Low-Power High-Speed CNN Accelerator with Matrix
Reodering Techniques for Small Footprint Memory
Access

Hoseong Kim and Daejin Park*

School of Electronics Engineering, Kyungpook National University, Daegu, Korea
*Correspondence: boltanut@knu.ac.kr

Abstract—In the evolution of artificial intelligence (AI), large -
scale data volumes are needed to best represent the information.
This dataset is expressed by a matrix or tensor. When data
volumes increase, the operational throughput of data processing
increases, exponentially. However, this is not acceptable for
computational devices, such as mobile devices, that are expected
to low power consumption and high-performance. As the demands
for embedded chip devices in Al software have increased, low-
power and high-performance modules for Al software are needed
to ensure efficient matrix or tensor data processing. Commonly, as
performance enhances, power consumption also increases. In this
point, a new matrix operation system is essential to ensure high
performance and low-power consumption for efficient matrix data
processing. In the matrix operation property, large amounts of
computational operation can be reduced and sped up through
parallelized data processing. In this paper, to determine the
advantages of parallelized matrix operation in terms of
performance and power consumption, hardware (ALU and
memory) module chip equipped with a parallel operation
structure and algorithm is designed to reduce data volumes and
operational load. By implementing this module by Verilog, with a
multicore processor, the processing speed and power consumption
are able to compare with the existing sequential processing method
of a single-core structure processor [1][2]. We conducted an
experiment to check the operation and performance of a
parallelized module chip. The data are stored in memory to
compression form through CNN algorithm software, and this is
useful in the operation of the matrix arithmetic. This matrix
arithmetic operation load is also reduced in support of the CNN
algorithm software. The experimental results most likely confirm
that the designed quad-core processor embedded CNN algorithm
increased its speed to n*log n scale time complexity and that the
memory usage rate, memory access footprint, and power
consumption remarkably decreased.

Keywords—Matrix or Tensor data processing; parallelized
processing; multicore processor; Verilog; Convolutional neural
network; Pruning alogrithm; Deep Compression alogrithm;
arithmetic algorithm;

I. INTRODUCTION

A large amount of information data takes the form of a
matrix or tensor data structure. A matrix or tensor has various
information forms and complex data types. However, these
multidimensional matrix processes demand much time and high
energy because sequential computational structure processing
usually processes one word, at a time, and has high iterative data
access for operation. As the data volumes increases, the

operational throughput also increases. In general, the n X
n matrix multiplication expressed by C programing has n3 time
complexity due to the triple loop [3]. In this matrix product
sequence, some properties of matrix computation can be used to
enhance the operational performance.

Independence and iteration are major properties of the matrix
arithmetic operation. For the matrix product, the result matrix
element is not dependent on the sequence of operation, and each
operand matrix’s elements are iteratively accessed in the same
times. Matrix arithmetic operation can be carried out by means
of these accessed data [4]. From these characteristics, the
parallelized data processing hardware module can be
implemented. In this structure, only one loop is needed for the
matrix’s operation, so the time complexity of the parallelized
method’s matrix product can be reduced as a first order linear
function (Fig. 4.). Also, using multicore structure allows
researchers to easily deal with enormous and continuous matrix
data flows.

In matrix or tensor data processing, all data elements do not
have an impact on effective results. That is, it is not necessary to
perfect the matrix product. Although some of the data elements
are altered to have a random value to some of the small extent,
the total operation outputs of information process will most
likely be unchanged. These unimpacted data can be ignored to
zero. This is called pruning [5]. After initiation the pruning
method, these zero data do not require memory storage. So,
matrix data compression first occurs in the pruning process.
However, this reduced matrix data storage does not represent the
original matrix structure due to the modified array index. In this
point, a new matrix data expression method must be introduced
to locate a matrix’s index information. Simply, the data value
and index information can be stored in memory. Furthermore,
these element values are more compressed by its range. The
sampling and selection of representative values can be quantized
from floating point to small range bit code. So, a new data
expression approach can be introduced for efficient data
memory storage [6].

In the data flow level, a lot of data elements execute product
operation in a parallel processing way from hardware module
implemented in this paper. The data type inflowed by the input
gate module is generally in the floating-point format, which is
the real number. So, data throughput is heavier and more
complex than the integer type number. For high speed and low
power, the data arithmetic cell is needed for more efficient
operational sequences and algorithms. In this point, an

appropriate and efficient arithmetic cell for processing the
floating point is introduced.

The first objective of this paper is to verify the advantages of
this implemented parallel processing matrix multiplication
module in terms of execution time, less power consumption as
compared to the sequential processing module. The second
objective is to verify the data compression efficiency and
memory usage in the matrix data loaded. We demonstrate that
this system implements the parallel hardware and CNN software
algorithm appropriately in operating and check the effective
performance in a point of data process improvement, power
consumption reduction, memory usage compression, and
optimal memory access footprint.

II. PROPOSED METHOD

The hardware structure and the algorithm for matrix
operation in parallel processing are based on the repeatability
and same number of times access of each operand element. In
the matrix product, each resulting element can be reconstructed
via the first operand matrix’s column and second operand
matrix’s row multiplication, namely, the sum of the partial
matrix state (Fig. 1.). Different from the general inner products
about the result matrix’s index, these partial states form the
template matrix with the same result as to the matrix dimension,
but these templates represent only a part the of result matrix.
These partial matrices, called template matrices, form a total of
n parts, which are same as to the number of first operand matrix
column - second operand matrix row.

For example, if m X n and n X p matrices operate product,
this operation creates the first to nth column-row product
template matrices. And then, these template matrices can build
up the result matrix. Actually, when using padding for easy
operation and expression, the matrix format can be fixed to
n X n dimension. Although the parallelized product’s hardware
needs more ALUs than original computer structure, the
arithmetic cell ALUs in this hardware for MAC-multiply and
accumulation-operation is much smaller and light due to focused
on only the fast and simple operation method. As a result, the
speed of matrix product is much higher, and the time complexity
is reduced to the first order linear function of n through this
parallelized matrix product operation (Fig. 2.). In implementing
the hardware for the multicore structure, the hardware module
chip can easily process the multidimension and large matrix data
elements more than the number of hardware arithmetic cells
with very high-speed execution time (Fig. 3.). Using the
scheduling algorithm conducted as the control logic for core
efficient and powerful usage, the total speed and power
consumption can be reduced much less than the operation of a
single core matrix product’s hardware chip. This can be done by
implementing a parallel processing matrix product module by
Verilog using Intel’s FPGA design software and checking the
module operation behavior using Modelsim.

The operand matrices can be optimized for volume reduction
induced by the pruning algorithm (Fig. 5.). Actually, all data in
the matrix do not have an impact on the result. Only some data
significantly impact the result matrix. The pruning step can
retain significant data to affect and delete redundant data. For
this, the threshold value is induced, which can make a criterion

whether the data pruning. If the matrix data element is less than
the threshold data value, all element values satisfied with the
threshold condition should be changed as zero. This pruning is
fulfilled until the pruning matrix attains the desired sparsity level.
The important aspect of the pruning algorithm is that a well-
fitting selection threshold value and sparsity criterion represents
no loss result data output. So, threshold value selection is needed
in the training steps to improve the precision of the pruning
algorithm, and the sparsity criterion is used to normalize of the
pruned matrix.

After pruning, the compressed matrix array modifies the
original data dimension structure by neglecting the pruned zero
elements. These compressed matrices must be stored in memory
with location information in order to preserve the original matrix
information. Various representative formats are induced to
ensure the sparse matrix expression for memory storage. These
representations can be matrix data that are more compressed
than COO (coordinate format) representation. In this paper, we
used the CSR (compressed sparse row) format for matrix
expression, and we implemented the transposed operation
algorithm for matrix product (Fig. 6.). In the sparse matrix, there
are small numbers of remaining meaningful data values, so these
values can be compressed even more using quantization
algorithm (Fig. 7.). The quantization method is all about
sampling the representative value; it can be described as data
sharing and encoding the representative values to the code table.
Quantization and pruning can compress the matrix for the very
high-compression rate, and the output result accuracy can be
preserved, whereas only useful data values are compressed via
the code table in the small bits used.

We compressed the pruned matrix data as the code table, and
these encoded matrix data are stored in memory. The hardware
ALU only calculates the remaining data in a compressed matrix
representation (Fig. 9.), and then it stores and accumulates the
operated values in the right index of the result matrix register
(Fig. 10.). Only the remaining data must be operated, so it does
not matter where the index location data are operated. In the
arithmetic cell, the bit data are translated as actual data values
from the code table. So, we need to decode the algorithm in the
data code. The data code is different when it comes to what data
are quantized, what group of values are sampled, and what data
are selected as representative. So, we update the decode
hardware every data code table is exchanged. Also, the code data
has finite value range, so we can reduce the precision of actual
data. This can be possible that FP32 and FP64 format must not
be kept as the regulation (Fig. 8.). This data decoder and
fluctuated fixed range format can possibly accelerate the matrix
multiplication.

III. CONCLUSION

The parallel processing method of matrix multiplication
confirms that the speed performance obviously improves, and it
can be easily confirmed by Modelsim simulation. The power
consumption of total operation is much smaller than the
sequential computing structure because optimized algorithms
are used for data storage and processing. However, the average
power consumption is much higher, due to many parallel ALU
usages and much smaller execution time. In this paper, the main
processes of matrix operation, such as intensive data access and

floating operation, are greatly reduced; this can make it possible
to the lower power for matrix multiplication operation.
Compressed matrices can be usually operated in the register
block. The SRAM cache’s energy consumption for data access,
(i.e. 5pJ) is very small compared to that of DRAM, (i.e. 64pJ).
Also, the main floating operation is reduced in small bits; this is
much less energy consumption compared with the 32-bit
floating multiplication, (i.e. 3.7pJ). Therefore, linear data
throughput increase may possibly result in much less time
consumption in very large-scale dataset processing (Fig. 11.).
Also, memory reordering techniques can be possible with regard
to very small memory usage for large data. Consequently, high-
efficient data processing of the multidimension matrix operation
in restricted devices, such as embedded system, can be possible.

nxp
Matrix A=[a,, a, an] MatrixB=[b, b, .. by . b
Az 8z, by by by by,
a a, by by b b,
8z Amn By by by, by,
b
State '" = b"‘x bizx 'i"‘x lmx
a“? Sn 812 Sii S1p
i |5, 832 Sii Sop
X
P th ¢ =
am s, 8o s 5 Result Matrix = 1§ State I'", s, = ay x by
X
am-'; Sy Smz Sy S

/ -~ / / - / / -~ / / - /
LEEETeee el e

State 1 State 2 State 3 State 4

N | | 7/

Accumulator
Register

Fig. 1. Structure of parallelized matrix product.

CNN Matrix Multiplier Module Structure
Input Data Set

HNEEEEEEEN input Regstr
! (N I I

Arithmetic
b ACC Cell
> Matrix
MP e Multiplier —
Module
N
Memory —
Matrix ->|
Instruction
>

N— —

Matrix Template Register

Fig. 3. Parallelized matrix multiplication data flow diagram.

Algorithm sequential matrix multiplication (Matrix_A, Matrix_B, Matrix_C)
Multiply Matrix_A and Matrix_B by sequential processing way
Pre Matrix_A and Matrix_B are n by n matrices
Post matrices multiplied--result in Matrix_C
1 for(i=0;i<n;i++)
1 for(j=0;j<n;j++)
1 for(k=0;k<n;k++)
1 calculate sum of Matrix_Al[i][k]*Matrix_B[k][j]
2 store sum in Matrix_CIi][j]
2 end loop
2 end loop
2 end loop
3 return
end sequential matrix multiplication

Time complexity of sequential processing : 0(n?)

Algorithm parallel matrix multiplication (Matrix_A, Matrix_B, Matrix_C)
Multiply Matrix_A and Matrix_B by parallel processing way
Pre Matrix_A and Matrix_B are n by n matrices
result Matrix_C is sum of temporary state matrix, S, n by n
Post matrices multiplied--result in Matrix_C
1 for(i=0;i<n;i++)
1 calculate temporary nth state matrix S[i][j] = Matrix_Ai][n]*Matrix_B[n][j]
2 accumulate state matrix to result Matrix_C
2 endloop
3 return
end parallel matrix multiplication

Time complexity of parallel processing : 0(n)

Fig. 2. Hardware module of parallelized matrix product.

Fig. 4. Pseudocode and time complexity.

= thresh(w) = wgiflw]| >4
0:iflwi| <4

Threshold data
By training
In software algorithi

Data element Data
Before pruning) . - After pruning
Satisfaction sparsity
level
yq | 812 | @13 | 814 0 0 843 0
A1 | @y | 823 | 824 a | 0 0 | &y
A A
Qa1 | 3z | 833 | A3 a3, 0 0 0
a1 | a5z | a3 | a4 0 Jap| 0 | &gy

Before Pruning After Pruning

Fig. 5. Pruning algorithm.

a, | 0 0 0 | ays

RowPtr array
ag | 0] 0 |ay) 0 0245|5|?|
0 0 a3 0 0 Column number array

i 0 4 0 | 4 | 2 | 1 4
0 0 0 0 0

Data array
O | © O | 2 a, | as | A1 | @4 | A3 | @2 | Bss
RowPtr array

1. Pruning matrix operation

) data number of i row = Tie1 =Ty

Fig. 6. CSR compression diagram.

LA
value 1 value 2 value 3 value4 wvalue5 ... valuei value n x
- e - ==
'3 x
b Cus
H = | cu | G | Cue x Matrix template
* - - | aithmeticcel |
Sampling and selection representative value 2. Reduction eperation cell « block !
Data Code Table=> | Precision bit data 3. Share operation in one core
Code : ...0000 Represenlalive value 1
Code : ...0001 Representative value 2
Code : ...0010 Representative value 3
Code - ...0011 Representalive value 4 Fig. 9. Matrix operation core sharing of pruning matrix
Code : ...0100 Representative value 5
Code : ... Xxxx Representative value i [b Bl il Pua | Pra | Pra [bra
— Ay | @2 | 83 | a4 byy | byy | Bay | bag
Code :...1111 Representative value n
Ay | @z | A3 | Ae byy | bya | bas | bag
Fig. 7. Quantization ay | auz | aus B | bz | bus | b
1. Transpose first operand matrix. apy | 8z | 2an | @0 bra | iz | Bys | bua
312 | 32 | 82 | A2 byq | baa | bas [baa
FP32[[s | | Exponentexcess 127 | | Fraction | =S—————1
D a1y | 33 | By | A bya | sz | bys [bys
Compressed bit code[[s | | Reduction Exponent | | Reduction Fraction Code |
Biq | 3p | B [a4 by | Baz | bas | bas
I P e e | 2. Scan row data operand matrices.
Core 1 Coes | |
=
Update arithmetic operation bit l—][':p'—
Matrix template Precision bit data Core 2 Core 4
arithmetic cell B
blook 3. Load data to register.
‘ Core 1
Core 2 Ci1 | Gz | C13 | Cia
[Core 3
| cell | Variable Bit —Gare 4 o [Caz | €as [can
Arithmetic N
cell
Ca1 | €2 | Cas | Caa
|| Accumulate
data to Cat | Ca2 | Cas | Cas
Fig. 8. Arithmetic cell variable bit operation diagram. right index

4. Operate matrix multiplication template state.

Fig. 10. Matrix product module process diagram.

performance improvement

Speod | E— W sequential processing
B paraliel processing

Toal power consumplion

Average power consumption

Memory usage

Memory access footprint [
[

Fig. 11. Performance comparison statistics diagram.

ACKNOWLEDGMENT

This study was supported by the BK21 FOUR project
(4199990113966), the Basic Science Research Program (NRF-
2018R1A6A1A03025109, 10%), (NRF-2022R111A3069260,
10%) through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education. This work was partly
supported by an Institute of Information and communications
Technology Planning and Evaluation (IITP) grant funded by the
Korean government (MSIT) (No. 2022-0-01170, PIM
Semiconductor Design Research Center, 30%) and (No. RS-
2023-00228970, Development of Flexible SW-HW Conjunctive
Solution for On-edge Self-supervised Learning, 50%). The EDA
tool was supported by the IC Design Education Center (IDEC),
Korea.

(1]
(2]

(31

(4]
(5]

(6]

REFERENCES

Samir Palnitkar, “Verilog HDL, A guide to digital design and synthesis”,
Prentice Hall, ISBN 89-7283-501-3

Lech Jowiak, Yahya Jan, “Hardware Multi-processor Design for Highly-
Demanding Applications”, 2013 Tenth International Conference on
Information Technology: New Generations (ITNG)

Richard F. Gilberg, Behrouz A. Forouzan, “Data structures : A
Pseudocode Approach with C, 2™ endition”, Cengage India, ISBN 978-
813150314

David C. Lay, “Linear Algebra and Its Applications, Global edition, 6™
edition”, Pearson, ISBN 978-1292351216

Song Han, Jeff Pool, John Tran, William Dally, “Learning both weights
and Connections for Efficient Neural Network”, Advances in Neural
information Processing Systems(NIPS), Pages 1135-1143, 2015.

Song Han, Huizi Mao, William J Dally, “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quantizaion
and Huffman Coding”, International Conference on Learning
===Representions(ICLR’16 best paper award)

