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Abstract—Rapid expansion of dense Wi-Fi network deploy-
ments creates challenges in optimizing performance. Existing
multi-armed bandit (MAB) solutions for dynamic channel bond-
ing (DCB) and overlapping basic service set (OBSS) issues are
tested using simulations. This research aims to identify the gaps in
current solutions through real-time performance analysis. Along-
side this primary objective, we proposed a modified exploration-
first algorithm to minimize convergence time. This secondary
objective helped us achieve the primary objective. The results
demonstrate that our algorithm can adapt to dynamic Wi-Fi
environments and improve the user experience. We also present
a summary of the inferences from the primary objective study.

Index Terms—WLAN, Dynamic Channel Bonding, OBSS,
MAB, Exploration-First

I. INTRODUCTION

Cellular networks and WiFi are among the most widely used
wireless technologies in the age of ubiquitous internet access.
Every home, office and public place now uses WiFi access
points due to technological advancements and their affordable
cost. This has resulted in a denser wireless local area network
(WLAN) environment [1] in all locations. On the other hand,
this large-scale expansion introduces new challenges, such as
high collision among the access points (APs), and affects the
expected performance from these APs. Various IEEE 802.11
standards came at different times to the industry to provide
better WiFi performance. The IEEE 802.11ac standard [2] was
launched in 2013 to improve spectral efficiency and there-
fore increase the overall capacity of the network. However,
controlling all these features in a dense WLAN still requires
adaptive optimization techniques. Dynamic channel bonding
(DCB) is a feature that enhances data transmission rates and
network performance by merging multiple channels into a
single broader channel. DCB works efficiently in a dynamic
and challenging environment with varying levels of wireless
interference and traffic loads.

A viable strategy to tackle the problems of a dynamic
environment is the utilization of multi-armed bandit (MAB)
[3] algorithms, which are a subset of Reinforcement Learning
(RL) algorithms. They offer a comprehensive framework for
decision-making under uncertain conditions. MAB algorithms
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maximize network performance in real time by balancing
exploration and exploitation to adjust WiFi characteristics,
including transmission power and bandwidth. This research
examines the efficacy of the modified exploration-first method
to enhance WLAN performance in densely populated WLANS.
This study aims to analyze the algorithm to improve through-
put and guarantee equitable access for all users to the wireless
medium. We implemented the deployment in actual network
settings, encompassing diverse node densities and traffic pat-
terns. The findings indicate that the modified exploration-
first approach can substantially improve WLAN performance
by adjusting to the fluctuating characteristics of congested
wireless environments.

This research underscores the ability of MAB algorithms
to transform WLAN management in congested settings, pro-
viding a pathway to more intelligent and adaptive wireless
networks. By addressing the challenges posed by high-density
deployments, MAB-based approaches can play a crucial role
in meeting the growing demands for reliable and high-
performance wireless communication. The key contribution
of this paper lies in the algorithm’s ability to converge to a
specified percentage of maximum throughput.

Contributions of this paper: 1. Real-time study of the MAB
algorithm for the OBSS and DCB problem in WLAN since
most of the existing solutions and results are based on the
simulation environment. The main aim of this work is to show
the various aspects to be considered in the design of the MAB
algorithm for dynamic channel bonding rather than to compare
different MAB algorithms. 2. This paper proposes a modified
exploration-first algorithm and demonstrates its performance
through a real-time experiment. Dynamically adjusting these
parameters will enable the algorithm to adapt its behavior in
response to changing environmental conditions.

II. VARIOUS ASPECTS OF WLAN PERFORMANCE

A wireless local area network is a network that enables
devices to connect and transmit wireless signals within a lim-
ited region, typically a building or campus. WLANs provide
adaptable and mobile access to network resources through the



transmission of data between devices via radio frequency sig-
nals. Unlike traditional wired networks, they are characterized
by their cost effectiveness, scalability, and ease of implementa-
tion. Security protocols such as encryption and authentication
techniques protect data transmissions over WLANS, preserving
the confidentiality and integrity of the data. WLANS provide
interoperability between various devices and manufacturers
by accommodating various configurations and standards, such
as IEEE 802.11, that govern their operation. WLANs are
increasingly sophisticated in terms of speed, performance, and
coverage due to technological advancements, making them
indispensable for modern connectivity solutions in companies,
residences, and public spaces globally.

WiFi 5 (802.11ac) improves network efficiency in multiple
important ways. It can handle channel bandwidths of up to 160
MHz, which enables faster data transfer and less congestion.
With the advent of Multi-User Multiple Input Multiple Output
(MU-MIMO), several devices can communicate simultane-
ously, increasing network efficiency overall by decreasing data
transmission wait times. The most recent version of wireless
networking standards, IEEE 802.11ax, also known as WiFi 6,
is intended to improve WLAN performance and efficiency in
high-density areas. It expands on 802.11ac (WiFi 5) by adding
more devices and enhancing network efficiency by decreasing
wait times for major advancements. WiFi 6 is capable of faster
data transfer. By encoding more bits per symbol, 256-QAM
optimizes throughput, hence increasing transmission rate.
Orthogonal Frequency Division Multiple Access (OFDMA),
which enables numerous devices to share the same channel
simultaneously, lowering latency and increasing efficiency in
busy conditions, is one of the most notable enhancements.
Moreover, 802.11ax offers MU-MIMO in both the uplink and
downlink directions, allowing simultaneous communication
with several devices and boosting performance overall. Target
Wake Time (TWT), which extends battery life, especially for
IoT devices, is another feature of the standard that minimizes
power usage by allowing devices to arrange their connection
periods with the access point. Together, these advancements
ensure better spectrum utilization, higher data rates, and
improved performance, making WiFi 6 particularly effective
in environments with many connected devices. 802.11ac and
802.11ax specification [2] [4] gives details of each of these
features.

A. Channel Bonding and Dynamic Channel Bonding

Channel bonding refers to the technique of combining
multiple adjacent radio frequency channels to increase the
overall data throughput and bandwidth available for data
transmission. WLANs with dynamic channel bonding can
improve overall network performance and provide a more
stable user experience by adapting channel widths as needed.
However, in congested areas with many competing devices,
this can lead to increased interference and reduced perfor-
mance, making proper management of DCB in WLAN critical
to fully achieving its advantages.

B. Beamforming

Beamforming is a wireless communication technique that
improves signal strength and data transmission efficiency.
Usual wireless signals are broadcast in all directions. Beam-
forming focuses the wireless signal in a specific direction. This
process enhances and strengthens the signal, which improves
coverage, speeds up data transfer, and reduces interference
from other devices. An AP that supports the 802.11ac standard
explicitly performs beamforming by sending sound frames. AP
decides the phase and amplitude of the signals from the feed-
back from the client device. Network performance is increased
when beamforming is used in combination with downlink
MIMO. 802.11ax supports uplink and downlink MU-MIMO.
802.11ax also uses cutting-edge technologies such as Basic
Service Set Coloring (BSS) and OFDMA. These technologies
make the best use of spectrum and lower interference to create
a more reliable and effective communication infrastructure.
Taking everything into account, 802.11ax significantly boosts
the effectiveness of beamforming to improve WiFi perfor-
mance, addressing the challenges posed by contemporary
network environments, even when both protocols utilize it.

C. Transmission Power

In wireless communication systems, such as WLANS, trans-
mission power is one of the most important characteristics.
Transmission power refers to the strength with which wireless
equipment transmits its signals. This includes devices such
as access points or client devices sending signals into the
surrounding environment. While a signal’s range is usually
increased with higher transmission power, interference and
power consumption may also rise. In order to maximize
WLAN coverage, dependability, and performance and to en-
sure efficient communication while reducing interference and
power consumption in a variety of deployment scenarios,
transmission power and bandwidth are crucial.

D. Collisions in OBSS

Collisions and OBSS problem interference have a significant
impact on WLAN performance. OBSS interference occurs
when nearby APs use the same channel or adjacent channel
for transmission. On the other hand, a collision occurs when
several devices try to send data on the same channel at the
same time. This causes data packets to get corrupted and needs
re-transmission. As a result of these problems, the overall
network performance is reduced.

WLANSs use techniques like Request-to-Send (RTS) and
Clear-to-Send (CTS) frames to manage contention and Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)
to restrict access to the medium to reduce collisions. Effective
channel planning, in which APs are set up to use non-
overlapping channels, or sophisticated strategies like dynamic
frequency selection (DFS) to avoid channels from being used
by radar systems, can be employed to mitigate OBSS inter-
ference. Maintaining reliable and high-performance WLANSs
requires effective management of collisions and OBSS inter-
ference, particularly in crowded deployment scenarios.
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Fig. 1. Real-time set-up to demonstrate OBSS problem
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Fig. 2. Throughput measured with OBSS problem

E. Real-time demonstration of OBSS problem

We conducted real-time experiments using two APs with
connected devices, testing them on the same channel with
user-datagram protocol (UDP) traffic. A noticeable drop in
throughput was observed when both access points operated on
the same channel and their transmission ranges overlapped.
This performance reduction aligns with the OBSS problem.
The experiments and corresponding graphs are presented in
Fig. 1 and Fig. 2 to illustrate this OBSS problem. This
experiment was carried out using the Asus AX1800 dual-
band WiFi 6 (802.11ax) router and the TP-Link Archer C20
AC750 wireless dual-band router. The experiment started with
AP1, where the measured throughput was 30 Mbps. After 2
minutes, the Asus router started to operate in the same channel,
resulting in a throughput of approximately 10 Mbps. This
indicates a reduction of 20 Mbps. This reduction is attributed
to the OBSS problem.

III. EXISTING MAB SOLUTIONS: A SUMMARY

Multi-armed bandit (MAB) solutions are algorithms used
in WLANSs to improve network performance by dynamically
allocating resources, such as transmission power or channel
selection, based on feedback received in real time.

Recent advances in wireless networking have led to sig-
nificant research on optimizing network performance using
MAB algorithms. Addresses the issue of resource starvation by
dynamically adjusting channel selection based on performance
observations. This approach improves the user experience
and enhances overall throughput, showcasing MAB’s practical
applicability in real-world scenarios.

In this paper [5], they describe a centralized technique
that uses the MAB architecture to dynamically alter the
transmission power and the sensitivity threshold of the Clear
Channel Assessment (CCA). They propose a new technique
for sampling novel network configurations using a Gaussian
mixture based on Thompson Sampling and a reward function.
Maximizing reward function prevents starvation. By maximiz-
ing transmission power and sensitivity threshold parameters
using an MAB framework, this paper [6] offers a way to
improve spatial reuse in WLANS.

In order to improve the spatial reuse of radio channels,
[7] focuses on optimizing the sensitivity threshold and the
transmission power. Through the use of Gaussian processes
(GPs) to carry out local Bayesian optimizations, INSPIRE’s
distributed online learning methodology enables each access
point to modify its settings in response to local conditions
independently. The paper [8] examines parameters related to
network performance, specifically in WiFi settings, including
transmission power and CCA thresholds, which are crucial
to optimizing performance in dynamic environments. The
primary algorithm used in the study is the multi-armed bandit
approach, specifically the multi-armed contextual multi-armed
bandit (MA-CMAB) solution. The paper also discusses vari-
ous MAB algorithms, including e-greedy, Upper Confidence
Bound (UCB), and Thompson Sampling, comparing their per-
formance under different action sets. This paper [9] proposes
a Bayesian optimization on-line learning algorithm that uses
GPs to optimize CCA thresholds and transmit power. This
approach formulates the spatial reuse problem as a multi-
armed bandit problem. The algorithm aims to maximize the
reward function, improve total throughput, reduce starvation
between stations, and enhance network fairness. The difficul-
ties with DCB in WLANSs are discussed in this work [10], with
a focus on high-density settings where there may be overlaps
between several BSSs. It highlights how crucial spectrum
management and allocation are, taking into account variables
such as throughput, latency, and the impact of dynamic traffic
loads. The study criticizes the intricacy of conventional RL
algorithms and promotes stateless methods, contending that
MABs enable quick adaptation without requiring substantial
state definitions. In all these contributions, the algorithms are
tested in a simulated environment, and a maximum of only
two parameters are considered for optimization. In addition
to MAB, many other approaches, such as deep learning or
deep neural networks, are being applied to solve these types
of problem [11] [12] [13]. Reinforcement learning is being
applied to other problems related to wireless, like routing and
connectivity [14] [15].

These MAB solutions leverage machine learning algorithms



and adaptive control techniques to make intelligent decisions
in real time, continuously learning from feedback to optimize
WLAN performance in terms of throughput, reliability, cov-
erage, and user experience. As WLAN environments become
more complex and dynamic, these adaptive MAB approaches
play a crucial role in maximizing the efficiency and effective-
ness of wireless network operations.

IV. NEED FOR THE REAL-TIME STUDY OF DYNAMIC
CHANNEL BONDING AND OBSS PROBLEMS USING MAB
ALGORITHM

The real-time study of DCB and the OBSS problem in WiFi
networks using a multi-armed bandit algorithm is essential for
several reasons:

Dynamic Channel Bonding: To boost throughput, DCB
enables WiFi devices to bond several nearby channels. How-
ever, interference or competition from other devices can
cause channel availability to fluctuate in real-time, which
might result in ineffective bonding decisions. Through adaptive
channel selection that balances the trade-off between bonding
for increased throughput and avoiding interference, real-time
research employing the MAB algorithm can help improve
overall network performance.

Overlapping Basic Service Set Problem: This type of inter-
ference occurs when several networks use adjacent or overlap-
ping channels, particularly in densely populated WiFi areas.
By choosing channels with less interference and modifying
transmission parameters to reduce collisions, MAB algorithms,
which are made to dynamically explore and exploit configu-
rations based on the real-time environment, can help mitigate
this problem.

Real-Time Adaptation: High-dynamic wireless environ-
ments, such as those involving DCB and OBSS, are subject
to sudden changes in user density, channel availability, and
interference. Learning from continuous network performance,
the MAB algorithm allows real-time adaptation, enabling
the WiFi system to continuously modify its configuration to
reduce interference, increase spatial reuse, and improve user
experience.

Complexity handling: Real-world WLAN environments can
be highly dynamic and complex, with interactions between
multiple factors (e.g. user mobility, interference patterns,
network topology changes). Real-time studies allow MAB
algorithms to take decisions based on observations. This allows
them to work more effectively by improving the strategies in
every iteration.

Finally, the MAB algorithm’s real-time analysis of DCB and
OBSS is important for adapting to changing WiFi conditions,
making the best use of spectrum, and lowering interference.
All of these make the network work better and more fairly in
dense installations.

V. PROPOSED MODIFIED EXPLORATION-FIRST
ALGORITHM

One of the most effective multiarmed bandit (MAB)
algorithms, the exploration-first algorithm optimizes WiFi

parameters to enhance performance. In this approach,
exploration is conducted exclusively at the beginning,
followed by the exploitation phase. Our initial study on the
standard exploration-first algorithm for this problem reveals
that the initial exploration itself will take more than an hour.
From this understanding of the exploration-first algorithm, we
proposed the modified exploration-first algorithm to minimize
the delay introduced by exploration. The challenge arises
when the number of configurations to explore is large, as the
exploration phase becomes time-consuming.

Convergence time of Exploration-First Algorithm: If n is
the total number of configurations and ¢ is the testing time per
configuration in minutes, the total time required to explore all
configurations (convergence time) is n X ¢ minutes.

In our experiment, we have taken 4 channels, 5 transmission
powers, and 3 bandwidths. Hence n is equal to 60 as given
below.

Total number of configurations to explore (n)
=4x5x3
=60

Each configuration is tested for two minutes. Hence, the
convergence time is 120 minutes, as is given below.

Convergence time of Standard Exploration-First
=2 x 60
= 120 minutes

To reduce the exploration time, it is essential to optimize
the number of configurations to be evaluated.

Convergence time of Modified Exploration-First Algorithm:
In our algorithm, at the beginning of every iteration, a subset
of configurations is filtered according to the channels available.
This reduces the number of configurations to be explored;
therefore, the convergence time will be minimized proportion-
ally. Let m represent the reduced number of configurations
after applying the algorithm, where m < n. Consequently,
mxt < nxt

In our experiment, we observed that the maximum subset
size m is 11. Hence, the maximum convergence time of our
modified algorithm is 22 minutes.

Convergence time of Modified Exploration First
=2x11

= 22 minutes

Optimization is applied across all WLAN parameters. The
channels are optimized by scanning the channels available for
that interface each time before making a selection. The most
suitable combination of bandwidth and transmission power
will be selected to optimize the throughput continuously, start-
ing from the higher bandwidth and low transmission power. At



every step, the next lowest possible configuration (next lowest
bandwidth, next highest transmission power) will be explored,
and the rewards (R; and R;,1) will be compared between the
current configuration and the previous configuration. If R;;
is less than R;, then all combinations of configurations related
to the lower bandwidths will not be considered for learning.
Otherwise, the exploration will continue with the next lower
possible configurations [refer to Algorithm 1 in Fig. 3].

In our experimental setup, we utilized channels 36, 40, 44,
and 48, with transmission powers of 5, 10, 15, 20, and 24
dBm and bandwidths of 20, 40, and 80 MHz.

Additional details about our experimental setup include
the fact that the experiments were conducted in a congested
environment. We intentionally created a dense setting by
placing the routers just 1 meter apart. This proximity ensured
that even with the lowest transmission power settings, the
routers stayed within each other’s range, allowing for a
realistic evaluation of their performance in an overlapping
WiFi environment. The reward for each configuration was the
throughput measured during the experiment for that specific
configuration. It was crucial to ensure that the reduction
in transmission power did not exclude any client from the
coverage area, so careful consideration was taken when
selecting the highest transmission power. In our setup, client
devices were placed at a distance from the router to ensure
they remained consistently within range.

VI. EXPERIMENTAL DESIGN

We have conducted all our experiments using exploration-
first as a representative of various MAB algorithms, since our
objective is to understand the various aspects of designing
MAB-based solutions for OBSS and DCB problems.

We formulated our experimental design to reflect the con-
gested urban environment. In densely populated urban environ-
ments, such as busy marketplaces and residential areas, almost
everyone uses their access points to meet daily multimedia
needs such as video downloading, uploading, streaming news,
watching movies, and sharing content on social media. Today,
much of this activity is conducted on smartphones. In these set-
tings, proper planning and coordination of the deployment of
access points among users is often impractical. Consequently,
access points are frequently placed close, with distances as
short as 2 to 3 meters. In addition, access points, hotspots,
and dongles also contribute significantly to the creation of this
dense network environment.

Our experiment setup is presented in Fig. 4. The access
points were the Archer C20 AC750 wireless dual-band router
(AP1) and the Archer C60 AC1350 dual-band wireless router
(AP2). Both access points are working in the SGHz band
in 802.11ac. To emulate the behavior of the OBSS problem
throughout the experiment, the configuration changes made to
AP1 were transmitted to AP2 through the wired connection,
ensuring that both access points compete with each other when
they operate on the same channel. This also helps to study

Algorithm 1: Exploration phase of Modified
Exploration-First Algorithm

1: Input:
2: C: Array of channels

AC: Array of available channels by scanning the
medium (subset of C)

(5]

4: P: Array of Transmission powers

5: B: Array of bandwidths

6: R: Array of Rewards for each configuration

7: Output: Selection of subset of configurations for explo-
ration

8: Initialize array AC < [c1,¢a,. .., ¢4

9: Initialize array P < [p1,Dp2,...,Dj]

10: Initialize array B < [b1,ba, ..., bg]

11: Initialize array R < [01, 02, ..., 0jsjsk]

12: Total Configurations n =i X j X k

13: Channels in usage UC = list of channels which are used
by the other access points

14: Available Channels AC = C - UC

15: for each c in AC do

16:  for each p in P do

17: for each b in B do

18: Apply configuration with values ¢, p and b

19: Measure Throughput and assign to Current-
Throughput

20: Update Throughput in the Array R for the config-
uration

21: if  CurrentThroughput > PreviousThroughput
then

22: PreviousThroughput = CurrentThroughput

23: else

24: Break

25: end if

26: end for

27:  end for

28: end for

29: Return R

Fig. 3. Exploration phase of Modified Exploration-First Algorithm

the implication of getting the same configuration when the
optimized algorithm runs at all the access points.

Initially, our goal was to understand the performance differ-
ence between two different routers. The results, plotted over
time in Fig. 5, compared the performance between the two
access points. The analysis revealed that AP2 consistently
exhibited higher throughput than API. In the same scenario,
different access points exhibit varying performance, which is
influenced by the capabilities of each device.

The AP1 (Archer C20) demonstrates only minor variations
in throughput across different configurations of transmission
power and bandwidth. In addition, its throughput is quite
volatile, responding dramatically to small changes in the
WiFi environment. This variability complicates the analysis
of performance differences in real-time scenarios.

In contrast, AP2 (Archer C60) shows a clear and significant
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Fig. 5. Comparison of throughput of access points in the same configuration
to understand the performance difference between two different routers

difference in throughput between 20- and 40-MHz bandwidth
configurations, making it easier to analyze results and draw
conclusions. Therefore, while we will present the results of
both routers, interpreting the performance of the Archer C20
will pose challenges due to its less stable throughput.

Based on the observations mentioned above on different
routers, we decided to compare the performance of each access
point with their performance in different cases rather than
comparing with other access points. Hence, throughout our
analysis, the performance of each access point is compared
with their performance rather than compared with the other
access points.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments to study the performance of the modified
exploration-first algorithm for OBSS and DCB problems have
been formulated in four stages. Stage 1: An experiment was
conducted to measure the throughput of both routers for 30
minutes. Here, throughput refers to the maximum throughput
they can achieve without any traffic from the peer router

and without the algorithm (that is, without optimal config-
uration). Stage 2: An experiment with traffic generated on
the same channel to observe the effects of high traffic on
throughput without the algorithm having been conducted for
30 minutes. Stage 3: An algorithm experiment was executed
on the routers while simultaneously running traffic for 30
minutes. Stage 4: Finally, the algorithm was run on routers
with traffic simultaneously for a longer period (one hour) to
study the convergence aspect of the algorithm. The details are
summarized in Table 1.

TABLE I

DETAILS OF THE EXPERIMENTS CONDUCTED IN FOUR STAGES

Stage with OBSS | with | with Algo-
problem DCB | rithm

Stage 1 (for 30 minutes) | No No No

Stage 2 (for 30 minutes) | Yes No No

Stage 3 (for 30 minutes) | Yes Yes Yes

Stage 4 (for 1 hour) Yes Yes Yes

Note:
1) Both AP1 and AP2 were running OpenWrt 22.03.3.
2) The OBSS problem has been created by invoking the traffic
from other access points as mentioned in Fig. 4.
3) To enable the DCB, the UCI (Unified Configuration Inter-
face) command of OpenWrt has been used.

The measured throughput (in Mbps) of AP1 and AP2 for the
first three stages is presented in Fig. 6 and Fig. 7, respectively.
The results of stage 4 are presented in Fig. 8 and Fig. 9,
respectively.

As mentioned above, the throughput differences for various
configurations of AP1 are minimal, as shown in Fig. 6, making
it difficult to analyze any improvements. However, for AP2,
the changes are noticeable, as in Fig. 7, which allows us to
conclude that after 20 minutes of running the algorithm, it
attempts to converge. For both AP1 and AP2, the algorithm
(in stage 3) has increased throughput compared to throughput
with the OBSS problem and without the algorithm (in stage
2). In addition, the algorithm has yielded higher throughput
compared to the throughput of APs without the OBSS problem
(in Stage 1). That means that the algorithm had suggested an
optimal configuration (primary channel, transmission power,
and bandwidth) continuously throughout the duration of the
experiment according to the traffic and reward of the peers.

As depicted in Fig. 6, under ideal conditions without OBSS
interference, AP1 maintains a stable throughput of 28 Mbps
(in Stage 1) with minimal variation. However, under OBSS
conditions, the throughput decreases to an average of 15 Mbps
(in Stage 2), fluctuating between 7 Mbps and just below
28 Mbps. When the OBSS scenario is repeated with the
algorithm applied on AP1, averaging 20 Mbps (in stage 3)
with significant fluctuations and reaching as high as 35 Mbps.

For AP2, the ideal throughput averages 70 Mbps (in Stage
1), but under OBSS conditions, it decreases to an average of
60 Mbps (in Stage 2) and fluctuates between 70 and 5 Mbps.
When the algorithm was applied, the average throughput
increased to 62 (stage 3) Mbps, fluctuating between 25 and



—AP1 anougnpm(wunom OBSS preblem and
without Algorithm)
AP1 Throughput (with OBSS problem and
without Algorithm

—— AP1 Throughput (with OBSS problem and
with Algorithm)

Throughput(Mbps)

SREIRORGAC N RN TN

S P DS RPNy

AN A N S R A A G

Time(mm:ss)

Fig. 6. Throughput measured during Modified Exploration-First algorithm
for AP1

mam

Time (mm:ss)

—— AP2 Throughput(without OBSS problem and
without Algorithm)

—— AP2 Throughput( with OBSS problem and
without Algorithm)
AP2 Throughput (with OBSS problem and
with Algorithm)

Throughput{Mbps)

Fig. 7. Throughput measured during Modified Exploration-First algorithm
for AP2

35

—— AP1 Throughput with OBSS
problem and with Algorithm

Throughput{Mbps)

'\“”\?’@@@"L"GP‘ ""P \”\'«"‘4@@'\ WA P
57 P fas NS AN i Q47 G
s &@@@\ st sls Tt s s @%\‘@ FP PP S S

Time{hh:mm:ss)

Fig. 8. Throughput measured during configuration changes with Modified
Exploration-First algorithm for AP1

78 Mbps after the exploration phase. Fig. 7, shows a clear
improvement in performance compared to the OBSS scenario.

We extended our experiments to approximately one hour to
observe the convergence behavior of the algorithm as shown in
Fig. 8 and Fig. 9 . After the exploration phase, we observed
a trend towards convergence. AP2 consistently converges to
a throughput of around 70 Mbps, with a few exceptions,
while AP1 converges within the range of 10 to 25 Mbps. A
convergence to a specific value is not possible in a dynamic
environment. Hence, we focus on the convergence to a range
of values. So we have achieved the convergence to a smaller
range of throughput rather than the convergence to a specific
value.
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Fig. 9. Throughput measured during configuration changes with Modified
Exploration-First algorithm for AP2

VIII. A SUMMARY ON OUR INFERENCES ON DESIGN AND
IMPLEMENTATION ASPECTS OF MAB ALGORITHM FOR
OBSS AND DCB PROBLEM

In this section, we consolidate various design and imple-
mentation aspects that need to be considered in the design of
the RL algorithm for the dynamic channel bonding problem.

1) The large number of possible configurations resulting
from combinations of channel, transmission power, and
bandwidth make selecting the best configuration very
challenging. Therefore, we need an optimized method-
ology to apply the MAB algorithm to a subset of
configurations rather than a large set of configurations.

2) Frequent configuration changes in access points can
disrupt both the clients and the AP itself. A minimum
interval between consecutive changes is necessary, as
frequent adjustments can make it difficult for clients to
stay connected and can exceed the ability of the AP to
adapt.

3) Another challenge lies in the tendency of devices to rely
on the same channels, leading to congestion while other
channels remain underutilized. This makes it crucial to
find optimal configuration settings that are suited to the
environment, reducing the need for frequent changes.

4) The unpredictability of the radio environment presents
another challenge when applying algorithms in WiFi, as
the medium is highly unstable.

5) Maximizing the performance of the MAB algorithm
without compromising client coverage is a significant
challenge.

6) Reducing transmission power randomly can cause
clients to drop out of range, making it essential to
maintain their connection.

7) Technical problems can also prevent configuration
changes from being implemented as expected, with
access points sometimes failing to modify channel,
transmission power, or bandwidth.

8) Access point limitations, such as restricted processing
capabilities or a limited number of SSIDs that can be
scanned, further affect the algorithm’s performance.

9) During the exploration phase, fluctuations in channel,
transmission power, and bandwidth can create a dynamic



environment, making it difficult for other access points
to adjust and stabilize, contributing to overall system
instability.
Among the list of points described above, the first three
points have been addressed in the modified Exploration First
algorithm. The rest of all other points will be addressed in our
future work.

IX. CONCLUSION

We conducted a real-time investigation on the OBSS prob-
lem and DCB utilizing MAB algorithms. Most existing stud-
ies on this problem are being carried out in a simulated
setting. Our proposed optimized exploration-first algorithm
demonstrates better performance with reduced learning time.
The results of the real-time experiments indicate substantial
enhancements, underscoring the benefit of minimizing the
duration of the exploration time, which theoretically reduces
the convergence time. This work is not limited to the 802.11ac
standard. This study will help us design an optimized algo-
rithm for the 802.11ax standard. The logical next step is to val-
idate our proposed algorithm in a large-scale WLAN. Future
work will focus on resolving the identified unaddressed design
aspects, such as the unpredictability of the radio environment,
ensuring client coverage, the limited processing capabilities of
access points, and the instability experienced by neighboring
access points during the exploration phase.
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