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Abstract—In this paper, we present Cube-Cloud 3D 

Gaussian Splatting (Cube-Cloud 3DGS), a novel framework 

designed to render medical image that inherently structured with 

three fixed axes. The methods such as COLMAP, Neural 

Radiance Field (NeRF), and 3D Gaussian Splatting are 

unsuitable for medical image reconstruction due to the lack of 

diverse viewpoints. To address this challenge, we propose Cube-

Cloud 3DGS that leverages Cube-based Neural Radiance Field 

(CuNeRF) for cube-based sampling to generate point clouds 

from medical data. CuNeRF in Cube-Cloud 3DGS generates 

point cloud and renders images through various viewpoints 

which can be used as camera poses. We integrate the point cloud 

with 3D Gaussian Splatting that is initializing 3D gaussians. By 

utilizing the viewpoints extracted from CuNeRF, the parameters 

of 3D gaussians are refined. Cube-Cloud 3DGS renders images 

through its 3D gaussians while traditional models fail to render 

based on medical images. We evaluated Cube-Cloud 3DGS on 

the Kidney and Kidney Tumor Segmentation (KiTS23) dataset, 

demonstrating that our model reconstructs 3D medical volumes 

effectively. Therefore, our model resolves the limitation 

focusing on the internal features for medical images. Our model 

achieves higher performance of 2.707 in PSNR and 0.0504 in 

SSIM over existing 3D Gaussian Splatting.  

Keywords—NeRF, Cube-based NeRF, COLMAP, 3D 

Gaussian Splatting,  

I. INTRODUCTION 

In recent advances in novel view synthesis, 3D 
Gaussian Splatting has gained attention as a novel 
approach for efficient and high-quality image rendering in 
real-time applications [1]. Traditional methods like Neural 
Radiance Fields (NeRF) rely on volumetric ray marching 
and Multi-Layer Perceptron (MLP) which suffer from 
significant computational overhead during both training 
and inference [2]. 3D Gaussian Splatting alleviates these 
challenges by introducing an efficient scene representation 
and rendering algorithm that reduces computational costs 
showing superior performance. 3D Gaussian Splatting 
utilizes a sparse point cloud derived from Structure-from-
Motion (SfM) tool COLMAP, which serves as the initial 
set of 3D gaussians [3]. Each Gaussian is determined by a 
position, anisotropic covariance matrix, and opacity. This 
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representation efficiently captures the geometry and 
radiance information of the scenes. 

In the context of novel view synthesis and 3D 
reconstruction, COLMAP is widely used for generating 
sparse point clouds and corresponding camera poses. 
COLMAP provides an efficient pipeline for reconstructing 
3D scenes from 3D images, which is crucial stage for 3D 
Gaussian Splatting. COLMAP detects key features in the 
input images and matches the extracted features across 
multiple views. COLMAP computes camera poses and 
sparse 3D points through refining the spatial and optical 
information of the images. By using the point clouds 
calculated from COLMAP, 3D Gaussian Splatting creates 
a precise and optimized scene representation. 

Applying COLMAP to medical image datasets, such 
as Computed Tomography (CT) scan and Magnetic 
Resonance Imaging (MRI), presents significant challenges 
[4, 5]. In 3D Gaussian Splatting, the point cloud generated 
by COLMAP is crucial for initializing the 3D gaussians. 
COLMAP relies on multiple 2D images of a scene taken 
from diverse viewpoints with the corresponding camera 
poses, to generate the point clouds. In contrast, medical 
image datasets inherently represent 3D volumes captured 
from fixed axis, such as x, y, and z axes, without the 
diversity of viewpoints required for COLMAP to generate 
point clouds. Therefore, attempting to apply COLMAP to 
such datasets is limited to producing point clouds. 

To address the limitations of COLMAP, we employ 
Cube-based Neural Radiance Field (Cube-NeRF) [5]. 
Cube-NeRF overcomes the challenge posed by 
conventional NeRF models. Cube-NeRF introduces cube-
based point sampling that allows the model to learn 
efficiently from the 3D volumetric data without diverse 
viewpoints, allowing the model suitable for medical image 
datasets.  

We propose Cube Point Cloud 3D Gaussian Splatting 
(Cube-Cloud 3DGS) By integrating the point cloud 
sampled from Cube-NeRF, 3D gaussians are initialized 
effectively. This approach allows 3D Gaussian Splatting 
to perform view synthesis tasks resolving the limitation of 
COLMAP. Furthermore, we utilize the images rendered 
from Cube-NeRF as an input for 3D Gaussian Splatting. 
These images correspond to different viewpoints of the 
medical dataset and an significant advantage of Cube-
NeRF is its ability to generate an unlimited number of 
images from various viewpoints. This unlimited ability 
implies that an unlimited number of input images for 3D 



Gaussian Splatting can be generated. Therefore, our Cube-
Cloud 3DGS effectively overcomes the limitation. We 
perform comprehensive evaluation on 2023 Kidney and 
Kidney Tumor Segmentation (KiTS23) dataset [6, 7]. The 
results demonstrate that Cube-Cloud 3DGS effectively 
captures the 3D representation of CT images, proposing 
detailed reconstruction of the volumetric medical dataset. 

II. RELATED WORKS 

A. Neural Radiance Field 

NeRF have emerged as a powerful model for rendering 
the scenes from sparse input images [2]. NeRF 
reconstructs a scene as a continuous implicit representation 
calculated by a neural network composed of MLP layers. 
By sampling rays cast through pixels in the input images, 
NeRF utilizes volumetric rendering to predict the color of 
each pixel. NeRF effectively reconstructs the 3D scene by 
optimizing across multiple views. The advantage of NeRF 
lies in its ability to learn complex scene representation and 
render novel views by querying the network with 
positional encodings of 3D coordinates and view directions. 
NeRF exploits camera poses and input images from 
viewpoints for training. Therefore, NeRF is able to 
produce high-quality rendering images from a limited set 
of input images. 

B. Cube-Based Neural Radiance Field 

CuNeRF is designed to address a fundamental 
limitation that is inherent in medical image dataset, 
specifically that the data is organized along the three 
orthogonal x, y, and z axes [5]. Traditional methods are 
inferior to perform with this limitation due to the lack of 
diverse viewpoints and images. However, CuNeRF 
introduces a novel cube-based sampling approach that 
allows it to overcome the limitation. By sampling in 3D 
volumetric cube space, CuNeRF ensures extensive spatial 
coverage of the 3D representations and alleviates the issues 
caused by the fixed views typical in medical dataset. This 
approach enables CuNeRF to synthesize high-quality 
medical image from arbitrary viewpoints rendering 
increased resolution of the images with improved quality. 

C. COLMAP 

COLMAP is SfM tool designed for generating 3D 
reconstructions from 2D images [3]. COLMAP efficiently 
extracts features by matching the features across multiple 
views to identify key points that are common across the 
image dataset. Using the matched features, COLMAP 
computes camera poses through a nonlinear optimization 
technique that refines the camera parameters and 3D point 
coordinates. As a result, COLMAP produces a sparse point 
cloud representing the 3D structure of the scene. In the 
context of 3D scene reconstruction, COLMAP performs a 
crucial role by providing the initial sparse point cloud. 

D. 3D Gaussian Splatting 

The 3D Gaussian Splatting utilizes a sparse point cloud 
generated from SfM and converts the scene data into a 3D 
gaussians. The 3D gaussians represents complex scene 
geometry without dense voxel grids or ray-marching used 
in NeRF [1]. Each 3D gaussians are defined by their 
position, covariance matrix, opacity, and color. 3D 

Gaussian Splatting learns both spatial and radiance 
information of the scene. During the optimization, the 
parameters of 3D gaussians are adjusted and additional 3D 
gaussians are copied in that the scene requires more 
detailed representation while the 3D gaussians of which 
opacity is lower than the pre-defined threshold are 
eliminated. A key component of 3D Gaussian Splatting is 
the tile-based rasterization algorithm which significantly 
accelerates both training and rendering speed. The 3D 
gaussians are projected into 2D plane and the projected 2D 
gaussians are rasterized using alpha blending. This process 
enables real-time rendering of complex scenes at high 
resolution with maintaining high visual quality. By 
adopting 3D gaussians and rasterization algorithm, 3D 
gaussian Splatting achieves competitive training time and 
real-time novel view synthesis. 

E. Kidney and Kidey Tumor Segmentation Dataset 

The KiTS23 is a medical dataset that is composed of  
300 CT scans with the expert annotations provided for 
kidney and kidney tumor segmentation [6, 7]. The KiTS23 
includes a diverse range of patients with different organ 
and tumor information. The KiTS23 is widely used in 
models that perform tumor segmentation tasks or medical 
image rendering tasks [8]. The KiTS23 dataset is available 
in https://github.com/neheller/kits23. 

III. METHOD 

 Medical images including CT and MRI scans present 
unique challenges in applying traditional models such as 
NeRF or COLMAP. These methods rely on external 
surface information of an object for image reconstruction. 
In contrast, medical image primarily focuses on the 
internal structure rather than external surfaces. Also, 
medical image is inherently organized along limited three 
orthogonal axes making it difficult for NeRF and 
COLMAP to capture the volumetric information of the 
data. To address this limitation, we propose Cube-Cloud 
3DGS that adapts CuNeRF that is suitable for medical 
image dataset. 

In our proposed model in Figure 1, we utilize CuNeRF 
to create initial point cloud and camera pose for 3D 
Gaussian Splatting. The input medical volume has 
dimensions of (512 × 512 × 512 . Before training, we 
normalize medical volume into a range of [−1, 1] which 
the center of medical volume is located to  (0, 0, 0). Once 
normalized, the volume is divided into cubes of size 
(16 × 16 × 16). For each cube, the center is denoted as 
𝑥̂𝑐 = (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡), and the normalization is performed using 
the following equation: 

                  𝑥̂𝑐 = (
2(𝑥𝑡−𝐻)

𝐻+2𝑃
,

2(𝑦𝑡−𝑊)

𝑊+2𝑃
,

2(𝑧𝑡−𝑆)

𝑆+2𝑃
),                  (1) 

where 𝐻 is height, 𝑊 is width, 𝑆 is the number of slices in 
medical image, and 𝑃  is hyperparameter of the padding 
size. This normalization ensures precise point sampling 
each cube within the aligned medical volume. In each cube, 
we extract a fixed number of 𝑁  sampling points. These 

points are uniformly sampled from the cube space 𝐵(𝑥̂𝑐 ,
𝑙

2
), 

where 𝑙 is the length of the normalized medical image.  

 



 

Fig 1. The structure of our proposed model. The red dots indicate the sampled points from corresponding view points. The black dots indicated extracted 

points and blue eye shaped figure indicates camera pose. The black dots are used for initial position of 3D gaussians. 3D CT images are rendered by 

projecting 3D guassians and rasterization.

Within the each cube space, the sampled points 𝑥̂𝑖  are 
selected under the uniform distribution 𝑈 by: 

                                  𝑥̂𝑖  ~ 𝑈 [𝐵(𝑥̂𝑐 ,
𝑙

2
)].                                (2) 

These sampled points are assembled into a point cloud 
effectively performing as the output of COLMAP point 
cloud. The corresponding view point parameters and the 
rendered images from CuNeRF are utilized as inputs for 
the 3D Gaussian Splatting component of Cube-Cloud 
3DGS. 

Once the 3D gaussians are initialized, the training stage 
focuses on optimizing the parameters of each 3D gaussians. 
Each 3D gaussians initialized in 3D space are projected on 
the 2D plane based on camera pose. To render multiple 2D 
gaussians in efficient manner, 3D Gaussian Splatting 
employs a differentiable tile rasterizer. This rasterization 
method divides the image projected on 2D plane into 
multiple tiles and calculates the color and opacity of 2D 
gaussians in each tile independently. The adaptive density 
control performs by evaluating the importance of each 3D 
gaussians during the rendering process. The important 3D 
gaussians that significantly contribute to the rendered 
image are retained and refined. Conversely, the 3D 
gaussians with low contribution are removed. The adaptive 
density control ensures that the balance between the 
quality of rendered image and computational efficiency. 

We compute the loss by comparing the rendered 
images with the ground truth. The loss function is a 
combination of 𝐿1  loss and Differential Structural 
Similarity Index (D-SSIM) and the equation is shown 
below: 

                  𝐿𝑡 = (1 − 𝛼)𝐿1 + 𝛼𝐿𝐷−𝑆𝑆𝐼𝑀,                    (3) 

𝐿𝐷−𝑆𝑆𝐼𝑀 indicates D-SSIM loss term. 𝐿1 loss ensures that 
the pixel-wise difference between the rendered image and 
ground truth. D-SSIM is employed to measure perceptual 
quality. The value of 𝛼 is set to 0.2 as inherited in the 
previous 3D Gaussian Splatting. Through minimizing the 
𝐿𝑡  loss, the spatial distribution of 3D gaussians and the 
perceptual quality of the rendered images are successfully 
optimized. 

IV. RESULTS 

We utilized KiTS23 dataset for training and evaluating 
our proposed model Cube-Cloud 3DGS. The CT scan of 
KiTS23 has a resolution of 512 × 512  pixels, and the 
number of slices per CT scan varies depending on each 
CT scan. In our experiments, we resized all volumes to a 

uniform dimension of (512 × 512 × 512).  This 
preprocessing ensures that the data is compatible with our 
model while maintaining the essential features of the 
medical images. We applied min-max scaling to our 
dataset adjusting the pixel values into a range of 0 to 1. 

We extracted 60 images and viewpoints through cube-
based point sampling. We focused on the sagittal axis and 
performed 360-degree rotation capturing 60 images and 
viewpoints. While generating more viewpoints was 
feasible, we limited the number of images to 60 for 
computational efficiency. 

 

Fig 2. The rendering image from KiTS23 dataset of our model and 3D 

Gaussian Splatting. The first column is ground truth image for our model 
and the second column is the rendering image of our model. The third 

row is the ground truth image for the 3D Gaussian Splatting and the 

fourth row is the rendering image of the 3D Gaussian Splatting. 

We trained our model with KiTS23 dataset and data 
extracted from CuNeRF such as point cloud, camera pose 
parameters, and images from the various viewpoints. For 
3D Gaussian Splatting, we initialized the 3D gaussians 
randomly. We used the 2D images in the direction of a 
sagittal plane. For the camera pose parameter, we utilized 
the identical camera pose in direction of z axis. We 



trained 3D gaussians with 30,000 iterations for both 
models. 

In Figure 2, we compared the quality of images 
rendered by our model and 3D Gaussian Splatting. Our 
model captures various features in the image. However, 
3D Gaussian Splatting has challenges in capturing 
features due to the restricted viewpoints. Additionally, 
while our model effectively handles major structures, our 
model fails to accurately capture small details, resulting in 
blurry renderings for fine-grained features. 

In Table 1, we evaluated our model and 3D Gaussian 
Splatting using the metrics that calculate the quality of 
rendered images such as Peak Signa-to-noise Ratio 
(PSNR) and Structural Similarity Index Measure (SSIM). 
Our model demonstrates superior performance across all 
metrics compared to 3D Gaussian Splatting. In terms of 
PSNR, our model achieves a higher performance by 2.707, 
and for SSIM, our model outperforms by 0.0504. 
Additionally, our model shows a lower Mean Square 
Error (MSE), outperforming by 0.0181. 

TABLE I.  EVALUATION ON KITS23 DATASET 

Model 
Evaluation Metrics 

PSNR SSIM MSE 

Our Model 28.104 0.7856 0.0501 

3D Gaussian Splatting 25.397 0.7352 0.0682 

V. CONCLUSION 

We propose Cube-Cloud 3DGS that utilizes cube-
based point sampling to generate point clouds from 
CuNeRF. The generated point cloud serves as initialization 
for 3D gaussians which are optimized through a 
differentiable tile rasterizer and adaptive density control 
mechanism. Through rendering 2D images by CuNeRF, 
we are able to create input images for training 3D Gaussian 
Splatting. These enable rendering high quality volumetric 
medical images that is structured with three axes. 

Through evaluation using the KiTS23 dataset, we show 
that Cube-Cloud 3DGS successfully captures 3D 
representation of medical images. Our Cube-Cloud 3DGS 
successfully renders images by focusing on analyzing the 
internal structure through CuNeRF which is unique 
approach overcoming the limitation of traditional models 
that are typically designed to capture and reconstruct 
external surface. 
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