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Abstract— We attempted to relate EEG brain activities evoked
by naturalistic audio-visual video stimuli to the outputs of an
audio-processing Transformer induced by audio inputs extracted
from the same stimuli. We found a good correspondence,
especially in low-frequency brain activity. This is complementary
to a previous study that showed good correspondence between
high-frequency brain activity and a movie-processing
Transformer. These suggest that combining audio- and movie-
processing Transformers and using them as a brain simulator is
promising. That is, by utilizing this, it should be possible to
synthesize audio-visual video stimuli that can intervene in a
variety of brain activities and functions.
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I. INTRODUCTION

In recent years, methods to induce specific brain activities
using artificially designed sensory stimuli and thereby non-
invasively treat neurological disorders have been investigated
[1]-[5]. However, the repertoire of brain activities that can be
induced by the methods is narrow. If a more diverse range of
brain activities can be induced with artificially designed
sensory stimuli, the treatment of a wider variety of diseases and
the enhancement of brain function will be possible in a non-
invasive and easy way. The final goal of the present study is to
develop an optimal synthesis method for audiovisual stimuli
that will enable such applications. In particular, we aim to do
this by utilizing deep neural networks (DNNGs).

The brain is the origin of DNNs, and many of the
computational units and architectures of DNNs are inspired by
those of the brain. Furthermore, there is a correspondence
between the functions of the brain and DNNs. That is, when the
same stimulus is presented to the brain and a DNN, it is
possible to map the response of one to the response of the other
by a simple transformation [6]-[8]. Such functional
correspondences may enable the use of DNNs as brain
simulators, enabling the evaluation of the effects of specific
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sensory stimuli on the brain by presenting the stimuli on the
DNNs and observing their responses.

This may lead to the development of new intervention
methods utilizing DNN brain simulators in which one can
design effective intervention stimuli through optimization of
them to induce brain activity as required for therapeutic
purposes (see [9]-[11]). Since this methodology is applicable
to a wide variety of brain activities, it should be useful not only
for clinical treatments but also for the enhancement of
cognitive abilities in healthy humans. In particular, intervention
in neural oscillations (or brain waves) in specific frequency
bands is an important challenge. Brain waves in the range of a
few Hz to over 100 Hz are known to be involved in various
functions of healthy and diseased brains [12]-[14]. In fact,
methods of intervening in such oscillatory activity using
external stimuli such as magnetic or electrical stimulation to
treat diseases and enhance brain function have been studied
[15]-[17]. Therefore, interventions based on the use of DNNs
as brain simulators also need to process such high-speed
activities.

Since functional magnetic resonance imaging which is a
method typically used in previous studies is unable to capture
such activities, the authors have attempted to establish a
correspondence between DNNs and brain activity measured
using the electroencephalogram (EEG), which is capable of
measuring at millisecond-order resolution [18]. Given that the
goal is to design optimal sensory stimuli for intervention based
on the correspondence between DNNs and the brain, it is
appropriate to use multimodal stimuli that enable more
efficient and diverse interventions. Therefore, in the authors'
previous study, naturalistic audio-visual video stimuli were
used [18]. There, we investigated the correspondence between
EEG brain activity and silent movie-processing DNNs. As a
result, a good correspondence was observed, particularly in the
high-frequency bands such as beta and gamma oscillations.
Although this result was neurophysiologically plausible, to
achieve the goal of intervening in brain activity and functions
using sensory stimuli, it is necessary to correlate DNNs with
brain activity in the low-frequency range as well.
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Figure 1: Schematic image of the experimental and analysis procedure in this study. (A) Naturalistic audio stimuli extracted from the audio-
visual videos are presented to an audio-processing DNN, SSAST, that is pre-trained with naturalistic audio datasets using a self-supervised
learning framework. (B) The same audio-visual videos are presented to human participants and their evoked brain activity is measured using
EEG. Note that visual stimuli are also presented here, not just audio stimuli. (C) The power spectral density is calculated from the EEG data.
(D) The power spectral densities are predicted by linear regression from the SSAST outputs that are dimensionality-reduced using principal

component analysis (PCA).

In our experiment of this previous study, audio-visual
stimuli were used, but only the visual modality was analyzed as
we mentioned above. However, if the DNN for audio
processing shows a good correspondence with brain activity in
the low-frequency range, the intervention in brain activity and
functions using audio-visual stimuli will be more promising.
Therefore, here, we investigated the correspondence between
the responses of an audio spectrogram Transformer and EEG
brain activity responses to a variety of naturalistic audio-visual
video stimuli.

II. RELATED WORK

In previous studies that have investigated the
correspondence between EEG brain activity and DNNs, visual
stimuli such as images and videos have mainly been used. In
[19], an experimental paradigm called rapid serial visual
presentation that presents images at high speed was used to
record EEG responses from 10 participants in 16,740 image
conditions. The same images were also input into DNNs to
obtain their responses. Based on this data, a mapping was
determined that corresponded between the DNN responses and
EEG brain activity. This mapping was also able to predict the
brain activity of new participants. In [20], using the projection
of EEG responses evoked by image stimuli into the shared
subspace as the CLIP embedding, zero-shot decoding and
image reconstruction from brain activity were demonstrated.

However, the correspondence between EEG and DNN
responses to auditory stimuli is a largely unexplored field.
Furthermore, even if functional magnetic resonance imaging
studies are included, most existing studies on the
correspondence between auditory brain activity and DNNs
focus only on speech or music (e.g. [21], also see [22]), and the
correspondence in response to more general auditory stimuli is
largely unknown. Therefore, in the present study, we used
various naturalistic auditory stimuli to induce DNN responses
and attempted to correspond them to EEG brain activity.

III. MATERIALS AND METHODS

The dataset used in this study is the same as that used in a
previous study conducted by the authors [18], which
investigated the correspondence between video-processing
DNN and EEG brain activity. In that study, the analysis
focused on visual processing, but in this study, the analysis
focused on audio processing. Therefore, the experimental
conditions and preprocessing of the EEG data are the same as
in the previous study, so we will explain them briefly here. For
details, please refer to [18].

A. Participants

The study involved five healthy young male participants.
Their ages ranged from 19 to 22 years. All had normal or
corrected-to-normal vision and normal audition. They also had
no history of psychiatric or neurological disorders. All
participants were native Japanese speakers. None had any
experience of learning Spanish or Russian, and therefore were
unable to receive linguistic meaning from the sounds of these
languages. This study was approved by the institutional ethics
committee of Tokai University (approval number: 21107) and
was carried out following the Declaration of Helsinki. Written
informed consent was obtained from each subject.

B. Experimental Procedures and Stimuli

An experiment was conducted to measure EEG responses
to naturalistic audio-visual video stimuli. The experiment
consisted of three days in total. 472 10-second short clips, three
Spanish and one Russian documentary were presented. In the
experiment using short clips, participants pressed a keyboard
button to answer whether the clip they had just watched was to
their liking or not, in the time between clips. This was a task to
maintain participants' concentration. On the other hand, in the
experiment using documentaries, participants were only
required to watch them, and there were no additional tasks.
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Figure 2: Prediction of brain activity induced by the documentary video stimuli from SSAST outputs. (A) Correlation coefficients between
experimental and predicted values are shown using a color code. The horizontal axis represents frequency bands, and the vertical axis
represents channels. ‘n.s.” indicates locations where no statistically significant positive correlation was observed, and other locations
indicate statistically significant positive correlations. (B) Frequency band dependence of the correlation coefficient between experimental
and predicted values. The vertical axis shows the average correlation coefficient for all participants. Each line corresponds to an EEG
channel. (C) Topographic plot of the correlation coefficient between experimental and predicted values. The color code indicates the

correlation coefficient values.

The four documentary videos with Spanish or Russian
audio were downloaded from the video-sharing site Vimeo
(https://vimeo.conV/), and used as they were. The length of the
videos was 18min S5sec (Spanish), 21min 2lIsec (Spanish),
16min 53sec (Spanish), and 23min 4lsec (Russian). The
themes of the videos were ‘royal guard,” ‘conflicts between a
company and local people over development,” ‘issues of
environmental conservation and fisheries,” and ‘war,’
respectively. The 472 short clips were made by combining 118
silent 10-second videos extracted from 118 videos downloaded
from the NHK Creative Library website
(https://www.nhk.or.jp/archives/creative/en/) with 118 audios
downloaded from the same site in random combinations. The
videos were selected from the categories of ‘bird,” ‘culture,’
‘earth,” ‘fish,” ‘food,” ‘mammal,’” ‘nature,” ‘plant,” ‘vehicle,’
and ‘VFX. Note that the movie and audio in each short clip are
unrelated, due to such a way the stimuli were created. This is in
contrast to the documentary stimuli, where the two are
matched.

C. EEG data acquisitions and preprocessing

EEG recordings were conducted using a 32-channel Flex
Gel Sensor Kit (Emotiv Inc., USA) from participants under the
above-mentioned stimulus presentation. The electrodes were
placed in the following positions according to the International

10-20 system: 'Cz', 'Fz', 'Fp1', 'F7', 'F3', 'FC1', 'C3', 'FC5', 'FT9',
'T7', 'CP5', ' ', 'PO9', 'O1', 'PZ', 'Oz, 'O2', 'PO10', 'P8', P4,
'CP2', 'CP6', 'T8', 'FT10', 'FC6', 'C4", 'FC2', 'F4', 'F8', 'Fp2'. The
reference electrodes were placed on both earlobes.

The preprocessing was carried out using EEGLab [23] on
Matlab (MathWorks, U.S.), and the following steps were
performed. First, a band-pass filter was applied to the data
between 1 and 40 Hz using a Hamming windowed sinc FIR
filter. Then, independent component analysis (ICA) was used
to identify and remove artifacts from eye movements and
blinks. After that, a re-referencing process was applied, which
refers to the average value of the electrodes. Then, time-
frequency analysis was performed using the wavelet method to
calculate the time-series of the power spectral density. Finally,
those time-series of the power spectral density of each EEG
channel was normalized to a z-score with an average of 0 and a
variance of 1 for each session.

D. Audio processing using SSAST

In this study, we performed a correspondence between a
DNN named Self-Supervised Audio Spectrogram Transformer
(SSAST) [24] and EEG brain activities. SSAST is a vision
Transformer-based model that gives an embedding
representation to audio spectrogram inputs. The input is



divided into 16x16 patches, and after linear projection, position
embedding is added. This is input into a Transformer Encoder
with 768 embedding dimensions, 12 layers, and 12 heads. Pre-
training was done in a self-supervised learning framework.
This consisted of discriminating and reconstructing masked
input patches. In this study, we used a pre-trained model named
SSAST-Base-Patch-400. This model has been trained on two
datasets, AudioSet [25] and LibriSpeech [26].

By moving the time window in 0.1-second increments on
the audio used in the EEG experiment, we extracted 3-second
sub-clips. In the case of short clips, the period from 1 second to
8 seconds after the beginning of the clip was targeted for this
sub-clipping. This resulted in 41 sub-clips being created from
each short clip, giving a total of 19,352 sub-clips. In the case of
the documentaries, the sub-clips were created from 1 second
after the beginning to the end. This resulted in 10,804, 12,763,
10,090, and 14,170 sub-clips being created from each file. We
then input the spectrograms extracted from these sub-clips into
SSAST to obtain outputs that would be used as the embedded
representations of the auditory stimuli.

E. Prediction of the EEG activity from the SSAST responses

Principal component analysis (PCA) was applied to these
embedded representations, and the dimensions were reduced so
that the cumulative proportion of variance was 85% and 95%
for documentaries and short clips, respectively. Each principal
component that was adopted was normalized to a z-score with
a mean of 0 and a variance of 1. The EEG power spectral
density of the interval corresponding to the last 1.5 seconds of
each audio sub-clip was averaged. Furthermore, this was
divided into the low theta (4-6 Hz), high theta (6-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-40 Hz) bands, and
averaged within each band. From here on, we will consider
these as brain activity responses to the sub-clip.Multiple
regression analysis was performed using the reduced-
dimensionality embedded representations as explanatory
variables and the brain activity responses as dependent
variables. For the documentary videos, sub-clips extracted from
the second video were used as test data, and for the short clips,
sub-clips extracted from 15 randomly selected videos were
used as test data. The others were used for training. Training
for the regressor was conducted for each participant.

IV. RESULTS

We investigated the correspondence between brain activity
and the audio-processing DNN (SSAST) using EEG responses
to two types of audio-visual videos. The main difference
between them is that the audio and movie are matched in the
documentary videos, while they are unrelated in the short clip
videos.

A. Documentary Video-evoked EEG activity

We input audio sub-clips extracted from documentary
videos into the SSAST and obtained their embedded
representations as their outputs. Using these embedded
representations, we predicted the EEG power spectrum
densities recorded from participants under the same video
presentation using multiple regression. We evaluated the

prediction performance using a one-sided test based on the
correlation analysis of the predicted and actual EEG power
spectrum densities for the test data. The statistics obtained for
each participant were integrated using the Stouffer's Z-score
method [27] and tested. Multiple comparison correction was
performed using the Benjamini-Hochberg method [28].

As Figure 2A shows, statistically significant predictability
was observed especially in the low frequency bands (theta to
alpha) for the wide range of electrodes. On the other hand, in
the high-frequency bands, the predictability was not significant
for the majority of electrodes. When comparing the regions
where the predictability was significant and those where it was
not, the average correlation coefficients were not necessarily
lower in the latter. This is because the variance of the
correlation coefficients between participants was larger in the
latter. In other words, the predictability of responses in the low-
frequency range was to some extent consistent among
participants, but in the high-frequency range it was rather
inconsistent. Thus, the frequency dependence of the results of
the test is due to differences in variance rather than differences
in means, which, not surprisingly, could not be captured by a
two-way repeated measures ANOVA (Figure 2B and Table I).
Also, no dependence of predictability on electrode locations
was observed (Figure 2C).

B. Short Clip-evoked EEG activity

The same analysis as above was performed for the audio
sub-clips extracted from the short clips (Figure 3). Unlike the
documentary case, there was no clear frequency band
dependence in the result of the test of predictability. On the
other hand, a dependence on electrode position was observed.
In particular, predictability was lower in the occipital to parietal
lobes. This electrode position dependence was also confirmed
by a two-way repeated measures ANOVA (Table II). In
addition, comparing Figures 2A and 3A, it appears that the
predictability in the case of short clips is less biased towards
the low frequency band than that in the case of documentaries.
Rather, it seems that the predictability is lower in the low

frequency band. We will discuss these points in the
‘Discussion’ section.
TABLE L RESULT OF ANOV A (DOCUMENTARIES)
v | mw | r |
Channel 31/124 0.00577 | 0.384 | 0.999
Band 4/16 0.00989 0.387 0.814
Channel x Band | 124/496 0.00195 0.842 0.877
TABLE IL RESULT OF ANOVA (SHORT CLIPS)
aq ¢ Ms i F i p
Channel 31/124 0.0152 1.564 0.0451
Band 4/16 0.00662 0.110 0.977
Channel x Band | 124/496 0.00246 0.706 0.990
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Figure 3: Prediction of brain activity induced by the short clip stimuli from SSAST outputs. (A) Correlation coefficients between
experimental and predicted values are shown using a color code. (B) Frequency band dependence of the correlation coefficient between the
experimental and predicted values. The vertical axis shows the average correlation coefficient for all participants. Each line corresponds to
an EEG channel. (C) Topographic plot of the correlation coefficient between the experimental and predicted values. The color code
indicates the correlation coefficient values. The notation used is the same as in Figure 2.

V. DISCUSSION

In this study, we aimed to model EEG brain activity
induced by naturalistic audio-visual video stimuli using DNNss.
In our previous study, we showed that movie-processing DNNs
can capture high-frequency EEG activity well [18]. This result
was neurophysiologically plausible, but considering the final
goal of using DNNs as brain simulators to synthesize optimal
sensory stimuli for intervening in brain activities and functions,
it is important to be able to capture low-frequency EEG activity
as well. Therefore, in this study, we analyzed the prediction of
EEG activity from the embedded representation obtained from
SSAST, which is one of the audio-processing DNNs. As a
result, it was found that low-frequency EEG activity could be
captured well, especially in the case of the documentary
stimuli. Therefore, it was suggested that by integrating audio
and movie-processing DNNs and using them as a brain
simulator, it would be possible to handle a wide range of
frequencies in a complementary manner. Additionally, it was
considered that documentary stimuli is probably more
promising than short clips for intervention.

The most notable difference in obtained results between the
two types of video stimuli (documentaries and short clips) was
the dependence of the predictability of brain activity on the
electrode location. A significant dependence was only shown in
the case of short clips. In particular, the predictability was

lower for electrodes across the occipital and parietal lobes. This
is considered to be because the auditory and visual stimuli were
matched in the case of documentaries, but were unrelated in the
case of short clips. In neurophysiology, it is well known that
the occipital lobe is strongly specialized for visual processing
[29]. Therefore, it is not surprising that the responses in the
occipital lobe could not be predicted from the audio stimuli, as
was the case with the short clips. On the other hand, in the case
of the documentary, the auditory and visual stimuli were
correlated in terms of their content, and it seems likely that the
responses in the occipital lobe were predictable.

Furthermore, differences were also observed in the
relationship between prediction performance and frequency
band for the two types of video stimuli. In short, the
predictability of brain activity was higher in the low frequency
band for documentaries and in the high frequency band for
short clips. This may be explained by differences in attention
and vigilance. In the condition where short clips with different
themes are presented one after another in a short period of
time, it is more likely to maintain attention and vigilance. In
addition, in the case of short clips, participants were asked to
press a key during the interval between videos, and this could
also contribute to maintaining attention and vigilance. In
general, when attention and vigilance are high, high-frequency
band oscillations become dominant, and when they are low,
low-frequency band oscillations become dominant [30]-[32]. It
is possible that this is reflected in the results.



VI. CONCLUSION

In this study, to establish DNNs as a brain simulator, we
attempted to correspond EEG brain activity during viewing
audio-visual videos to the responses of SSAST to audio inputs
extracted from them. The results showed that, especially for
documentary stimuli, EEG activity in the low-frequency band
can be corresponded well. This is complementary to the results
in the authors' previous study. By integrating these, it is
suggested that it will be possible to design optimal sensory
stimuli to intervene in brain activities and functions utilizing
DNNs as a brain simulator.

ACKNOWLEDGMENT

This research was partially supported by the Leading
Initiative for the Excellent Young Researchers (MEXT, Japan),
the Grant-in-Aid for Scientific Research (C) (21K07264)
(JSPS, Japan), and the JNNS30 Commemorative Research
Grant (Japanese Neural Network Society, Japan). The funders
had no role in study design, data collection, and analysis,
decision to publish, or preparation of the manuscript.

REFERENCES

[1] H. F. Iaccarino, A. C. Singer, A. J. Martorell, et al., “Gamma frequency
entrainment attenuates amyloid load and modifies microglia,” Nature,
vol. 540, no. 7632, pp. 230-235, Dec. 2016.

[2] A. J. Martorell, A. L. Paulson, H. J. Suk, et al., “Multi-sensory gamma
stimulation ameliorates Alzheimer’s-associated pathology and improves
cognition,” Cell, vol. 177, no. 2, pp. 256271, Apr. 2019.

[3] C. Adaikkan, S. J. Middleton, A. Marco, et al., “Gamma entrainment
binds higher-order brain regions and offers neuroprotection,” Neuron,
vol. 102, no. 5, pp. 929-943, Jun. 2019.

[4] T. Kim, B. T. James, M. C. Kahn, et al., “Gamma entrainment using
audiovisual stimuli alleviates chemobrain pathology and cognitive
impairment induced by chemotherapy in mice,” Sci. Transl. Med., vol.
16, no. 737, eadf4601, Mar. 2024.

[5] T. Black, B. W. Jenkins, R. B. Laprairie, and J. G. Howland,
“Therapeutic potential of gamma entrainment using sensory stimulation
for cognitive symptoms associated with schizophrenia,” Neurosci.
Biobehav. Rev., vol. 161, 105681, Jun. 2014.

[6] D.L.K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and
J. J. DiCarlo, “Performance-optimized hierarchical models predict neural
responses in higher visual cortex,” Proc. Natl. Acad. Sci. U. S. A., vol.
111, no. 23, pp. 8619-8624, Jun. 2014.

[71 U. Giglii, and M. A. J. van Gerven, “Deep neural networks reveal a
gradient in the complexity of neural representations across the ventral
stream,” J. Neurosci., vol. 35, no. 27, pp. 10005-10014, Jul. 2015.

[8] G. W. Lindsay, “Convolutional neural networks as a model of the visual
system: past, present, and future,” J. Cogn. Neurosci., vol. 33, no. 10,
pp- 2017-2031, Sep. 2021.

[9]1 P. Bashivan, K. Kar, and J. J. DiCarlo, “Neural population control via
deep image synthesis,” Science, vol. 364, no. 6439, eaav9436, May
2019.

[10] E.Y. Walker et al., “Inception loops discover what excites neurons most
using deep predictive models.,” Nat. Neurosci., vol. 22, no. 12, pp.
2060-2065, Dec. 2019.

[11] G. Tuckute et al.,, “Driving and suppressing the human language
network using large language models,” Nat. Hum. Behav., vol. 8, pp.
544-561, Jan. 2024.

[12] E. Basar, and B. Giintekin, “A review of brain oscillations in cognitive

disorders and the role of neurotransmitters,” Brain Res., vol. 1235, pp.
172-193, Oct. 2008.

[13] E. Basar, “Brain oscillations in neuropsychiatric disease,” Dialogues
Clin. Neurosci., vol. 15, no. 3, pp. 291-300, Sep. 2013.

[14] D. H. Mathalon, and V. S. Sohal, “Neural oscillations and synchrony in
brain dysfunction and neuropsychiatric disorders: it’s about time,”
JAMA Psychiatry, vol. 72, no. 8, pp. 840-844, Aug. 2015.

[15] S. M. McClintock et al., “Consensus recommendations for the clinical
application of repetitive transcranial magnetic stimulation (rTMS) in the
treatment of depression,” J. Clin. Psychiatry, vol. 79, no. 1, 16¢s10905,
Jan./Feb. 2018.

[16] O. Elyamany, G. Leicht, C. S. Herrmann, and C. Mulert, “Transcranial
alternating current stimulation (tACS): from basic mechanisms towards
first applications in psychiatry,” Eur. Arch. Psychiatry Clin. Neurosci.,
vol. 271, pp. 135-156, Feb. 2021.

[17] M. Wischnewski, 1. Alekseichuk, and A. Opitz, “Neurocognitive,
physiological, and biophysical effects of transcranial alternating current
stimulation,” Trends Cog. Sci., vol. 27, no. 2, pp. 189-205, Feb. 2023.

[18] H. Kurashige, and J. Kaneko, “Correspondence between the video-
learning deep neural networks and EEG brain activity during naturalistic
video viewing,” in 7th International Conference on Intelligent
Informatics and Biomedical Science (ICIIBMS), vol. 7, pp. 200-207,
2022.

[19] A. T. Gifford, K. Dwivedi, G. Roig, and R. M. Cichy, “A large and rich
EEG dataset for modeling human visual object recognition,”
Neuroimage, vol. 264, 119754, Dec. 2022.

[20] D. Li, C. Wei, S. Li, J. Zou, H. Qin, and Q. Liu, “Visual Decoding and
Reconstruction via EEG Embeddings with Guided Diffusion,”
arXiv:2403.07721, 2024.

[21] J. Millet, C. Caucheteux, Y. Boubenec, A. Gramfort, E. Dunbar, C.
Pallier, and J. R. King, “Toward a realistic model of speech processing
in the brain with self-supervised learning,” Adv. Neural Inf. Process
Syst., vol. 35, pp. 33428-33443, Dec. 2022.

[22] G. Tuckute, J. Feather, D. Boebinger, J. H. McDermott, “Many but not
all deep neural network audio models capture brain responses and
exhibit correspondence between model stages and brain regions,” Plos.
Biol., vol. 21, no. 12, 3002366, Dec. 2023.

[23] A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9-21, 2004.

[24] Y. Gong, C. L. Lai, Y. A. Chung, and J. Glass, “SSAST: Self-supervised
audio spectrogram transformer,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 10, pp. 10699-10709, 2022.

[25] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
and R. C. Moore, “Audio Set: An ontology and human-labeled dataset
for audio events,” 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 776-780, 2017.

[26] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing,
pp. 5206-5210, 2015.

[27] S. A. Stouffer, E. A. Suchman, L. C. DeVinney, S. A. Star, and R. M.
Williams Jr, The american soldier: Adjustment during army life. (studies
in social psychology in world war ii), vol. 1. Princeton, NJ: Princeton
Univ. Press, 1949.

[28] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a
practical and powerful approach to multiple testing,” J. R. Stat. Soc. B,
vol. 57, no. 1, pp. 289-300, 1995.

[29] K. Grill-Spector, and R. Malach, “The human visual cortex,” Annu. Rev.
Neurosci., vol. 27, pp. 649-677, Jul. 2004.

[30] B. S. Oken, M. C. Salinsky, and S. M. Elsas, “Vigilance, alertness, or
sustained attention: physiological basis and measurement,” Clin.
Neurophysiol., vol. 117, no. 9, pp. 1885-1901, Sep. 2006.

[31] A. Martel, S. Déhne, and B. Blankertz, “EEG predictors of covert
vigilant attention,” J. Neural Eng., vol. 11, no. 3, 035009, May. 2014.

[32] T. M. Curley, L. Borghetti, and M. B. Morris, “Gamma Power as an
Index of Sustained Attention in Simulated Vigilance Tasks,” Top. Cogn.
Sci., vol. 16, no. 1, pp. 113—128, Jan. 2024.



