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Abstract— We attempted to relate EEG brain activities evoked 

by naturalistic audio-visual video stimuli to the outputs of an 

audio-processing Transformer induced by audio inputs extracted 

from the same stimuli. We found a good correspondence, 

especially in low-frequency brain activity. This is complementary 

to a previous study that showed good correspondence between 

high-frequency brain activity and a movie-processing 

Transformer. These suggest that combining audio- and movie-

processing Transformers and using them as a brain simulator is 

promising. That is, by utilizing this, it should be possible to 

synthesize audio-visual video stimuli that can intervene in a 

variety of brain activities and functions. 
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I. INTRODUCTION 

In recent years, methods to induce specific brain activities 
using artificially designed sensory stimuli and thereby non-
invasively treat neurological disorders have been investigated 
[1]-[5]. However, the repertoire of brain activities that can be 
induced by the methods is narrow. If a more diverse range of 
brain activities can be induced with artificially designed 
sensory stimuli, the treatment of a wider variety of diseases and 
the enhancement of brain function will be possible in a non-
invasive and easy way. The final goal of the present study is to 
develop an optimal synthesis method for audiovisual stimuli 
that will enable such applications. In particular, we aim to do 
this by utilizing deep neural networks (DNNs). 

The brain is the origin of DNNs, and many of the 
computational units and architectures of DNNs are inspired by 
those of the brain. Furthermore, there is a correspondence 
between the functions of the brain and DNNs. That is, when the 
same stimulus is presented to the brain and a DNN, it is 
possible to map the response of one to the response of the other 
by a simple transformation [6]–[8]. Such functional 
correspondences may enable the use of DNNs as brain 
simulators, enabling the evaluation of the effects of specific 

sensory stimuli on the brain by presenting the stimuli on the 
DNNs and observing their responses.  

This may lead to the development of new intervention 
methods utilizing DNN brain simulators in which one can 
design effective intervention stimuli through optimization of 
them to induce brain activity as required for therapeutic 
purposes (see [9]–[11]). Since this methodology is applicable 
to a wide variety of brain activities, it should be useful not only 
for clinical treatments but also for the enhancement of 
cognitive abilities in healthy humans. In particular, intervention 
in neural oscillations (or brain waves) in specific frequency 
bands is an important challenge. Brain waves in the range of a 
few Hz to over 100 Hz are known to be involved in various 
functions of healthy and diseased brains [12]–[14]. In fact, 
methods of intervening in such oscillatory activity using 
external stimuli such as magnetic or electrical stimulation to 
treat diseases and enhance brain function have been studied 
[15]–[17]. Therefore, interventions based on the use of DNNs 
as brain simulators also need to process such high-speed 
activities. 

Since functional magnetic resonance imaging which is a 
method typically used in previous studies is unable to capture 
such activities, the authors have attempted to establish a 
correspondence between DNNs and brain activity measured 
using the electroencephalogram (EEG), which is capable of 
measuring at millisecond-order resolution [18]. Given that the 
goal is to design optimal sensory stimuli for intervention based 
on the correspondence between DNNs and the brain, it is 
appropriate to use multimodal stimuli that enable more 
efficient and diverse interventions. Therefore, in the authors' 
previous study, naturalistic audio-visual video stimuli were 
used [18]. There, we investigated the correspondence between 
EEG brain activity and silent movie-processing DNNs. As a 
result, a good correspondence was observed, particularly in the 
high-frequency bands such as beta and gamma oscillations. 
Although this result was neurophysiologically plausible, to 
achieve the goal of intervening in brain activity and functions 
using sensory stimuli, it is necessary to correlate DNNs with 
brain activity in the low-frequency range as well.  



In our experiment of this previous study, audio-visual 
stimuli were used, but only the visual modality was analyzed as 
we mentioned above. However, if the DNN for audio 
processing shows a good correspondence with brain activity in 
the low-frequency range, the intervention in brain activity and 
functions using audio-visual stimuli will be more promising. 
Therefore, here, we investigated the correspondence between 
the responses of an audio spectrogram Transformer and EEG 
brain activity responses to a variety of naturalistic audio-visual 
video stimuli. 

II. RELATED WORK 

In previous studies that have investigated the 
correspondence between EEG brain activity and DNNs, visual 
stimuli such as images and videos have mainly been used. In 
[19], an experimental paradigm called rapid serial visual 
presentation that presents images at high speed was used to 
record EEG responses from 10 participants in 16,740 image 
conditions. The same images were also input into DNNs to 
obtain their responses. Based on this data, a mapping was 
determined that corresponded between the DNN responses and 
EEG brain activity. This mapping was also able to predict the 
brain activity of new participants. In [20], using the projection 
of EEG responses evoked by image stimuli into the shared 
subspace as the CLIP embedding, zero-shot decoding and 
image reconstruction from brain activity were demonstrated.  

However, the correspondence between EEG and DNN 
responses to auditory stimuli is a largely unexplored field. 
Furthermore, even if functional magnetic resonance imaging 
studies are included, most existing studies on the 
correspondence between auditory brain activity and DNNs 
focus only on speech or music (e.g. [21], also see [22]), and the 
correspondence in response to more general auditory stimuli is 
largely unknown. Therefore, in the present study, we used 
various naturalistic auditory stimuli to induce DNN responses 
and attempted to correspond them to EEG brain activity. 

III. MATERIALS AND METHODS 

The dataset used in this study is the same as that used in a 
previous study conducted by the authors [18], which 
investigated the correspondence between video-processing 
DNN and EEG brain activity. In that study, the analysis 
focused on visual processing, but in this study, the analysis 
focused on audio processing. Therefore, the experimental 
conditions and preprocessing of the EEG data are the same as 
in the previous study, so we will explain them briefly here. For 
details, please refer to [18].  

A. Participants 

The study involved five healthy young male participants. 
Their ages ranged from 19 to 22 years. All had normal or 
corrected-to-normal vision and normal audition. They also had 
no history of psychiatric or neurological disorders. All 
participants were native Japanese speakers. None had any 
experience of learning Spanish or Russian, and therefore were 
unable to receive linguistic meaning from the sounds of these 
languages. This study was approved by the institutional ethics 
committee of Tokai University (approval number: 21107) and 
was carried out following the Declaration of Helsinki. Written 
informed consent was obtained from each subject. 

B. Experimental Procedures and Stimuli 

An experiment was conducted to measure EEG responses 
to naturalistic audio-visual video stimuli. The experiment 
consisted of three days in total. 472 10-second short clips, three 
Spanish and one Russian documentary were presented. In the 
experiment using short clips, participants pressed a keyboard 
button to answer whether the clip they had just watched was to 
their liking or not, in the time between clips. This was a task to 
maintain participants' concentration. On the other hand, in the 
experiment using documentaries, participants were only 
required to watch them, and there were no additional tasks. 
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Figure 1: Schematic image of the experimental and analysis procedure in this study. (A) Naturalistic audio stimuli extracted from the audio-

visual videos are presented to an audio-processing DNN, SSAST, that is pre-trained with naturalistic audio datasets using a self-supervised 

learning framework. (B) The same audio-visual videos are presented to human participants and their evoked brain activity is measured using 

EEG. Note that visual stimuli are also presented here, not just audio stimuli. (C) The power spectral density is calculated from the EEG data. 

(D) The power spectral densities are predicted by linear regression from the SSAST outputs that are dimensionality-reduced using principal 

component analysis (PCA). 



The four documentary videos with Spanish or Russian 
audio were downloaded from the video-sharing site Vimeo 
(https://vimeo.com/), and used as they were. The length of the 
videos was 18min 5sec (Spanish), 21min 21sec (Spanish), 
16min 53sec (Spanish), and 23min 41sec (Russian). The 
themes of the videos were  ‘royal guard,’ ‘conflicts between a 
company and local people over development,’ ‘issues of 
environmental conservation and fisheries,’ and ‘war,’ 
respectively. The 472 short clips were made by combining 118 
silent 10-second videos extracted from 118 videos downloaded 
from the NHK Creative Library website 
(https://www.nhk.or.jp/archives/creative/en/) with 118 audios 
downloaded from the same site in random combinations. The 
videos were selected from the categories of ‘bird,’ ‘culture,’ 
‘earth,’ ‘fish,’ ‘food,’ ‘mammal,’ ‘nature,’ ‘plant,’ ‘vehicle,’ 
and ‘VFX. Note that the movie and audio in each short clip are 
unrelated, due to such a way the stimuli were created. This is in 
contrast to the documentary stimuli, where the two are 
matched.  

C. EEG data acquisitions and preprocessing 

EEG recordings were conducted using a 32-channel Flex 
Gel Sensor Kit (Emotiv Inc., USA) from participants under the 
above-mentioned stimulus presentation. The electrodes were 
placed in the following positions according to the International 

10-20 system: 'Cz', 'Fz', 'Fp1', 'F7', 'F3', 'FC1', 'C3', 'FC5', 'FT9', 
'T7', 'CP5', ' ', 'PO9', 'O1', 'Pz', 'Oz', 'O2', 'PO10', 'P8', 'P4', 
'CP2', 'CP6', 'T8', 'FT10', 'FC6', 'C4', 'FC2', 'F4', 'F8', 'Fp2'. The 
reference electrodes were placed on both earlobes.  

The preprocessing was carried out using EEGLab [23] on 
Matlab (MathWorks, U.S.), and the following steps were 
performed. First, a band-pass filter was applied to the data 
between 1 and 40 Hz using a Hamming windowed sinc FIR 
filter. Then, independent component analysis (ICA) was used 
to identify and remove artifacts from eye movements and 
blinks. After that, a re-referencing process was applied, which 
refers to the average value of the electrodes. Then, time-
frequency analysis was performed using the wavelet method to 
calculate the time-series of the power spectral density. Finally, 
those time-series of the power spectral density of each EEG 
channel was normalized to a z-score with an average of 0 and a 
variance of 1 for each session. 

D. Audio processing using SSAST 

In this study, we performed a correspondence between a 
DNN named Self-Supervised Audio Spectrogram Transformer 
(SSAST) [24] and EEG brain activities. SSAST is a vision 
Transformer-based model that gives an embedding 
representation to audio spectrogram inputs. The input is 
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Figure 2: Prediction of brain activity induced by the documentary video stimuli from SSAST outputs. (A) Correlation coefficients between 

experimental and predicted values are shown using a color code. The horizontal axis represents frequency bands, and the vertical axis 

represents channels. ‘n.s.’ indicates locations where no statistically significant positive correlation was observed, and other locations 

indicate statistically significant positive correlations. (B) Frequency band dependence of the correlation coefficient between experimental 

and predicted values. The vertical axis shows the average correlation coefficient for all participants. Each line corresponds to an EEG 

channel. (C) Topographic plot of the correlation coefficient between experimental and predicted values. The color code indicates the 

correlation coefficient values. 



divided into 16×16 patches, and after linear projection, position 
embedding is added. This is input into a Transformer Encoder 
with 768 embedding dimensions, 12 layers, and 12 heads. Pre-
training was done in a self-supervised learning framework. 
This consisted of discriminating and reconstructing masked 
input patches. In this study, we used a pre-trained model named 
SSAST-Base-Patch-400. This model has been trained on two 
datasets, AudioSet [25] and LibriSpeech [26]. 

By moving the time window in 0.1-second increments on 
the audio used in the EEG experiment, we extracted 3-second 
sub-clips. In the case of short clips, the period from 1 second to 
8 seconds after the beginning of the clip was targeted for this 
sub-clipping. This resulted in 41 sub-clips being created from 
each short clip, giving a total of 19,352 sub-clips. In the case of 
the documentaries, the sub-clips were created from 1 second 
after the beginning to the end. This resulted in 10,804, 12,763, 
10,090, and 14,170 sub-clips being created from each file. We 
then input the spectrograms extracted from these sub-clips into 
SSAST to obtain outputs that would be used as the embedded 
representations of the auditory stimuli. 

E. Prediction of the EEG activity from the SSAST responses 

Principal component analysis (PCA) was applied to these 
embedded representations, and the dimensions were reduced so 
that the cumulative proportion of variance was 85% and 95% 
for documentaries and short clips, respectively. Each principal 
component that was adopted was normalized to a z-score with 
a mean of 0 and a variance of 1. The EEG power spectral 
density of the interval corresponding to the last 1.5 seconds of 
each audio sub-clip was averaged. Furthermore, this was 
divided into the low theta (4-6 Hz), high theta (6-8 Hz), alpha 
(8-13 Hz), beta (13-30 Hz), and gamma (30-40 Hz) bands, and 
averaged within each band. From here on, we will consider 
these as brain activity responses to the sub-clip.Multiple 
regression analysis was performed using the reduced-
dimensionality embedded representations as explanatory 
variables and the brain activity responses as dependent 
variables. For the documentary videos, sub-clips extracted from 
the second video were used as test data, and for the short clips, 
sub-clips extracted from 15 randomly selected videos were 
used as test data. The others were used for training. Training 
for the regressor was conducted for each participant. 

IV. RESULTS 

We investigated the correspondence between brain activity 
and the audio-processing DNN (SSAST) using EEG responses 
to two types of audio-visual videos. The main difference 
between them is that the audio and movie are matched in the 
documentary videos, while they are unrelated in the short clip 
videos.  

A. Documentary Video-evoked EEG activity 

We input audio sub-clips extracted from documentary 
videos into the SSAST and obtained their embedded 
representations as their outputs. Using these embedded 
representations, we predicted the EEG power spectrum 
densities recorded from participants under the same video 
presentation using multiple regression. We evaluated the 

prediction performance using a one-sided test based on the 
correlation analysis of the predicted and actual EEG power 
spectrum densities for the test data. The statistics obtained for 
each participant were integrated using the Stouffer's Z-score 
method [27] and tested. Multiple comparison correction was 
performed using the Benjamini-Hochberg method [28]. 

As Figure 2A shows, statistically significant predictability 
was observed especially in the low frequency bands (theta to 
alpha) for the wide range of electrodes. On the other hand, in 
the high-frequency bands, the predictability was not significant 
for the majority of electrodes. When comparing the regions 
where the predictability was significant and those where it was 
not, the average correlation coefficients were not necessarily 
lower in the latter. This is because the variance of the 
correlation coefficients between participants was larger in the 
latter. In other words, the predictability of responses in the low-
frequency range was to some extent consistent among 
participants, but in the high-frequency range it was rather 
inconsistent. Thus, the frequency dependence of the results of 
the test is due to differences in variance rather than differences 
in means, which, not surprisingly, could not be captured by a 
two-way repeated measures ANOVA (Figure 2B and Table I). 
Also, no dependence of predictability on electrode locations 
was observed (Figure 2C). 

B. Short Clip-evoked EEG activity 

The same analysis as above was performed for the audio 
sub-clips extracted from the short clips (Figure 3). Unlike the 
documentary case, there was no clear frequency band 
dependence in the result of the test of predictability. On the 
other hand, a dependence on electrode position was observed. 
In particular, predictability was lower in the occipital to parietal 
lobes. This electrode position dependence was also confirmed 
by a two-way repeated measures ANOVA (Table II). In 
addition, comparing Figures 2A and 3A, it appears that the 
predictability in the case of short clips is less biased towards 
the low frequency band than that in the case of documentaries. 
Rather, it seems that the predictability is lower in the low 
frequency band. We will discuss these points in the 
‘Discussion’ section. 

TABLE I.  RESULT OF ANOVA (DOCUMENTARIES) 

  df MS F p 

Channel 31/124 0.00577 0.384 0.999 

Band 4/16 0.00989 0.387 0.814 

Channel x Band 124/496 0.00195 0.842 0.877 

TABLE II.  RESULT OF ANOVA (SHORT CLIPS) 

  df MS F p 

Channel 31/124 0.0152 1.564 0.0451 

Band 4/16 0.00662 0.110 0.977 

Channel x Band 124/496 0.00246 0.706 0.990 



V. DISCUSSION 

In this study, we aimed to model EEG brain activity 
induced by naturalistic audio-visual video stimuli using DNNs. 
In our previous study, we showed that movie-processing DNNs 
can capture high-frequency EEG activity well [18]. This result 
was neurophysiologically plausible, but considering the final 
goal of using DNNs as brain simulators to synthesize optimal 
sensory stimuli for intervening in brain activities and functions, 
it is important to be able to capture low-frequency EEG activity 
as well. Therefore, in this study, we analyzed the prediction of 
EEG activity from the embedded representation obtained from 
SSAST, which is one of the audio-processing DNNs. As a 
result, it was found that low-frequency EEG activity could be 
captured well, especially in the case of the documentary 
stimuli. Therefore, it was suggested that by integrating audio 
and movie-processing DNNs and using them as a brain 
simulator, it would be possible to handle a wide range of 
frequencies in a complementary manner. Additionally, it was 
considered that documentary stimuli is probably more 
promising than short clips for intervention. 

The most notable difference in obtained results between the 
two types of video stimuli (documentaries and short clips) was 
the dependence of the predictability of brain activity on the 
electrode location. A significant dependence was only shown in 
the case of short clips. In particular, the predictability was 

lower for electrodes across the occipital and parietal lobes. This 
is considered to be because the auditory and visual stimuli were 
matched in the case of documentaries, but were unrelated in the 
case of short clips. In neurophysiology, it is well known that 
the occipital lobe is strongly specialized for visual processing 
[29]. Therefore, it is not surprising that the responses in the 
occipital lobe could not be predicted from the audio stimuli, as 
was the case with the short clips. On the other hand, in the case 
of the documentary, the auditory and visual stimuli were 
correlated in terms of their content, and it seems likely that the 
responses in the occipital lobe were predictable. 

Furthermore, differences were also observed in the 
relationship between prediction performance and frequency 
band for the two types of video stimuli. In short, the 
predictability of brain activity was higher in the low frequency 
band for documentaries and in the high frequency band for 
short clips. This may be explained by differences in attention 
and vigilance. In the condition where short clips with different 
themes are presented one after another in a short period of 
time, it is more likely to maintain attention and vigilance. In 
addition, in the case of short clips, participants were asked to 
press a key during the interval between videos, and this could 
also contribute to maintaining attention and vigilance. In 
general, when attention and vigilance are high, high-frequency 
band oscillations become dominant, and when they are low, 
low-frequency band oscillations become dominant [30]-[32]. It 
is possible that this is reflected in the results. 
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Figure 3: Prediction of brain activity induced by the short clip stimuli from SSAST outputs. (A) Correlation coefficients between 

experimental and predicted values are shown using a color code. (B) Frequency band dependence of the correlation coefficient between the 

experimental and predicted values. The vertical axis shows the average correlation coefficient for all participants. Each line corresponds to 

an EEG channel. (C) Topographic plot of the correlation coefficient between the experimental and predicted values. The color code 

indicates the correlation coefficient values. The notation used is the same as in Figure 2. 



VI. CONCLUSION 

In this study, to establish DNNs as a brain simulator, we 
attempted to correspond EEG brain activity during viewing 
audio-visual videos to the responses of SSAST to audio inputs 
extracted from them. The results showed that, especially for 
documentary stimuli, EEG activity in the low-frequency band 
can be corresponded well. This is complementary to the results 
in the authors' previous study. By integrating these, it is 
suggested that it will be possible to design optimal sensory 
stimuli to intervene in brain activities and functions utilizing 
DNNs as a brain simulator. 
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