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Abstract—Diabetic Retinopathy (DR) is a major cause of vision
loss and blindness, particularly among diabetic patients. Effective
and timely treatment of DR relies on precise and automated
detection systems that can assess disease severity from retinal
fundus images. Traditional clinical approaches are often time-
consuming, and earlier texture attention models may struggle
to accurately detect subtle features, such as microaneurysms
or abnormal blood vessel patterns, which are crucial for early
diagnosis. To address this, we proposed the STMFNet model,
a hierarchical framework designed for classifying 11 stages of
DR severity. The model combines two primary mechanisms: The
Texture Spatial Attention Network, which focuses on identifying
critical texture features related to DR while minimizing irrele-
vant background information through attention gating, and the
EfficientNet backbone with Multi-Scale Feature Fusion, which
captures a wide range of image patterns. By extracting and
fusing features from different layers of EfficientNet-V1 B0, the
model effectively learns both low (e.g., edges, blobs) and high
(e.g., objects, patterns) level representations. These features are
further refined through spatial multi-scale attention, and the
final classification into 11 DR stages is achieved through a
Fully Connected Network (FCN) and SoftMax. Our experimental
results show that STMFNet significantly outperforms existing
state-of-the-art models on the publicly available Kaggle fundus
dataset, demonstrating its potential for reliable DR diagnosis in
clinical settings.

Index Terms—Diabetic retinopathy, Texture and Spatial atten-
tion, Classification, Multi-scale feature fusion, Detection.

I. INTRODUCTION

Early diagnosis is crucial in healthcare, especially for
managing conditions like diabetes, a chronic disease affect-
ing millions worldwide due to insufficient insulin regulation.
According to the International Diabetes Federation, over 425
million adults globally have diabetes [1]. Left untreated, it can
lead to complications such as diabetic retinopathy (DR), which
affects the retina and can cause vision loss. DR damages the
blood vessels in the retina, impairing vision and potentially
leading to blindness. Early detection is vital to prevent severe
outcomes [2].

Automated methods for DR detection not only facilitate
early diagnosis but also bring about cost savings, improved
efficiency, and enhanced accuracy in clinical surroundings.
The role of ComputerAided Diagnosis (CAD) systems has
proven to be especially beneficial in medical image processing,

as demonstrated in numerous studies [3]. More recently, Deep
learning (DL) techniques, particularly convolutional neural
networks (CNNs), have revolutionized the field of medical
imaging. K. Xu et al [4]. Li et al [5] introduced a CNN-
based approach for distinguishing between normal and DR
images. utilized a Deep CNN (DCNN) model incorporating
fractional max-pooling to improve the extraction of discrim-
inative features, followed by classification using a support
vector machine (SVM). R. Pires et al [6]. developed a 16-
layer CNN model to classify DR images into referable and
non-referable categories, using dropout and L2 regularization
to mitigate overfitting.

Despite advancements, current DL models struggle to cap-
ture both local textures and global context for accurate DR
level recognition. To address this, we propose incorporating
texture and spatial attention mechanisms with multi-level
CNNs, decomposing the representation space into style and
content features. This process involves two key components:
(1) the Texture Spatial Attention Network, which highlights
important texture features related to DR while suppressing
irrelevant background information, and (2) the EfficientNet-V1
B0 backbone with Multi-Scale Feature Fusion, which captures
both low- and high-level patterns from retinal images. By
extracting features from multiple layers, the model can learn
fine-grained representations, which are further refined through
spatial multi-scale attention before final classification into 11
DR categories using a FCN and SoftMax.

The key contributions of this paper are summarized as
follows:

o The development of an innovative spatial textural atten-
tion module in the STMFNet model enhances its ability
to emphasize salient microaneurysms and abnormal fea-
tures, enabling the model to automatically classify 11 DR
stages, including healthy cases.

e A Multi-Scale Feature Fusion process within the
EfficientNet-V1 B0 backbone, enhancing both low and
high level pixel information from fundus images.

o Achievement of state-of-the-art results on a public DR
classification dataset.



II. RELATED WORK

A. CNN based approaches of DR classification

DL methods, particularly CNNs, have achieved significant
progress in recent years for the classification of DR. To
enhance CNN performance in DR screening DL techniques,
especially CNNs, have brought significant advancements in
medical imaging. Xu et al. [4] and Li et al. [5] introduced
CNN-based approaches for distinguishing between normal and
DR-affected images. Li’s work, in particular, utilized a deep
CNN (DCNN) architecture combined with fractional max-
pooling to enhance the extraction of discriminative features,
followed by classification using SVM. Pires et al [6]. de-
veloped a 16-layer CNN model to classify DR images into
referable and non-referable categories, incorporating dropout
and L2 regularization to prevent overfitting. However, these
methods primarily rely on conventional feature extraction from
fundus images, focusing on general patterns without fully
capturing detailed textural features. In contrast, our multi-scale
feature fusion combination block with the EfficientNet-V1
B0 backbone is chosen for its optimal balance between per-
formance and computational efficiency, effectively addressing
these limitations.

B. Attention based approaches of DR classification

To make up for the deficiency of the CNN-based method
in capturing long-distance and ground details some attention
methods (Luo, Xiaoling, et al [7].; Alahmadi, Mohammad D
[8].; Wang, Xiaofei, et al [9].) based on attention have been
proposed. Luo, Xiaoling, et al [7]. tackled the limitations of
single-view methods in DR detection by introducing a multi-
view model integrated with a Cross-Interaction Self-Attention
Module. By leveraging multiple retinal views, their method
captures cross-view pathological relationships, offering a more
thorough retinal analysis. Meanwhile, another approach Alah-
madi, et al [8]. improved DR classification by introducing
a recalibration mechanism that prioritizes critical areas of
retinal images. This approach separates features into texture
and semantic components and uses texture attention to enhance
classification accuracy. Another study Wang, Xiaofei, et al [9].
proposed a deep multi-task learning framework that focuses on
DR grading using low-resolution fundus images. This method
combines image super-resolution and lesion segmentation.
Despite its innovations, it leaves room for improvement in
effectively capturing fine details through attention mecha-
nisms. Nevertheless, there is a reduced footprint and a more
precise identification of the ground textures. By learning to
highlight important regions in retinal pictures, particularly
the posterior pole and peripheral fundus, our spatial textural
attention mechanism fills this gap and enables more precise
identification of crucial diagnostic regions.

ITII. METHOD
In clinical DR diagnosis, ophthalmologists examine fundus
images to assess lesions’ location, size, and number, determin-
ing disease stages. In contrast, our model detects 10 condi-
tions, including a healthy retina, by extracting texture features
from retinal images. Fundus images are individually fed into

the EfficientNet and the Spatial Texture Attention module
to extract pattern and texture-based features. In this context,
EfficientNet serves as the backbone, learning complex repre-
sentations from Blocks 2 to 7, with the features being fused
through integration. The texture attention module focuses on
fine-grained details. After concatenating the outputs from both
modules, a spatial multi-scale attention mechanism generates
an attention map to highlight important regions. These features
are passed through a FCN with dense and dropout layers,
followed by SoftMax for final DR classification. An overview
of the proposed model is shown in “Fig. 1”.
A. Feature Extraction

1) Spatial Texture Attention

In order to emphasize informative areas in each texture
frame from retinal image, we develop a spatial texture atten-
tion module to assign higher weights to crucial areas, while
assigning lower weights to areas containing less information.
The architecture of the texture attention module is illustrated
in “Fig. 2”. Motivated by [10], [11], we employ both max
and global average pooling, alongside a 3x3 conv instead of
a 1x1 conv, to enhance cross-channel interaction and capture
the spatial structure of the textural feature F' obtained from
the CNN module. This combination helps to create robust
spatial context descriptors along the channel axis, refining the
feature representation [12]. The global average-pooling is used
to effectively learn tactile information (with output F'S,,.z),
whereas max-pooling is used to preserve prominent features
(with output F'Sy4,g). F'Spae and F'S,,4 are then concatenated
and convolved with a 3 x 3 kernel, followed by activation with
a sigmoid function to produce a 2D spatial texture attention
map Ag(F):

Ag(F) = o (f**? ([MaxPool(F); GAvgPool(F))))
=0 (7 ([Frax Fael)) M

where ¢ denotes the sigmoid function. Then, we get the
output feature map F°* = Ag(F)®F from the spatial attention
module, where ® refers to element-wise multiplication.
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Fig. 2. Architecture of Spatial Textural Attention.

After obtaining the extracted features from the spatial
attention module of each texture frame, we concatenate all
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Fig. 1. Framework of the proposed STMFNet DR multiple stages classification.

the features together to achieve a sequence of texture features,
represented by F'%(n). To model the long-distance dependency
in the tactile sequence, we developed a textural attention
module on top of the spatial attention layer. As illustrated in
“Fig. 27, this module estimates the salience and relevance of all
regions in a tactile sequence over time, regardless of distance.
F3(n) is first converted into two feature spaces, ¢(F(n))
and k(F?(n)), using two sets of 3 x 3 convolutions, where
q(F3(n)) = W,F*(n) and k(F*(n)) = W, F*(n) (W, and
W), are trainable weight matrices). Subsequently, we reshape
both ¢(F¥(n)) and k(F*(n)) € R™*¢, where m = nx hxw,
to calculate the attention map of any pairs of regions through
the time dimension. The attention map Ar(F*(n)) is given
as follows:

Az (FS(n)), = —P(u) @

i m
2. exp(sij)
i=1

where s;; = q(F%(n);)k(F%(n);)". Ar(F*(n));; demon-

strates how much FS(n); correlates with F°(n);. The
output feature map of the textural attention is Fr

(Fp F2,... Fi, ..., F), where
T _ . S(n) S(n) S(n)
o _;AT(F n)j,iU(Fi )+Fj ’

v(F9(n)) = W,F?(n) (where W, is a learnable matrix) and
F3(n); is added back to retain more information.

We incorporate concatenation and spatial attention, to allow
the model to synthesize information jointly from different

3)

representation feature spaces [13]. Ultimately, the learned
representations are aggregated and passed to the spatial multi-
scale attention phase. The outcomes from this phase are then
fed into a fully connected layer to perform a classification
task that calculates the probability of the predicted label D Rz.
Microaneurysms visualization comparison of different recent
attention with ours is indicated in “Fig. 3”

Channel
Attention

Spatial Textural
Attention

Spatial
Attention

Temporal
Attention

Fig. 3. Comparison of feature maps from various attention mechanisms with
the proposed method.

2) Extraction with EfficientNet

EfficientNet employs a compound scaling method that
balances model depth, width, and input resolution, enabling
effective feature extraction from retinal fundus images [14].
The architecture utilizes serves as the primary feature ex-
tractor for 224x224 fundus images, with its initial layers
capturing low-level features like edges and textures, essential



for detecting early signs of DR. These layers work similarly
to traditional Convl and Conv2 but are optimized by its
compound scaling, balancing depth, width, and resolution.
Blocks 2 and 3 capture more complex features as the image
advances through deeper layers, such as small blood vessels
and microaneurysms for comprehensive analysis [15]. The
depth-wise separable convolutions allow it to preserve low-
and high-level features efficiently. Blocks 4 and 5 extract
mid-level patterns, focusing on medium-sized lesions like
exudates, while Blocks 6 and 7 capture high-level semantic
information, such as lesion distribution and morphology. This
enhances feature extraction through depth-wise convolutions
and Squeeze-and-Excitation (SE) modules, which focus on
important regions. The extracted features are then combined
in a multi-scale feature fusion network, integrating outputs
from various layers for a comprehensive analysis, improving
classification accuracy. As represented in a under “Fig. 1”.
B. Multi-Scale Feature Fusion

In the multi-scale feature fusion process, the retinal fundus
image is passed through the EfficientNet backbone, extracting
features from Blocks 2 to 7. The feature maps are upsam-
pled and refined using a deconvolution operation to ensure
consistent resolution. A 3x3 convolution is applied to remove
redundancies and mitigate aliasing effects. Then each feature
from different blocks is concatenated, forming a comprehen-
sive feature vector that integrates both semantic and local
details, essential for identifying microstructural anomalies in
the retina. To further refine the fused features, a spatial multi-
scale attention mechanism is applied, which highlights critical
regions, enhancing the model’s sensitivity to subtle DR related
features. The resulting feature vector, enriched with multi-
scale information, is passed through a FCN for classification,
ultimately improving the model’s robustness and accuracy
across various DR stages. As shown in b under “Fig. 1.”
C. Spatial Multi Scale Attention

At this point inspired by [7], as shown in“Fig. 4 af-
ter receiving the vector features from the unification stage
and adapting the mechanism of multi-head scale attention
the input patches X, are initially and randomly divided
into multiple heads X, € RLaxPoxH  where X, =
[Xp1,Xp2, -+ s Xomy - - - s Xpgr] to learn multiple local and
global disease features. The number of scale heads H can
be regarded as the number of feature groups:

— Da
=D,

The three generators Q(-), K (-), and V(-) are employed to
convert X; to query Q(X,), key K (X;), and value V(X,),
respectively. We consider the operations of the three genera-
tors, which are defined as:

H “4)

Q(Xp) =Xp - wg, )
K(Xp) =X - wg, (6)
V(Xp) =Xy - Wy, @)

where wg, Wi, and wy are learnable parameters. Specifi-
cally, the vector Q(X) can be regarded as a feature selector
for the channels of the matrix K (Xy).

In the process of spatial-attention calculation, we define
the pairwise function of Q(X;) and K(X,) as a matrix
multiplication:

S(Xe) = Q(Xp)K(Xs)", )]

where the 7' operation means matrix transpose. Moreover,
the generated S(X;) € RIaxLoXH gl50 plays the role of
feature selector for the value V(X,). Then, global attention
can be defined as:

A(Xy) = softmax (G (Xp))V(Xyp), A(Xp) € REaxDexH
(€))
where the goal of the softmax function is to normalize
S(X3). Next, the output DR,;; € RLa*Pa of the matrix can
be roughly described as the splicing of attention maps of multi-

scale feature groups:

DR.;; = Linear(reshape(A(X3))). (10)
Specifically, the Linear and reshape functions are designed to
ensure that the output is concatenated from the group of the
obtained attention maps and has dimension L, X D,. Finally,
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Fig. 4. The details of Spatial multi-scale Attention mechanism.

the attention-mapped features are distributed to the fully
connected layers for further processing in DR classification.
D. Fully Connected Network

The FCN transforms the spatially attended feature map into
a final feature vector for classification after paying spatial
multi-scale attention to the extracted features. It consists
of several dense layers, interspersed with dropout layers to
mitigate overfitting, which allows the model to learn complex
mappings from the input features to the classification outputs.
The final layer of the FCN typically employs a SoftMax activa-
tion function, which normalizes the output into a probability
distribution over multiple classes, enabling the classification
of diabetic retinopathy into 10 categories of disease stages
including a healthy class. As illustrated in e under “Fig. 1.



IV. EXPERIMENT

We conducted experiments on the Retinal Fundus Images
dataset from Kaggle [16] for DR disease detection, which is
currently the only publicly available large-scale dataset of fun-
dus images for DR. The dataset contains 25,452 color retinal
images classified into 11 categories, representing 10 diseases
and healthy retinas. Ophthalmologists used these images to
classify the DR stages of each subject following international
standards. The training, test, and validation sets were dis-
tributed in an 80:20 ratio, and augmentation techniques such
as zooming, scaling, padding, and background noise reduction
were considered before feeding the data into the model. For the
training setup, we used the PyTorch framework, with a GPU
(NVIDIA GeForce RTX 3070), 64 GB RAM, and an Intel(R)
19-10900. Finally, for model evaluation and comparison, we
adopted commonly agreed-upon evaluation metrics, including
accuracy, precision, recall, and F1 score.

A. Result

Our proposed STMFNet model for DR classification per-
formed remarkably well in its final training cycle, with a train
and validation loss of 0.0184, 0.0065, the learning rate of
0.0001 after 100 epochs (“Fig. 5”). The robustness of the
feature learning was demonstrated by the model’s impressive
adaptability on the validation dataset. The evaluation results
highlight the model’s strong predictive capabilities across all
DR stages. As shown in Table I, the STMFNet achieved an
accuracy of 97.72%, with precision, recall, and F1-score values
of 99.72%, 99.72%, and 98.72%, respectively. The model’s
area under the ROC curve was 99.98%, indicating excellent
performance in distinguishing between different DR phases,
including healthy and diseased cases. These results underscore
the effectiveness of the proposed multi-scale feature fusion in-
cluding textural and spatial multi-scale attention mechanisms,
which enhance the model’s ability to capture critical features
from retinal fundus images and lead to accurate classification.

TABLE I
RESULTS OF OUR PROPOSED STMFNET METHOD. QUANTITATIVE
RESULTS OF ACCURACY, PRECISION, RECALL, AND F1 SCORE IN DR. THE
RESULTS ARE HIGHLIGHTED IN BOLD. (UNIT: %)

Model Accuracy | Precision | Recall | F1 Score | ROC AUC

STMFNet 97.72 99.72 99.72 98.72 99.98

We have also laid out the confusion matrix. As stated in
“Fig. 67, the suggested mechanism can effectively classify
the stages comprising healthy classes of DR images (with
97.72% confidence) from the disease classes. The model
demonstrates strong confidence in accurately classifying non-
healthy samples from the healthy class. However, its perfor-
mance diminishes when distinguishing between Glaucoma and
Moderate DR stages. This decline is primarily attributed to the
high degree of feature similarity among diabetic stages that are
closely related, making it particularly challenging for the deep
learning model to differentiate between these subtle variations.
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Fig. 6. Confusion matrix (CM) map by applying the proposed STMFNet
on the dataset [16]. The CM shows how well the technique can distinguish
between images of healthy and unhealthy retinas.

B. Comparison With Recent SOTA Classification Model
Several recent SOTA methods for DR classification have
been adopted, which can be broadly categorized into CNN
and Transformer models. These models were evaluated on the
same dataset we used, highlighting the superior performance
of our proposed STMFNet model. As shown in Table II,
STMFNet achieved the highest overall accuracy (97.72%),
significantly outperforming models like U-Net (80.69%) and
MVCINN (78.69%). Furthermore, it delivered the best pre-
cision, recall, and Fl-score (99.72%, 99.72%, and 98.72%,
respectively), surpassing both ViT and ResNet50, which
achieved high but comparatively lower scores. These results
demonstrate STMFNet’s effectiveness in leveraging multi-
scale feature fusion with texture and spatial multi-scale at-
tention, enabling it to extract critical DR-related features from
retinal fundus images and establishing it as a leading model



in this domain. All baseline models have been pre-trained on
the ImageNet dataset.

TABLE II
COMPARISON OF SOTA METHODS AND OUR PROPOSED STMFNET
METHOD. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. (UNIT: %)

Model Accuracy | Precision | Recall | FI Score

U-Net [17] 80.69 73.77 80.69 76.01
MVCINN [7] 78.69 76.90 80.69 81.61
ViT [18] 94.33 94.50 94.33 94.14
ResNet50 [19] 91.04 91.05 91.04 91.03
InceptionV4 [20] 92.54 92.64 92.54 92.56
MobileNetV3 [21] 89.12 89.17 89.12 89.13
ConvNeXt-S [22] 93.66 93.67 93.66 90.99
STMFNet 97.72 99.72 99.72 98.72

V. CONCLUSION

In this paper, we introduced an innovative spatial-textural
attention mechanism that effectively captures fine-grained tex-
tures from retinal fundus images for accurate classification
of DR. Our method integrates a multi-scale feature fusion
process using EfficientNet-B0O, which captures low and high-
level patterns from the images. Additionally, spatial multi-
scale attention refines these features to enhance classifica-
tion accuracy. The proposed STMFNet model achieved a
remarkable 97.72% accuracy, outperforming other models.
One of its key strengths is its ability to finely capture and
represent subtle textures from each pixel of the fundus images,
enabling enhanced feature extraction and classification. Our
combination of convolutional network and attention mecha-
nisms accurately identifies regions of interest in the fundus,
surpassing many state-of-the-art approaches. In future work,
we plan to incorporate self-supervised learning to improve
performance on unlabeled images and implement continual
learning strategies to enable our model to adapt to new clinical
data in real-time, enhancing its practical applicability.
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