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Abstract—In the evolution of artificial intelligence (AI), large -

scale data volumes are needed to best represent the information. 

This dataset is expressed by a matrix or tensor. When data 

volumes increase, the operational throughput of data processing 

increases, exponentially. However, this is not acceptable for 

computational devices, such as mobile devices, that are expected 

to low power consumption and high-performance. As the demands 

for embedded chip devices in AI software have increased, low-

power and high-performance modules for AI software are needed 

to ensure efficient matrix or tensor data processing. Commonly, as 

performance enhances, power consumption also increases. In this 

point, a new matrix operation system is essential to ensure high 

performance and low-power consumption for efficient matrix data 

processing. In the matrix operation property, large amounts of 

computational operation can be reduced and sped up through 

parallelized data processing. In this paper, to determine the 

advantages of parallelized matrix operation in terms of 

performance and power consumption, hardware (ALU and 

memory) module chip equipped with a parallel operation 

structure and algorithm is designed to reduce data volumes and 

operational load. By implementing this module by Verilog, with a 

multicore processor, the processing speed and power consumption 

are able to compare with the existing sequential processing method 

of a single-core structure processor [1][2]. We conducted an 

experiment to check the operation and performance of a 

parallelized module chip. The data are stored in memory to 

compression form through CNN algorithm software, and this is 

useful in the operation of the matrix arithmetic. This matrix 

arithmetic operation load is also reduced in support of the CNN 

algorithm software. The experimental results most likely confirm 

that the designed quad-core processor embedded CNN algorithm 

increased its speed to n*log n scale time complexity and that the 

memory usage rate, memory access footprint, and power 

consumption remarkably decreased. 
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I.  INTRODUCTION  

A large amount of information data takes the form of a 
matrix or tensor data structure. A matrix or tensor has various 
information forms and complex data types. However, these 
multidimensional matrix processes demand much time and high 
energy because sequential computational structure processing 
usually processes one word, at a time, and has high iterative data 
access for operation. As the data volumes increases, the 

operational throughput also increases. In general, the 𝑛 ×
𝑛 matrix multiplication expressed by C programing has 𝑛3 time 
complexity due to the triple loop [3]. In this matrix product 
sequence, some properties of matrix computation can be used to 
enhance the operational performance.  

Independence and iteration are major properties of the matrix 
arithmetic operation. For the matrix product, the result matrix 
element is not dependent on the sequence of operation, and each 
operand matrix’s elements are iteratively accessed in the same 
times. Matrix arithmetic operation can be carried out by means 
of these accessed data [4]. From these characteristics, the 
parallelized data processing hardware module can be 
implemented. In this structure, only one loop is needed for the 
matrix’s operation, so the time complexity of the parallelized 
method’s matrix product can be reduced as a first order linear 
function (Fig. 4.). Also, using multicore structure allows 
researchers to easily deal with enormous and continuous matrix 
data flows. 

In matrix or tensor data processing, all data elements do not 
have an impact on effective results. That is, it is not necessary to 
perfect the matrix product. Although some of the data elements 
are altered to have a random value to some of the small extent, 
the total operation outputs of information process will most 
likely be unchanged. These unimpacted data can be ignored to 
zero. This is called pruning [5]. After initiation the pruning 
method, these zero data do not require memory storage. So, 
matrix data compression first occurs in the pruning process. 
However, this reduced matrix data storage does not represent the 
original matrix structure due to the modified array index. In this 
point, a new matrix data expression method must be introduced 
to locate a matrix’s index information. Simply, the data value 
and index information can be stored in memory. Furthermore, 
these element values are more compressed by its range. The 
sampling and selection of representative values can be quantized 
from floating point to small range bit code. So, a new data 
expression approach can be introduced for efficient data 
memory storage [6].  

In the data flow level, a lot of data elements execute product 
operation in a parallel processing way from hardware module 
implemented in this paper. The data type inflowed by the input 
gate module is generally in the floating-point format, which is 
the real number. So, data throughput is heavier and more 
complex than the integer type number. For high speed and low 
power, the data arithmetic cell is needed for more efficient 
operational sequences and algorithms. In this point, an 



appropriate and efficient arithmetic cell for processing the 
floating point is introduced. 

The first objective of this paper is to verify the advantages of 
this implemented parallel processing matrix multiplication 
module in terms of execution time, less power consumption as 
compared to the sequential processing module. The second 
objective is to verify the data compression efficiency and 
memory usage in the matrix data loaded. We demonstrate that 
this system implements the parallel hardware and CNN software 
algorithm appropriately in operating and check the effective 
performance in a point of data process improvement, power 
consumption reduction, memory usage compression, and 
optimal memory access footprint. 

II. PROPOSED METHOD 

The hardware structure and the algorithm for matrix 
operation in parallel processing are based on the repeatability 
and same number of times access of each operand element. In 
the matrix product, each resulting element can be reconstructed 
via the first operand matrix’s column and second operand 
matrix’s row multiplication, namely, the sum of the partial 
matrix state (Fig. 1.). Different from the general inner products 
about the result matrix’s index, these partial states form the 
template matrix with the same result as to the matrix dimension, 
but these templates represent only a part the of result matrix. 
These partial matrices, called template matrices, form a total of 
n parts, which are same as to the number of first operand matrix 
column - second operand matrix row.  

For example, if  𝑚 × 𝑛 and 𝑛 × 𝑝 matrices operate product, 
this operation creates the first to nth column-row product 
template matrices. And then, these template matrices can build 
up the result matrix. Actually, when using padding for easy 
operation and expression, the matrix format can be fixed to 
𝑛 × 𝑛 dimension. Although the parallelized product’s hardware 
needs more ALUs than original computer structure, the 
arithmetic cell ALUs in this hardware for MAC-multiply and 
accumulation-operation is much smaller and light due to focused 
on only the fast and simple operation method. As a result, the 
speed of matrix product is much higher, and the time complexity 
is reduced to the first order linear function of n through this 
parallelized matrix product operation (Fig. 2.). In implementing 
the hardware for the multicore structure, the hardware module 
chip can easily process the multidimension and large matrix data 
elements more than the number of hardware arithmetic cells 
with very high-speed execution time (Fig. 3.). Using the 
scheduling algorithm conducted as the control logic for core 
efficient and powerful usage, the total speed and power 
consumption can be reduced much less than the operation of a 
single core matrix product’s hardware chip. This can be done by 
implementing a parallel processing matrix product module by 
Verilog using Intel’s FPGA design software and checking the 
module operation behavior using Modelsim. 

The operand matrices can be optimized for volume reduction 
induced by the pruning algorithm (Fig. 5.). Actually, all data in 
the matrix do not have an impact on the result. Only some data 
significantly impact the result matrix. The pruning step can 
retain significant data to affect and delete redundant data. For 
this, the threshold value is induced, which can make a criterion 

whether the data pruning. If the matrix data element is less than 
the threshold data value, all element values satisfied with the 
threshold condition should be changed as zero. This pruning is 
fulfilled until the pruning matrix attains the desired sparsity level.  
The important aspect of the pruning algorithm is that a well-
fitting selection threshold value and sparsity criterion represents 
no loss result data output. So, threshold value selection is needed 
in the training steps to improve the precision of the pruning 
algorithm, and the sparsity criterion is used to normalize of the 
pruned matrix.  

After pruning, the compressed matrix array modifies the 
original data dimension structure by neglecting the pruned zero 
elements. These compressed matrices must be stored in memory 
with location information in order to preserve the original matrix 
information. Various representative formats are induced to 
ensure the sparse matrix expression for memory storage. These 
representations can be matrix data that are more compressed 
than COO (coordinate format) representation. In this paper, we 
used the CSR (compressed sparse row) format for matrix 
expression, and we implemented the transposed operation 
algorithm for matrix product (Fig. 6.). In the sparse matrix, there 
are small numbers of remaining meaningful data values, so these 
values can be compressed even more using quantization 
algorithm (Fig. 7.). The quantization method is all about 
sampling the representative value; it can be described as data 
sharing and encoding the representative values to the code table. 
Quantization and pruning can compress the matrix for the very 
high-compression rate, and the output result accuracy can be 
preserved, whereas only useful data values are compressed via 
the code table in the small bits used. 

 We compressed the pruned matrix data as the code table, and 
these encoded matrix data are stored in memory. The hardware 
ALU only calculates the remaining data in a compressed matrix 
representation (Fig. 9.), and then it stores and accumulates the 
operated values in the right index of the result matrix register 
(Fig. 10.). Only the remaining data must be operated, so it does 
not matter where the index location data are operated. In the 
arithmetic cell, the bit data are translated as actual data values 
from the code table. So, we need to decode the algorithm in the 
data code. The data code is different when it comes to what data 
are quantized, what group of values are sampled, and what data 
are selected as representative. So, we update the decode 
hardware every data code table is exchanged. Also, the code data 
has finite value range, so we can reduce the precision of actual 
data. This can be possible that FP32 and FP64 format must not 
be kept as the regulation (Fig. 8.). This data decoder and 
fluctuated fixed range format can possibly accelerate the matrix 
multiplication. 

III. CONCLUSION 

The parallel processing method of matrix multiplication 
confirms that the speed performance obviously improves, and it 
can be easily confirmed by Modelsim simulation. The power 
consumption of total operation is much smaller than the 
sequential computing structure because optimized algorithms 
are used for data storage and processing. However, the average 
power consumption is much higher, due to many parallel ALU 
usages and much smaller execution time. In this paper, the main 
processes of matrix operation, such as intensive data access and 



floating operation, are greatly reduced; this can make it possible 
to the lower power for matrix multiplication operation. 
Compressed matrices can be usually operated in the register 
block. The SRAM cache’s energy consumption for data access, 
(i.e. 5pJ) is very small compared to that of DRAM, (i.e. 64pJ). 
Also, the main floating operation is reduced in small bits; this is 
much less energy consumption compared with the 32-bit 
floating multiplication, (i.e. 3.7pJ). Therefore, linear data 
throughput increase may possibly result in much less time 
consumption in very large-scale dataset processing (Fig. 11.). 
Also, memory reordering techniques can be possible with regard 
to very small memory usage for large data. Consequently, high- 
efficient data processing of the multidimension matrix operation 
in restricted devices, such as embedded system, can be possible. 

 

 

Fig. 1. Structure of parallelized matrix product. 

 

 

Fig. 2. Hardware module of parallelized matrix product. 

 

 

Fig. 3. Parallelized matrix multiplication data flow diagram. 

 

 

 

Fig. 4. Pseudocode and time complexity. 

 

 

Fig. 5. Pruning algorithm. 

 



 

Fig. 6. CSR compression diagram. 

 

 

Fig. 7. Quantization 

 

 

Fig. 8. Arithmetic cell variable bit operation diagram. 

 

Fig. 9. Matrix operation core sharing of pruning matrix 

 

Fig. 10. Matrix product module process diagram. 

 

Fig. 11. Performance comparison statistics diagram. 
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