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Abstract—Carrier aggregation is one of the most important
technologies for increasing data rates in current and future
cellular network systems such as 5G and 6G. It combines multiple
frequency channels, possibly from different bands such as bands
under 6GHz and millimeter-wave bands, to send traffic between
a base station and a user device at a faster speed. With carrier
aggregation, a user device is simultaneously connected to multiple
cells, one of them being the primary cell and the others being
secondary cells. In environments where carrier aggregation is
extensively used, the cell selection algorithm must take into
account the performance of all potentially aggregated cells when
selecting the best cell for a user device. However, the current cell
selection method only considers the signal quality of primary
cells, which may lead to sub-optimal performance when carrier
aggregation is used. Modifying the cell selection algorithm to
consider both primary and secondary cells may seem trivial, but
faces new challenges such as increased measurement cost and
delay. We present a simple and practical scheme for cell selection
in carrier aggregation environments. First, the proposed scheme
introduces new measurement configurations and events that can
implement a cell group-based handover considering the combined
performance of aggregated cells. Second, to reduce delay and
overhead caused by measurements, we make use of neural net-
works that are trained to estimate the signal quality of neighbor
cells at approximate user locations. Simulation results show that
the proposed scheme achieves significant performance benefits
over legacy methods, especially in dense network environments.

Index Terms—cellular networks, carrier aggregation, cell se-
lection, handover, neural networks

I. INTRODUCTION

MOBILE communication systems strive to support high
transmission rates to meet the ever-increasing user

demand. As shown in the Shannon capacity theorem, pro-
viding high transmission rates requires a high signal-to-noise
ratio (SINR) and large channel bandwidths. High SINR can
be achieved by densely deploying cells and using antenna
techniques such as beamforming. A large channel bandwidth
can be allocated by using a single wide channel in the
high-frequency band or combining multiple channels through
carrier aggregation (CA) [1]. Future cellular systems will
increasingly utilize these techniques to improve quality of
service and support new applications.
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This paper considers cell selection methods in this new
environment where users see a high density of cells operating
in various frequency channels and bandwidths combined using
carrier aggregation. We do not assume a specific use of antenna
configuration and techniques and assume that it is reflected
in the shape and size of the cells. In this environment, the
current standard cell selection method may incur high costs
and lead the user equipment to a sub-optimal channel in terms
of transmission rates. First, with CA, a user equipment (UE)
simultaneously connects to multiple cells operated by the same
base station. Among multiple cells, there is a primary cell
that handles control signaling (as well as data transmission),
and multiple secondary cells that supplement the capacity of
the primary cell. Therefore, the cell selection method should
choose a cell group consisting of primary and secondary cells,
rather than a single cell. However, the legacy cell selection
method only considers the signal quality of the primary cell.
Second, with a large number of potential cell combinations
in the vicinity, a UE must perform an increased number of
measurements to choose the best cell. Since UE needs time
to measure the reference signal of a cell, a large number of
measurements would cause a high delay. Also, to measure cells
operating in a channel different from the current primary cell,
the UE has to temporarily switch to other channels, sacrificing
the time used for data communication. Thus, an efficient
technique is needed to select the best cell while minimizing the
number of measurements. We propose a simple and practical
cell selection method where cell selection is based on the
estimated throughput of the cell group considering carrier
aggregation. Measurement cost and delay are dramatically
reduced by using neural networks trained to estimate inter-
frequency cell measurements at their locations.

Since carrier aggregation was introduced, the need for cell-
group-based cell selection was discussed. For example, a
method was proposed that uses the multiplication of SINRs
of all cells in a base station as a metric for cell selection [2].
More recently, Li et al. [3] identified, through real-world mea-
surements, that UEs often choose sub-optimal base stations
because they only consider the signal quality of primary cells.
As a remedy, the authors tuned the handover parameters for
each cell so that more UEs can select the base station where it
can achieve the highest throughput. Later, Li et al. [4] proposed



a cell-group-based handover method where a UE measures
all cells that belong to neighbor base stations and chooses
a target base station based on metrics such as aggregated
bandwidth. Their focus was on reducing the measurement cost
and delay, now that UEs need to measure primary cells as
well as secondary cells. Their solution was to measure one of
the cells that belong to a base station and estimate the signal
quality of other cells that belong to the same base station,
considering their difference in central frequency. However, the
estimation could be inaccurate if the cells use remote radio
heads and thus are located in different locations. In this paper,
we propose to use neural networks which learn from historical
measurements to predict neighbor cell signal qualities, for
reducing measurement costs. By utilizing neural networks, a
UE can find out when to measure which cells, and quickly
handover to the best cell at its location. Also, we define new
measurement configurations and measurement events that can
be added to the current 3GPP standard, which can be used to
associate UEs with the base station where they can receive the
highest throughput through carrier aggregation.

II. SYSTEM MODEL

We consider a dense cellular network with multiple cells
operated by each base station. Although controlled by the same
base station, the cells can be placed at different locations using
remote radio heads (RRHs). For example, as shown in Fig. 1,
the base station BS operates three cells, one at the cell tower
and two using RRHs. Cell 1 uses a sub-6GHz channel, while
the other cells use millimeter-wave channels to provide high
throughput to hot-spot users. The UE can have cell 1 as its
primary cell and cell 2 as the secondary cell.

Fig. 1: An example scenario where a base station operates
multiple cells with different frequency channels.

The system always tries to connect UEs to the “best”
cell, through a cell re-selection process in the idle mode or
handover in the connected mode. The best cell is determined
based on UE measurements where a UE listens to reference
signals sent by the cells, measures their signal quality, and
reports the results to its serving cell. Instructions on when to
measure which cells and what to report are given by the base
station through measurement configurations.

UE measurements can be divided into intra-frequency mea-
surements and inter-frequency measurements. If a neighbor

cell operates on the same frequency channel as the serving
cell, the UE can measure its signal quality without switching
channels. However, to measure a neighbor cell operating on
a different channel, a UE needs to tune its receiver to the
target channel, listen to the reference signal, and switch back
to its original channel. Thus, the base station configures
measurement gaps for inter-frequency measurements, where
no traffic is scheduled for the UE.

Since inter-frequency measurements and measurement re-
porting need costs, they are controlled to be done only when
necessary, through measurement events shown in Table I. For
example, a UE can be configured to perform inter-frequency
measurements only when the serving cell signal quality is
below a certain threshold (A1, A2 event). Also, measurement
reports are sent only when the signal quality of a neighbor cell
is better than the serving cell by a certain offset (A3 event).

Event Condition

A1 Serving becomes better than threshold

A2 Serving becomes worse than threshold

A3 Neighbor becomes offset better than Serving

TABLE I: Measurement events (partial)

The measurement event parameters affect performance and
thus need to be carefully tuned. For example, a low A2
threshold means the UE will do inter-frequency measurements
only when it needs to change cells. On the other hand, a high
A2 threshold means the UE will do inter-frequency measure-
ments even when its serving cell connection is stable. The
parameter controls the trade-off between measurement cost
and the chance of finding a better cell. In dense environments
with carrier aggregation, a UE may benefit from choosing
another base station even when the current connection is
stable, because the aggregated cell throughput may be higher
in the other base station. However, to find better cells, a large
number of measurements need to be conducted to check all the
potential target cells in the vicinity of the UE. Thus, we need
to answer the following two questions: (1) How can we find
the best cell group for UEs considering carrier aggregation?
(2) How can we reduce inter-frequency measurement costs and
delay? Our method seeks answers to these questions.

III. PROPOSED METHOD

A. CA-aware handover

In current measurement procedures, a UE measures and
reports each cell independently, regardless of whether or not
they belong to the same base station. For CA-aware handover,
new measurement objects and events should be defined. A
measurement object defines entities on which a UE performs
measurements such as frequency, reference signal, and black-
listed/whitelisted cells. We define a new measurement object
that can indicate a cell group such as in Table II.

Also, new measurement events that are triggered when a
condition is satisfied for a target cell group must be defined.
We define a new measurement event that considers the total



Cell PCID ARFCN (Freq) Bandwidth Numerology

1 196 514000 (2.3GHz) 20 2

2 162 2079166 (28GHz) 200 2

TABLE II: Measurement object indicating cell group

transmission rate of cells in the group. The event is shown in
Table III, and the quantity measured for the cell group is the
transmission rate, in units of Mbps.

Event Condition

AX Target group becomes offset better than Serving group

TABLE III: New measurement event

The transmission rate of a cell can be estimated from
measured SINR and cell information such as bandwidth and
numerology. For example, an effective SINR is calculated from
measured SINR using the exponential effective SINR mapping
(EESM) technique [5], and mapped to block error rate (BLER)
considering the number of resource blocks calculated from
bandwidth and numerology. Then, a modulation and coding
scheme (MCS) is selected which satisfies a target BLER. The
transmission rate can be estimated from MCS and the number
of resource blocks that can be scheduled for the UE. It is
important to note that the cell load is another important factor
in estimating the transmission rate provided to a UE. There are
several indicators of cell load such as the number of active UEs
in the cell, but accurately estimating cell load is a challenging
problem [6]. Load estimation and balancing are considered as
a separate function in this paper and are left for future work.

For example, a UE can be configured to report when the AX
event with offset 50Mbps is triggered for target cell groups.
When the event is triggered and the base station receives
the measurement report, it starts the handover procedure and
moves the UE to the target base station.

B. Neural network-aided cell selection

For CA-aware handover, UEs need to measure primary
and secondary cells in the neighborhood, which leads to an
increase in measurement costs. To measure inter-frequency
channels, measurement gap repetition period (MGRP) and
measurement gap length (MGL) are configured. In every
MGRP, a UE tunes to the target channel during MGL and
listens to the synchronization signals of the cell. Since a UE
can listen to a single channel in an MGL, multiple MGRPs
are needed to cover all inter-frequency cells in the vicinity of
the UE. Thus, high measurement cost includes performance
loss from measurement gaps and measurement delay. Li et al.
[4] proposed to reduce this cost by measuring one cell and
estimating the signal quality of other cells sharing the same
cell tower. Here, we propose to use neural networks to reduce
the measurement cost and delay. Specifically, we train neural
networks that take intra-frequency cell measurements as input
and predict the signal quality of inter-frequency cells.

A base station maintains a neural network model for each
cell it operates. The input to the neural network is the

signal quality of the cell itself and intra-frequency cells in
the neighborhood. The output of the network is the signal
quality of inter-frequency cells in the neighborhood. The intra-
frequency and inter-frequency cells used in a neural network
are selected by the operator when a cell is deployed. An
example is shown in Fig. 2. The neural network at cell C1
takes intra-frequency cell metrics such as RSRP, RSRQ, or
SINR as input, and predicts the inter-frequency cell metrics.
The intra-frequency cell metrics represent the current UE state,
which is an approximation of UE location.

Fig. 2: A base station maintains a neural network for each
cell which takes intra-frequency measurements as inputs and
outputs predicted signal quality of inter-frequency cells.

A neural network can be trained through offline walk or
drive test before service, and further updated in service through
UE measurements. For online measurements, the UEs include
intra-frequency measurements when reporting inter-frequency
measurements. The base station collects measurement reports
and updates the neural network using the MSE loss as in Eq.
1, where y is the inter-frequency cell metric, ŷ is the predicted
value, and N is the number of samples in the batch.

L =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

Since UE needs to know when to send measurement reports,
the base station sends the neural network to the UE as a part
of measurement configurations. Instead of performing inter-
frequency measurements, the UE can use the neural network
to predict the cell metrics in its current location. Note that
the UE can be configured to use both the neural network
and actual measurements for better accuracy. In this case,
the measurement gap repetition period can be set longer to
reduce throughput loss, and the UE can measure first the cells
that are predicted by the neural network to provide the best
performance.



(a) UMa LOS (b) UMi LOS

(c) UMa NLOS (d) UMi NLOS

Fig. 3: Throughput varying number of base stations for environments described in 3GPP TR 38.901 [7]

IV. PERFORMANCE EVALUATION

A. Simulation Setup

The performance of the proposed method was evaluated
using a simulator written in python1. Then channel model
implements Urban Macro (UMa) and Urban Micro (UMi)
environments with line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions, described in the 3GPP standard [7]. Base
stations are randomly deployed within the 1km2 simulation
area. Each base station operates two cells, one in the sub-
6GHz band (FR1) and one in the millimeter wave band (FR2).
For each band, the frequency channel is randomly selected
from 5 channels. The channel bandwidth is 20MHz for a FR1
channel, and 200MHz for a FR2 channel. We assume that all
cells use TDD frame structure with numerology 2, with 60kHz
subcarrier spacing, 16.7µs symbol duration, and 0.25ms slot
length. This numerology is used for both FR1 and FR2 band.

A UE is initially positioned in a random location and moves
with a speed of 30m/s according to a random waypoint mo-

1https://github.com/GaHyeK/5gSim

bility model. At the beginning of simulation, the UE connects
to a cell with the best signal quality. Once connected, the
UE always downloads traffic from its serving cell. For inter-
frequency measurements, a 6ms gap (MGL) is used in every
40ms period (MGRP). The handover interruption time is 50ms.

We have compared three different methods. The “Legacy”
method selects cells based on the signal quality of the primary
cell, which is an FR1 cell. Once a primary cell is chosen, the
secondary FR2 cell is added to the UE for throughput boost.
Measurement gaps are configured for the FR1 cells only, and
one inter-frequency channel is measured from the set of chan-
nels. For the handover condition, we use the A3 event with
3dB offset. The “Cell Group-based” method selects cells based
on the estimated throughput of cell groups. Measurement gaps
are configured for FR1 and FR2 cells. The handover condition
is the AX event with 30Mbps offset. Finally, the “NN-aided”
method is the proposed method which uses the neural network
instead of inter-frequency measurements. The neural networks
are trained with a total of 10,000 measurement samples at
offline. Thus, if there are 20 cells, each cell is updated with an



(a) actual best BS (b) predicted best BS

Fig. 4: Actual and predicted best BSs at the UE locations

average of 500 measurement samples. The handover condition
is the same as the Cell Group-based method.

B. Results

Fig. 3 shows the average throughput of UE while moving
within the simulation area for 1 minute. We have varied the
number of base stations from 10 to 50. Each point in the
graph is a result of 35 runs with different BS locations and UE
movement paths. Simulations were conducted in four different
environments: (a) UMa LOS, (b) UMi LOS, (c) UMa NLOS,
and (d) UMi NLOS. As shown in the graphs, the proposed
NN-aided cell selection method achieves significantly higher
throughput compared to other methods. For example, the NN-
aided method achieves 80% higher throughput compared to
the Legacy method and 60% compared to the Cell group-based
method, with 10 BSs in the UMa LOS environment. When the
density of cells is higher, the NN-aided methods benefit more
than other methods, achieving 140% and 75% over Legacy
and Cell Group-based methods with 50 BSs, respectively.
Similar patterns can be seen in other environments as well.
The Cell Group-based method improves the UE throughput by
selecting target BSs that could offer the best transmission rate
through carrier aggregation. However, the benefit is reduced by
increased measurement costs. Also, since the inter-frequency
measurements are done sequentially for each channel, the UE
can select a sub-optimal BS, while a better choice of BS exists
operating on channels not measured yet. On the other hand,
the UE can select the best target BS without delay in the NN-
aided method, through the use of neural network models.

The performance of the NN-aided method depends on the
prediction accuracy of neural network models. The intra-

frequency measurements may not reflect the actual position
of UE due to shadowing and multipath fading effects. In Fig.
4, we have visualized the actual and predicted best BSs at each
location of the simulation area with 30 BSs. The prediction
accuracy in this case is 89.1%. In our simulations with 10 to
50 BSs, the prediction accuracy of neural networks was 75%
to 90% for most cases. This level of accuracy was enough to
achieve gains over other methods as shown in Fig. 3.

V. CONCLUSION

In this paper, we have proposed a neural network-aided cell
selection method for mobile communication networks with
carrier aggregation. The method involves new measurement
configurations and events to select BSs that can offer the best
transmission rate, as well as the use of neural networks to
reduce measurement costs and quickly move to the best BS.
The simulation results show that the proposed method can
achieve significantly higher throughput over the legacy cell
selection method, especially with high network density.
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