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Abstract—This review provides a detailed analysis of recent ad-
vancements in resource allocation and task offloading strategies
to enhance energy efficiency in aerial and satellite-assisted MEC
systems. With the increasing demand for low-latency and high-
computation services from IoT devices, integrating terrestrial,
aerial, and satellite networks has emerged as a promising solution
to expand coverage and boost computational capabilities. How-
ever, these integrated MEC systems face significant challenges,
including dynamic task arrival rates, limited and heterogeneous
resources, and fluctuating communication quality across diverse
network layers. The review categorizes existing research into
three key domains: aerial-assisted MEC, satellite-assisted MEC,
and combined aerial and satellite-assisted MEC systems. It
examines various optimization approaches, including deep rein-
forcement learning (DRL), game theory, and hybrid algorithms,
developed to address the complex problems of offloading and
resource allocation in these environments. Furthermore, the
review identifies open research challenges and potential future
directions, such as advancing DRL techniques, to address current
limitations. By offering insights into the state of the field,
this review highlights research gaps and proposes pathways to
improve the operational efficiency and energy management of
aerial and satellite-assisted MEC systems.

Index Terms—task offloading, MEC systems, resource alloca-
tion, UAV, HAP, satellite.

I. INTRODUCTION

The rapid proliferation of data-intensive applications, such
as autonomous vehicles, real-time surveillance, augmented
reality, and Internet of Things (IoT) networks, has signifi-
cantly increased the demand for low-latency, high-performance
computing services. However, ground devices (GDs) are often
constrained by limited battery life and computational capac-
ity, making them inadequate for handling resource-intensive
tasks. This constraint has created a critical need for effective

task offloading solutions to ensure these devices can operate
efficiently while maintaining high-quality service [1] [2].

MEC has emerged as a transformative paradigm to address
this challenge. By bringing computational resources closer to
end users, MEC systems reduce latency, enhance data pro-
cessing efficiency, and improve the overall quality of service
(QoS). Despite its potential, traditional ground-based MEC
systems face notable limitations. These include inadequate
coverage in remote or inaccessible locations, scalability chal-
lenges, and limited adaptability, particularly in dynamic or
large-scale deployments. Additionally, natural disasters can
disrupt ground-based facilities, rendering them unreliable. In
such scenarios, establishing or repairing terrestrial communi-
cation systems is not only challenging but also prohibitively
expensive [3].

To address these limitations, integrating aerial platforms
and satellite networks into MEC architectures has gained
significant traction. Aerial MEC systems, utilizing unmanned
aerial vehicles (UAVs) and high-altitude platforms (HAPs),
offer dynamic, on-demand resource allocation and extended
coverage in both urban and remote areas [4]–[7]. Similarly,
satellite-assisted MEC systems, particularly those employing
LEO satellites, provide global connectivity and low-latency
communication, making them ideal for isolated or underserved
regions [8]–[10]. Together, these aerial and satellite systems
complement ground-based MEC infrastructures, forming a het-
erogeneous architecture that offers unparalleled performance,
flexibility, and scalability for next-generation networks.

Task offloading and resource allocation are critical for the
seamless operation of these integrated MEC systems. Effective
task offloading strategies determine how and where computa-



Fig. 1. Computational offloading and resource allocation in various network scenarios.

tional tasks are processed, balancing factors such as latency,
energy consumption, and resource availability. Similarly, re-
source allocation mechanisms ensure the optimal distribution
of computational, storage, and networking resources among
competing tasks. However, the heterogeneous nature of aerial
and satellite-assisted MEC systems introduces unique chal-
lenges, including resource heterogeneity, dynamic mobility,
energy constraints, and unpredictable network conditions.

This paper presents a comprehensive review of task offload-
ing and resource allocation techniques in aerial and satellite-
assisted MEC systems. It explores state-of-the-art approaches,
identifies key challenges and research gaps, and highlights
emerging trends and future directions. By synthesizing existing
research and providing critical insights, this study serves as a
foundational reference for researchers and practitioners aiming
to design and optimize MEC systems that leverage aerial and
satellite platforms for enhanced performance and adaptability.

II. RESOURCE ALLOCATION AND TASK OFFLOADING IN
AERIAL AND SATELLITE-ASSISTED MEC SYSTEMS

This section presents a structured taxonomy of recent ad-
vancements in resource allocation and task offloading in MEC
systems, categorized into three primary network scenarios, as
depicted in Fig. 1. First, aerial-assisted MEC systems involve
GDs connecting with MEC-enabled aerial platforms including
HAPs and UAVs to enhance computational and communica-
tion capabilities, addressing the limitations of ground-based
devices. Second, satellite-assisted MEC systems leverage Low
Earth Orbit (LEO) satellites to provide MEC services in
remote or underserved regions, offering global coverage and
low-latency communication where terrestrial infrastructure is
insufficient or absent. Lastly, aerial-satellite-assisted MEC
systems combine GDs, aerial platforms, and LEO satellites
into a hybrid architecture, delivering extensive coverage, com-
putational flexibility, and resource optimization for complex
environments like disaster recovery and large-scale IoT de-
ployments. While these approaches significantly enhance MEC

capabilities, they introduce challenges such as resource hetero-
geneity, dynamic mobility, and energy constraints, requiring
sophisticated algorithms for efficient resource allocation and
task offloading. Following this taxonomy, we review existing
research to identify key advancements, challenges, and oppor-
tunities in this evolving domain.

A. Aerial-Assisted MEC Systems

In this network architecture, MEC servers are deployed on
aerial platforms such as UAVs and HAPs, creating a distributed
computing environment that integrates GDs with these aerial
platforms. Task offloading and resource allocation are central
to optimizing system performance by determining the most
efficient location for task processing—whether locally on GDs,
on UAVs, or on HAPs. The goal is to achieve energy efficiency
and high performance by considering factors such as task
complexity, latency requirements, and available resources. A
primary challenge is the efficient allocation of computational
and communication resources to meet QoS demands.

Research in this domain can be categorized into two main
areas: UAV-enabled MEC networks and integrated UAV and
HAP-enabled MEC systems. In UAV-enabled MEC networks,
UAVs serve as mobile MEC servers, addressing resource
allocation and task offloading challenges through optimization
techniques. For instance, in [5], researchers developed an
optimization framework to minimize service delays and UAV
power usage by jointly optimizing UAV positioning, com-
munication, and resource allocation. Using successive convex
approximation, they proposed an efficient algorithm to solve
this complex problem. Similarly, [11] explored NOMA-UAV-
assisted maritime communications, leveraging quasi-convex
and coalition game approaches to manage computation of-
floading and resource allocation in complex environments. In
another study [6], a hierarchical MEC-enabled UAV network
was proposed, where UAV scouts and MEC-equipped UAVs
collaborated with a base station controller, utilizing a soft



actor-critic (SAC) algorithm to adapt to dynamic conditions.
Moreover, [7] introduced a three-layer architecture combining
vehicle fog computing, UAVs, and edge layers for post-
disaster scenarios, employing game-theoretic and evolutionary
algorithms for resource optimization. Lastly, [12] developed
the DRTORA scheme, which uses DRL to optimize UAV
trajectories, task offloading, and time allocation, ensuring
secure and efficient computational performance under various
constraints.

In more complex scenarios involving both UAVs and HAPs,
the focus shifts to leveraging the broader coverage and
higher computational capacity of HAPs, albeit with higher
latency compared to UAVs. Studies such as [3] explored how
MEC-equipped UAVs can partially offload tasks to HAPs,
optimizing energy consumption while meeting QoS require-
ments. Stochastic optimization and game-theoretic methods
were employed to manage resource allocation and task of-
floading. Furthermore, advanced frameworks like Swarming-
behavior-integrated Multiagent gated recurrent unit-based Ac-
tor and multihead Attention-based Critic (SMA-GAC), intro-
duced in [4], utilized machine learning techniques, including
swarm intelligence and DRL, to solve joint task offloading
and resource allocation problems under multiple constraints,
enhancing overall system performance. These integrated sys-
tems capitalize on the complementary strengths of UAVs and
HAPs, balancing computational demands, energy efficiency,
and QoS to address real-world challenges effectively. However,
the scalability challenge of the SMA-GAC framework, as
its computational complexity increases significantly with the
number of UAVs and ground devices, potentially hindering
real-world applicability in larger networks.

B. Satellite-Assisted MEC Systems

Satellite-assisted MEC systems aim to bring computation
closer to end-users by equipping satellites with edge com-
puting capabilities. In these systems, computation offloading
involves transferring tasks from IoT devices to satellites for
low-latency processing. However, this process presents signifi-
cant challenges due to the dynamic and unpredictable nature of
satellite orbits. Satellites move rapidly relative to the Earth and
each other, affecting connectivity, resource availability, and
the management of inter-satellite links (ISLs). These dynamic
conditions necessitate efficient resource allocation to ensure
stable communication, balanced task distribution, and energy
efficiency.

Key challenges include managing limited bandwidth and
power resources, balancing workloads across multiple satel-
lites and ISLs, and minimizing latency and energy consump-
tion. Offloading decisions must dynamically adapt to varying
task requirements, such as data size, computational needs,
and deadlines, to prevent overloading individual satellites or
communication links. Addressing these challenges requires
intelligent algorithms that can optimize resource allocation and
task routing in real time, accounting for satellite movement and
network conditions.

Several advanced approaches have been proposed to tackle
these issues. For example, the hierarchical dynamic resource
allocation (HDRA) algorithm [13] uses a breadth-first search
to select optimal satellites and routing paths, followed by a
greedy method for offloading ratio and resource allocation.
Another study [14] introduced a joint optimization algorithm
to minimize energy consumption by optimizing offloading de-
cisions and computing resource allocation, effectively decou-
pling complex variables for optimal solutions. Similarly, [15]
proposed a two-layered framework for terrestrial-satellite IoT
using LEO satellites, minimizing energy consumption with
the energy-efficient computation offloading and resource al-
location algorithm (E-CORA), leveraging Lagrangian dual
decomposition and sequential fractional programming.

In addition, advanced machine learning techniques have
been employed to enhance decision-making in satellite edge
computing. A Seq2Seq-based decision generation algorithm
combined with DRL was introduced in [16] to optimize
offloading strategies for intensive tasks, accounting for
inter-satellite transmission and computation delays. Another
study [17] presented the DRLCO algorithm, integrating DRL
with traditional optimization methods to assist ground users
and LEO satellites in dynamic network environments. A
caching-assisted computational offloading and resource opti-
mization approach [18] further improved offloading strategies
by incorporating caching architectures and DRL to maximize
cache utility.

Moreover, [19] proposed a novel LEO-assisted Open RAN
architecture, integrating a near real-time RIC (Radio Access
Network Intelligence Controller) in LEO satellites and a non-
real-time RIC in terrestrial networks. This framework jointly
optimizes offloading decisions, computing resource allocation,
and cache updates, minimizing energy consumption while
adhering to communication, computing, and cache constraints.
The authors employed the deep deterministic policy gradient
method to model and optimize these decisions, significantly
enhancing network performance. The main limitation of this
paper is the lack of consideration for the energy and computa-
tional overhead associated with inter-satellite communication
and coordination within the proposed LEO-assisted Open
RAN (LO-RAN) architecture, which may impact scalability
and real-world feasibility.

These studies collectively highlight the rapid advancements
in satellite-assisted MEC systems. By leveraging innovative
algorithms, optimization techniques, and machine learning
models, researchers are addressing the complex challenges
of resource allocation and task offloading in dynamic, multi-
layered satellite networks, paving the way for more efficient
and reliable satellite edge computing solutions.

C. Aerial-Satellite-Assisted MEC Systems

Aerial-satellite-assisted MEC systems integrate UAVs,
MEC-enabled satellites, and GDs to create a unified computing
framework that optimizes energy efficiency while meeting per-
formance requirements such as low latency and high reliability.
This approach leverages the strengths of each layer: MEC-



Fig. 2. Taxonomy of job offloading and resource assignment Different Network Scenarios.

enabled satellites provide wide-area coverage and substantial
computational resources, UAVs offer flexibility and rapid
response capabilities, and GDs benefit from the ability to
offload tasks to these aerial and space-based platforms. The
primary challenge in such systems is dynamically determining
the optimal task processing locations and efficiently allocating
computing and communication resources across these hetero-
geneous platforms.

In [8], a method was proposed to minimize energy con-
sumption and task completion delays in SA-MEC (space-
air MEC) systems using a BCD algorithm (block coordinate
descent). This approach dynamically allocates tasks to the
most appropriate edge server by considering its location and
resource availability, thereby ensuring energy efficiency while
meeting task deadlines. Similarly, [9] introduced a DRL-based
solution for joint optimization of resource allocation and task
offloading in hybrid cloud and MEC scenarios within space-
air-ground integrated networks. This system, incorporating
satellites, UAVs, and cloud platforms, employed a multi-agent
DRL algorithm to optimize resource usage and reduce latency
and energy consumption.

In [10], the focus was on minimizing total energy con-
sumption in ground-air-space integrated MEC networks. This
was achieved by jointly optimizing ground user equipment
association, multi-user MIMO transmit precoding, compu-
tational task distribution, and resource management. The
complex non-convex optimization problem was decomposed
into four subproblems, solved iteratively using techniques
such as quadratic transform-based fractional programming and
weighted minimum mean-squared error methods. In [20], a
joint task offloading and resource allocation strategy (JTRSS)
was proposed for space-air-ground vehicular networks. The
strategy expanded task offloading options for vehicles by

integrating air and space networks and deploying edge servers.
Using maximum rate matching for channel allocation, the
Lagrangian multiplier method for computational resource al-
location, and a differential fusion cuckoo search algorithm for
optimal offloading decisions, JTRSS minimized system costs
while improving computational performance.

Further innovations include the work in [21], where a
network model was developed to enable resource-constrained
energy-harvesting UAVs (EH-UAVs) to offload tasks to LEO
satellite-MEC server. The EH-UAVs periodically collected
data from IoT devices and generated tasks for processing.
A joint optimization problem involving selection of LEO
satellite, offloading partial task, and allocation of transmis-
sion power was formulated to optimize service satisfaction
and minimize energy consumption within constraints such as
connectivity duration, task deadlines, and energy availability.
Due to the problem’s non-convex and dynamic nature, it was
restructured as RL task and solved using the MDC²-DRL
(mixed discrete-continuous control DRL) algorithm, incorpo-
rating action shaping for efficient decision-making. The main
limitation of this paper is the lack of consideration for the
computational and energy overhead of the intermittent and
stochastic energy harvesting process, which could affect the
stability and practicality of the proposed network (LEO-MEC-
assisted EH-UAV network) under real-world conditions

These studies collectively highlight the diverse strategies
employed to optimize task offloading and resource allocation
in ground-air-satellite integrated MEC systems. By addressing
energy efficiency, latency reduction, and resource utilization,
these advanced algorithms are tailored to the unique charac-
teristics and challenges of these multi-layered network envi-
ronments, paving the way for enhanced system performance
and scalability.



III. CHALLENGES AND OPEN RESEARCH ISSUES

Energy-efficient resource allocation and task offloading in
aerial and satellite-assisted MEC systems face significant chal-
lenges due to the complexity of hybrid networks. Key issues
include optimizing resource allocation across terrestrial, aerial,
and satellite layers, each with diverse energy constraints and
fluctuating network conditions. Maintaining low latency while
accounting for the mobility of UAVs and HAPs further com-
plicates the process. Seamless interoperability between these
layers, alongside addressing security and privacy concerns, is
crucial for effective implementation.

Open research directions focus on developing advanced
algorithms capable of adapting to dynamic environments, man-
aging energy efficiently, and optimizing real-time task schedul-
ing. DRL techniques, such as Proximal Policy Optimization
(PPO) and Deep Q-Learning (DQN), have shown promise
in UAV-enabled MEC networks. These techniques enable
dynamic adjustments of UAV trajectories, task offloading, and
resource allocation based on changing network conditions. By
considering factors such as UAV energy, network traffic, and
user mobility, DRL approaches can enhance task scheduling,
reduce energy consumption, and improve system efficiency.

However, handling the large-scale, multi-agent nature of
these networks while maintaining energy efficiency remains
a critical challenge. Advancing machine learning and DRL
techniques to address these complexities is essential for the
realization of robust and scalable MEC solutions in hybrid
networks.

IV. CONCLUSION

In this paper, we reviewed and discussed energy-efficient
resource allocation and task offloading across various network
scenarios. We began by presenting a taxonomy of existing
research, categorizing studies into three main areas: task of-
floading and resource allocation in Ground-Air enabled MEC
systems, Ground-Satellite enabled MEC systems, and Ground-
Air-Satellite integrated MEC systems. For each category, we
provided a detailed review and discussion of relevant works.
Lastly, we highlighted the current research challenges in these
domains and identified open research issues that merit further
investigation.
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