-weighted



CSC PCV VKH Normal Recall F1 score

CSC 152 4 3 0 95.60% 94.41%

PCV 6 156 1 2 97.04% 97.33%

VKH 4 0 164 1 97.04% 96.00%

Normal 1 0 0 148 99.33% 98.67%
Precision | 93.25% 97.62% 97.50% 98.01%

TABLE I: Performance metrics for the classification model, including cumulative confusion matrix, precision, recall, and
Fl-score for each class: CSC, PCV, VKH, and Normal. With an overall accuracy of 96.57%, these results highlight the
effectiveness of incorporating temporal analysis across OCT scan sequences in this work, significantly enhancing the model’s
ability to distinguish between the four classes compared to prior single-image models used in previous work.

Class Activation Mapping (Grad-CAM) [13] was employed.
Grad-CAM visualized the input regions most influential in
the model’s classification decisions by providing an overlaid
heatmap on the OCT scans. This enabled the identification
of critical anatomical features that the model considered
significant during decision-making. The results in Fig. 5 shows
that the model primarily focused on key anatomical regions,
such as the retinal pigment epithelium and the choroid, rather
than on imaging artifacts or irrelevant regions, enhancing con-
fidence in the predictions. These findings align well with the
regions ophthalmologists emphasize during diagnosis, indicat-
ing that the model’s learning is consistent with expert clinical
practice. Furthermore, the use of Grad-CAM provided much-
needed transparency in the model’s decision-making process,
which is essential for building clinician trust in automated
systems.

(a) CSC Feature (b) PCV Feature

(c) VKH Feature

(d) Normal Anatomy

Fig. 5: Grad-CAM visualization of the feature extraction
model, highlighting regions of OCT scans most influential in
decision-making. Heatmaps overlay key anatomical features,
such as the retinal pigment epithelium and choroid, which
align closely with areas examined by ophthalmologists for
diagnosing (a) CSC, (b) PCV, (¢) VKH, and (d) a normal
patient.

IV. CONCLUSION

The proposed hybrid CNN-LSTM model demonstrates a
substantial advancement in the classification of subretinal
fluid (SRF) accumulation by effectively leveraging temporal
information present in sequential OCT images. This approach
enables the model to capture nuanced structural changes in
the retinal layers that are often missed by traditional single-
image models. The integration of convolutional and recurrent
layers allowed for the utilization of both spatial and temporal
features, resulting in a robust predictive capability with an ac-
curacy of 96.57%, thereby significantly outperforming existing
approaches.

Furthermore, Gradient-weighted Class Activation Mapping
(Grad-CAM) was employed to validate the model’s attention
to relevant anatomical regions, thereby enhancing the inter-
pretability of the model’s predictions. The regions highlighted
by Grad-CAM closely aligned with those typically evaluated
by ophthalmologists, which is crucial for building trust in the
model’s decision-making process.

The proposed model demonstrates a significant advance-
ment in automated retinal disorder classification by effectively
integrating spatial and temporal features from sequential OCT
images. This capability not only enhances diagnostic accuracy
but also streamlines the process, offering the potential to
support ophthalmologists with real-time decision-making and
reducing the reliance on time-intensive manual evaluations.

One consideration in this study is the reliance on data
primarily from a Thai population, which could affect the
model’s generalizability to other demographics. Expanding
validation efforts to include diverse datasets and integrating
multimodal inputs, such as patient demographics and clinical
histories, could enhance its predictive accuracy. Leveraging
longitudinal data to analyze disease progression and adopting
semi-supervised approaches to utilize unlabeled data are also
promising directions for future research.
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