Rendering 3D CT Scans through 3D Gaussian
Splatting Initialized with Points Sampled by Cube-
based Neural Radiance Fields

Sanghyuk Roy Choi, Chanhoe Gu, Sun Jae Baek
Department of Intelligent Semiconductor Engineering
Chung-Ang University
Seoul, Korea
{choiroy, kum0100, baechu}@cau.ac.kr

Abstract—In this paper, we present Cube-Cloud 3D
Gaussian Splatting (Cube-Cloud 3DGS), a novel framework
designed to render medical image that inherently structured with
three fixed axes. The methods such as COLMAP, Neural
Radiance Field (NeRF), and 3D Gaussian Splatting are
unsuitable for medical image reconstruction due to the lack of
diverse viewpoints. To address this challenge, we propose Cube-
Cloud 3DGS that leverages Cube-based Neural Radiance Field
(CuNeRF) for cube-based sampling to generate point clouds
from medical data. CuNeRF in Cube-Cloud 3DGS generates
point cloud and renders images through various viewpoints
which can be used as camera poses. We integrate the point cloud
with 3D Gaussian Splatting that is initializing 3D gaussians. By
utilizing the viewpoints extracted from CuNeRF, the parameters
of 3D gaussians are refined. Cube-Cloud 3DGS renders images
through its 3D gaussians while traditional models fail to render
based on medical images. We evaluated Cube-Cloud 3DGS on
the Kidney and Kidney Tumor Segmentation (KiTS23) dataset,
demonstrating that our model reconstructs 3D medical volumes
effectively. Therefore, our model resolves the limitation
focusing on the internal features for medical images. Our model
achieves higher performance of 2.707 in PSNR and 0.0504 in
SSIM over existing 3D Gaussian Splatting.

Keywords—NeRF, Cube-based NeRF, COLMAP, 3D
Gaussian Splatting,

I. INTRODUCTION

In recent advances in novel view synthesis, 3D
Gaussian Splatting has gained attention as a novel
approach for efficient and high-quality image rendering in
real-time applications [1]. Traditional methods like Neural
Radiance Fields (NeRF) rely on volumetric ray marching
and Multi-Layer Perceptron (MLP) which suffer from
significant computational overhead during both training
and inference [2]. 3D Gaussian Splatting alleviates these
challenges by introducing an efficient scene representation
and rendering algorithm that reduces computational costs
showing superior performance. 3D Gaussian Splatting
utilizes a sparse point cloud derived from Structure-from-
Motion (SfM) tool COLMAP, which serves as the initial
set of 3D gaussians [3]. Each Gaussian is determined by a
position, anisotropic covariance matrix, and opacity. This
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representation efficiently captures the geometry and
radiance information of the scenes.

In the context of novel view synthesis and 3D
reconstruction, COLMAP is widely used for generating
sparse point clouds and corresponding camera poses.
COLMAP provides an efficient pipeline for reconstructing
3D scenes from 3D images, which is crucial stage for 3D
Gaussian Splatting. COLMAP detects key features in the
input images and matches the extracted features across
multiple views. COLMAP computes camera poses and
sparse 3D points through refining the spatial and optical
information of the images. By using the point clouds
calculated from COLMAP, 3D Gaussian Splatting creates
a precise and optimized scene representation.

Applying COLMAP to medical image datasets, such
as Computed Tomography (CT) scan and Magnetic
Resonance Imaging (MRI), presents significant challenges
[4, 5]. In 3D Gaussian Splatting, the point cloud generated
by COLMAP is crucial for initializing the 3D gaussians.
COLMAP relies on multiple 2D images of a scene taken
from diverse viewpoints with the corresponding camera
poses, to generate the point clouds. In contrast, medical
image datasets inherently represent 3D volumes captured
from fixed axis, such as x, y, and z axes, without the
diversity of viewpoints required for COLMAP to generate
point clouds. Therefore, attempting to apply COLMAP to
such datasets is limited to producing point clouds.

To address the limitations of COLMAP, we employ
Cube-based Neural Radiance Field (Cube-NeRF) [5].
Cube-NeRF overcomes the challenge posed by
conventional NeRF models. Cube-NeRF introduces cube-
based point sampling that allows the model to learn
efficiently from the 3D volumetric data without diverse
viewpoints, allowing the model suitable for medical image
datasets.

We propose Cube Point Cloud 3D Gaussian Splatting
(Cube-Cloud 3DGS) By integrating the point cloud
sampled from Cube-NeRF, 3D gaussians are initialized
effectively. This approach allows 3D Gaussian Splatting
to perform view synthesis tasks resolving the limitation of
COLMAP. Furthermore, we utilize the images rendered
from Cube-NeRF as an input for 3D Gaussian Splatting.
These images correspond to different viewpoints of the
medical dataset and an significant advantage of Cube-
NeRF is its ability to generate an unlimited number of
images from various viewpoints. This unlimited ability
implies that an unlimited number of input images for 3D



Gaussian Splatting can be generated. Therefore, our Cube-
Cloud 3DGS effectively overcomes the limitation. We
perform comprehensive evaluation on 2023 Kidney and
Kidney Tumor Segmentation (KiTS23) dataset [6, 7]. The
results demonstrate that Cube-Cloud 3DGS effectively
captures the 3D representation of CT images, proposing
detailed reconstruction of the volumetric medical dataset.

Il. RELATED WORKS

A. Neural Radiance Field

NeRF have emerged as a powerful model for rendering
the scenes from sparse input images [2]. NeRF
reconstructs a scene as a continuous implicit representation
calculated by a neural network composed of MLP layers.
By sampling rays cast through pixels in the input images,
NeRF utilizes volumetric rendering to predict the color of
each pixel. NeRF effectively reconstructs the 3D scene by
optimizing across multiple views. The advantage of NeRF
lies in its ability to learn complex scene representation and
render novel views by querying the network with

positional encodings of 3D coordinates and view directions.

NeRF exploits camera poses and input images from
viewpoints for training. Therefore, NeRF is able to
produce high-quality rendering images from a limited set
of input images.

B. Cube-Based Neural Radiance Field

CuNeRF is designed to address a fundamental
limitation that is inherent in medical image dataset,
specifically that the data is organized along the three
orthogonal X, y, and z axes [5]. Traditional methods are
inferior to perform with this limitation due to the lack of
diverse viewpoints and images. However, CuNeRF
introduces a novel cube-based sampling approach that
allows it to overcome the limitation. By sampling in 3D
volumetric cube space, CuNeRF ensures extensive spatial
coverage of the 3D representations and alleviates the issues
caused by the fixed views typical in medical dataset. This
approach enables CuNeRF to synthesize high-quality
medical image from arbitrary viewpoints rendering
increased resolution of the images with improved quality.

C. COLMAP

COLMAP is SfM tool designed for generating 3D
reconstructions from 2D images [3]. COLMAP efficiently
extracts features by matching the features across multiple
views to identify key points that are common across the
image dataset. Using the matched features, COLMAP
computes camera poses through a nonlinear optimization
technique that refines the camera parameters and 3D point
coordinates. As a result, COLMAP produces a sparse point
cloud representing the 3D structure of the scene. In the
context of 3D scene reconstruction, COLMAP performs a
crucial role by providing the initial sparse point cloud.

D. 3D Gaussian Splatting

The 3D Gaussian Splatting utilizes a sparse point cloud
generated from SfM and converts the scene data into a 3D
gaussians. The 3D gaussians represents complex scene
geometry without dense voxel grids or ray-marching used
in NeRF [1]. Each 3D gaussians are defined by their
position, covariance matrix, opacity, and color. 3D

Gaussian Splatting learns both spatial and radiance
information of the scene. During the optimization, the
parameters of 3D gaussians are adjusted and additional 3D
gaussians are copied in that the scene requires more
detailed representation while the 3D gaussians of which
opacity is lower than the pre-defined threshold are
eliminated. A key component of 3D Gaussian Splatting is
the tile-based rasterization algorithm which significantly
accelerates both training and rendering speed. The 3D
gaussians are projected into 2D plane and the projected 2D
gaussians are rasterized using alpha blending. This process
enables real-time rendering of complex scenes at high
resolution with maintaining high visual quality. By
adopting 3D gaussians and rasterization algorithm, 3D
gaussian Splatting achieves competitive training time and
real-time novel view synthesis.

E. Kidney and Kidey Tumor Segmentation Dataset

The KiTS23 is a medical dataset that is composed of
300 CT scans with the expert annotations provided for
kidney and kidney tumor segmentation [6, 7]. The KiTS23
includes a diverse range of patients with different organ
and tumor information. The KiTS23 is widely used in
models that perform tumor segmentation tasks or medical
image rendering tasks [8]. The KiTS23 dataset is available
in https://github.com/neheller/kits23.

I1l. METHOD

Medical images including CT and MRI scans present
unique challenges in applying traditional models such as
NeRF or COLMAP. These methods rely on external
surface information of an object for image reconstruction.
In contrast, medical image primarily focuses on the
internal structure rather than external surfaces. Also,
medical image is inherently organized along limited three
orthogonal axes making it difficult for NeRF and
COLMAP to capture the volumetric information of the
data. To address this limitation, we propose Cube-Cloud
3DGS that adapts CuNeRF that is suitable for medical
image dataset.

In our proposed model in Figure 1, we utilize CuNeRF
to create initial point cloud and camera pose for 3D
Gaussian Splatting. The input medical volume has
dimensions of (512 x 512 x 512. Before training, we
normalize medical volume into a range of [—1, 1] which
the center of medical volume is located to (0,0,0). Once
normalized, the volume is divided into cubes of size
(16 x 16 x 16). For each cube, the center is denoted as
X, = (x4, ¥s, 2;), and the normalization is performed using
the following equation:

PN 2(x¢—H) 2(ye=W) 2(z¢-S)
Xe = ( H+2P ' w+2P ' S+2pP )‘ @

where H is height, W is width, S is the number of slices in
medical image, and P is hyperparameter of the padding
size. This normalization ensures precise point sampling
each cube within the aligned medical volume. In each cube,
we extract a fixed number of N sampling points. These

points are uniformly sampled from the cube space B(fc,é),
where [ is the length of the normalized medical image.
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Fig 1. The structure of our proposed model. The red dots indicate the sampled points from corresponding view points. The black dots indicated extracted
points and blue eye shaped figure indicates camera pose. The black dots are used for initial position of 3D gaussians. 3D CT images are rendered by

projecting 3D guassians and rasterization.

Within the each cube space, the sampled points x; are
selected under the uniform distribution U by:
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These sampled points are assembled into a point cloud
effectively performing as the output of COLMAP point
cloud. The corresponding view point parameters and the
rendered images from CuNeRF are utilized as inputs for
the 3D Gaussian Splatting component of Cube-Cloud
3DGS.

Once the 3D gaussians are initialized, the training stage
focuses on optimizing the parameters of each 3D gaussians.
Each 3D gaussians initialized in 3D space are projected on
the 2D plane based on camera pose. To render multiple 2D
gaussians in efficient manner, 3D Gaussian Splatting
employs a differentiable tile rasterizer. This rasterization
method divides the image projected on 2D plane into
multiple tiles and calculates the color and opacity of 2D
gaussians in each tile independently. The adaptive density
control performs by evaluating the importance of each 3D
gaussians during the rendering process. The important 3D
gaussians that significantly contribute to the rendered
image are retained and refined. Conversely, the 3D
gaussians with low contribution are removed. The adaptive
density control ensures that the balance between the
quality of rendered image and computational efficiency.

We compute the loss by comparing the rendered
images with the ground truth. The loss function is a
combination of L; loss and Differential Structural
Similarity Index (D-SSIM) and the equation is shown
below:

Le=(1—-a)L; + alp_ssu, (3)

Lp_gsiy indicates D-SSIM loss term. L, loss ensures that
the pixel-wise difference between the rendered image and
ground truth. D-SSIM is employed to measure perceptual
quality. The value of ais set to 0.2 as inherited in the
previous 3D Gaussian Splatting. Through minimizing the
L, loss, the spatial distribution of 3D gaussians and the
perceptual quality of the rendered images are successfully
optimized.

IV. RESULTS

We utilized KiTS23 dataset for training and evaluating
our proposed model Cube-Cloud 3DGS. The CT scan of
KiTS23 has a resolution of 512 x 512 pixels, and the
number of slices per CT scan varies depending on each
CT scan. In our experiments, we resized all volumes to a

uniform dimension of (512 x 512 x512). This
preprocessing ensures that the data is compatible with our
model while maintaining the essential features of the
medical images. We applied min-max scaling to our
dataset adjusting the pixel values into a range of 0 to 1.

We extracted 60 images and viewpoints through cube-
based point sampling. We focused on the sagittal axis and
performed 360-degree rotation capturing 60 images and
viewpoints. While generating more viewpoints was
feasible, we limited the number of images to 60 for
computational efficiency.

3D Gaussian
Splatting

Ground Truth Our Model

Fig 2. The rendering image from KiTS23 dataset of our model and 3D
Gaussian Splatting. The first column is ground truth image for our model
and the second column is the rendering image of our model. The third
row is the ground truth image for the 3D Gaussian Splatting and the
fourth row is the rendering image of the 3D Gaussian Splatting.

We trained our model with KiTS23 dataset and data
extracted from CuNeRF such as point cloud, camera pose
parameters, and images from the various viewpoints. For
3D Gaussian Splatting, we initialized the 3D gaussians
randomly. We used the 2D images in the direction of a
sagittal plane. For the camera pose parameter, we utilized
the identical camera pose in direction of z axis. We



trained 3D gaussians with 30,000 iterations for both
models.

In Figure 2, we compared the quality of images
rendered by our model and 3D Gaussian Splatting. Our
model captures various features in the image. However,
3D Gaussian Splatting has challenges in capturing
features due to the restricted viewpoints. Additionally,
while our model effectively handles major structures, our
model fails to accurately capture small details, resulting in
blurry renderings for fine-grained features.

In Table 1, we evaluated our model and 3D Gaussian
Splatting using the metrics that calculate the quality of
rendered images such as Peak Signa-to-noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM).
Our model demonstrates superior performance across all
metrics compared to 3D Gaussian Splatting. In terms of
PSNR, our model achieves a higher performance by 2.707,
and for SSIM, our model outperforms by 0.0504.
Additionally, our model shows a lower Mean Square
Error (MSE), outperforming by 0.0181.

TABLE I. EVALUATION ON KITS23 DATASET
Evaluation Metrics
Model
PSNR SSIM MSE
Our Model 28.104 0.7856 0.0501
3D Gaussian Splatting 25.397 0.7352 0.0682

V. CONCLUSION

We propose Cube-Cloud 3DGS that utilizes cube-
based point sampling to generate point clouds from
CuNeRF. The generated point cloud serves as initialization
for 3D gaussians which are optimized through a
differentiable tile rasterizer and adaptive density control
mechanism. Through rendering 2D images by CuNeRF,
we are able to create input images for training 3D Gaussian
Splatting. These enable rendering high quality volumetric
medical images that is structured with three axes.

Through evaluation using the KiTS23 dataset, we show
that Cube-Cloud 3DGS successfully captures 3D
representation of medical images. Our Cube-Cloud 3DGS
successfully renders images by focusing on analyzing the
internal structure through CuNeRF which is unique
approach overcoming the limitation of traditional models
that are typically designed to capture and reconstruct
external surface.
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