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Abstract— The use of computers for inspecting Singlsyn 
parts before shipment has resulted in occasional errors when 
distinguishing between usable (OK) and non-usable (NG) parts. 
Initially, the company's classification system exhibited 
inaccuracies, sometimes misclassifying OK parts as NG, 
achieving an accuracy rate of 90%, necessitating manual sorting 
of the misclassified parts, which was time-consuming. To 
enhance the accuracy and efficiency in differentiating between 
OK and NG parts—an inherently challenging task—deep 
learning techniques were introduced, particularly object 
detection methods. The target accuracy for this research was set 
at 97%. A total of eight models were tested, with various 
parameters adjusted throughout the process. The SSD-
Mobilenet-V2-FPNLite-320 model delivered the best results, 
improving the system's accuracy in detecting OK and NG parts 
from 90% to 99.58%. 
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I. INTRODUCTION 
Singlsyn is an ultra-thin, absolute-angle detector known 

for its exceptional reliability under high temperature, vibration, 
and shock conditions. Its design enhances reliability and 
reduces production costs by eliminating the need for a coil on 
the rotor. By shaping the rotor core uniquely and adjusting the 
gap between the rotor and stator cores, variations in the output 
voltage amplitude are produced. The compact, ultra-thin 
design of the built-in model allows for installation in very 
limited spaces. Figure 1 (Tamagawa Seiki Co., Ltd. 2022) 
shows the six lineups of Singlsyn. 

 
Fig. 1. Six lineups of Singlsyn (Tamagawa Seiki Co.,Ltd. 2022) 

Before components produced by the company can advance 
to the next stage of production, they must pass a quality test to 

determine whether they are usable (OK) or defective and 
therefore unusable (NG). Currently, the company uses a 
computer program to conduct these quality tests, achieving an 
accuracy rate of 90%. However, due to the high visual 
similarity between OK and NG parts, the program 
occasionally misclassifies 10% of the components, often 
identifying OK parts as NG and discarding them. While a 10% 
error rate may appear relatively low, the large-scale 
production in the factory results in a substantial number of 
misclassified parts. These incorrectly classified parts require 
manual review by employees, causing significant delays due 
to the need for re-inspection and re-sorting. Upon further 
inspection by employees, it was discovered that some OK 
parts had been mistakenly rejected. This misclassification 
leads to additional time spent reevaluating the discarded parts. 

In response to this issue, the company seeks to enhance 
accuracy to 97% by incorporating AI. The effectiveness of 
each tested method will be evaluated using the mean average 
precision (mAP) metric. 

 This paper aims to identify the most effective method and 
model for detecting and distinguishing between OK and NG 
parts using deep learning techniques. The detection process 
will involve analyzing images of the components. The dataset 
comprises three types of images: (1) OK: images of OK parts 
that have been correctly identified as OK by the company’s 
equipment; (2) OK-NG: images of OK parts that have been 
mistakenly classified as NG; and (3) NG: images of NG parts 
that have been accurately identified as NG by the company's 
equipment. 

 
Fig. 2. Examples of OK, OK-NG, and NG 

In this experiment, the model that achieved the highest 
mAP was the SSD-MobileNet-v2-FPNLite-320 detection. 
This model, which uses Single-Shot Multibox Detection 



(SSD) with MobileNetV2 as the feature extractor and 
incorporates Feature Pyramid Network Lite (FPN-Lite) to 
enhance object detection across various scales, significantly 
improved the accuracy of detecting OK and NG components 
from 90% to 99.58%. 

 Section II introduces related studies on object detection 
and classification in inspection images. Section III presents 
the methodology, and Section IV verifies the experimental 
design. In Section V, we analyze the evaluation and 
experimental results, and Section VI draws deployment, and 
Section VII delivers our conclusions. 

II. RELATED WORKS 
In recent years, the fields of object detection and object 

classification have made significant advancements, 
particularly in the development of Convolutional Neural 
Networks (CNNs). These networks have become crucial 
tools in tasks such as quality inspection and defect detection. 
Notably, popular models like SSD MobileNet, YOLO, and 
EfficientDet have been widely applied in various scenarios 
for object detection and classification. Numerous studies 
have demonstrated the effectiveness of these models in 
enhancing accuracy and efficiency in inspecting complex 
objects, especially in industries that require precision, such as 
manufacturing and product quality control. 

Quality control in manufacturing, particularly in casting 
processes, is crucial for ensuring product performance and 
competitiveness. Traditional inspection methods, which 
involve manual checks or basic vision systems, often fall 
short in terms of accuracy and speed. Recent advances in 
deep learning, especially Convolutional Neural Networks 
(CNNs), have significantly improved the efficiency of quality 
inspection. CNNs have been widely applied to analyze 
images of cast products, enhancing the precision of defect 
detection and classification. This paper highlights the use of 
CNNs for inspecting surface defects in cast products, 
specifically submersible pump impellers. By employing a 
CNN architecture with advanced data augmentation 
techniques, the proposed model effectively addresses data 
imbalance issues and achieves superior performance 
compared to previous approaches. The integration of data 
augmentation not only enhances the CNN model's ability to 
identify defects but also demonstrates its suitability for 
detailed surface inspection. Future work will focus on 
refining this approach to classify and locate various types of 
defects, such as porosity, flash burr, and cracks, further 
advancing the quality control process in casting industries [1]. 

Recent advancements in deep learning have significantly 
impacted object detection and classification across various 
fields, including environmental monitoring and industrial 
quality control. Federico Zocco and colleagues (2024) 
presented a novel approach to marine debris detection using 
Autonomous Underwater Vehicles (AUVs) equipped with an 
optimized version of EfficientDets, a state-of-the-art object 
detection model. By refining the architecture—specifically 
reducing BiFPN layers and increasing the depth of the 
class/box subnets—they achieved up to 2.6% improvements 
in Average Precision (AP) across different models without 
increasing GPU latency. Their work also introduced a new 
public dataset (WPBB) for detecting in-water plastic debris 
and utilized simulation tools like Unity and Gazebo to 
enhance the realism of testing conditions, highlighting the 

potential of deep learning for accurate object detection in 
complex environments [4]. 

In recent studies, the classification and detection of 
cyanosis have gained attention through the use of lightweight 
deep learning models such as MobileNet. A modified 
MobileNet architecture was introduced to classify peripheral 
and central cyanosis using a dataset of 1300 images collected 
from various cyanosis-related datasets. To enhance 
performance, data augmentation techniques were applied to 
the training set. The model achieved impressive results with 
a validation accuracy of 95% and test accuracy of 97%, 
outperforming previous methods like Simple Convolutional 
Neural Networks (SCNNs) and fine-tuned VGG16 models, 
which yielded lower validation accuracies of 79% and 82%, 
respectively [3].  

Recent advancements in image processing for road 
damage detection have highlighted the potential of using deep 
learning models like CNNs and YOLOv5. Among these, 
CNN models have shown superior accuracy, achieving up to 
93.34% compared to YOLOv5's 73.34%. Roboflow has 
played a crucial role in optimizing these models by providing 
tools for efficient data annotation, augmentation, and training. 
By utilizing Roboflow, researchers can enhance model 
performance and streamline the road damage detection 
process, facilitating real-time data collection and analysis. 
This integration of Roboflow enables more accurate and cost-
effective road maintenance solutions, ultimately improving 
road safety and reducing labor costs [2]. 

A recent study evaluated the Road Damage Dataset (RDD 
2018) for its suitability in road inspection systems based on 
the ASTM D6433-18 standard. The research involved re-
annotating the dataset to include 19 types of pavement 
distress and assessing its compatibility using the YOLOv8 
deep learning model. The results indicated that the dataset 
was not ideal for this purpose due to an imbalanced 
distribution of instances among classes and varying image 
quality. The YOLOv8 model achieved a mean Average 
Precision (mAP) of 37.40%, highlighting the challenges 
posed by insufficient data in certain classes and inconsistent 
image quality. The study suggests that to enhance the 
dataset's utility, it is necessary to augment underrepresented 
classes, standardize image capture techniques, and use high-
resolution cameras [10]. 

Based on previous papers, it has been shown that there is 
an increase in capability when using deep learning techniques. 
Therefore, we intend to apply deep learning in the detection 
and classification of Singlsyn in this study. 

III. METHODOLOGY 
In this research, we divided the process into seven steps: 

(1) Dataset construction, where all images were provided by 
Tamagawa Seiki, (2) Data labeling to identify the positions 
used to separate usable (OK) and unusable (NG) parts, (3) 
Data preprocessing, where the labeled data undergoes 
preprocessing to reduce complexity and enhance model 
training efficiency, (4) Data augmentation on training set to 
enable the model to learn from more diverse data, (5) Model 
selection and training with the prepared dataset to achieve the 
highest accuracy in object detection and classification, (6) 
Evaluation on the test set to measure the model's performance 
and accuracy in detecting the targeted objects, and (7) 
Deployment of the evaluated model for real-world use by 



simulating it through Streamlit to create a user-friendly 
interface that conveniently displays object detection results. 
Figure 3 illustrates our methodology, summarizing all the 
steps mentioned. 

 
Fig. 3. Methodology 

IV. EXPERIMENTS 

A. Dataset Construction 
In this research, the company provided a dataset of 3,764 

images of Singlsyn in JPG and BMP formats. Each image 
displays 2 objects of interest, categorized into 2 classes: 3,082 
images of usable parts (OK), where both objects are usable, 
and 684 images of unusable parts (NG), where at least 1 of the 
2 objects is unusable. Figure 4 shows an example from our 
dataset. We then divided the dataset into 3 parts: 80% for the 
training set (3,011 images), 10% for the validation set (377 
images), and 10% (376 images) for the test set. 

 
Fig. 4. Examples images of singlsyn dataset 

B. Data Annotation 
We annotated the data to train a model for object detection 

and classification, where the objects were categorized into 
two classes: OK (green) and NG (red). We chose Roboflow 
for annotating all the images because it has a user-friendly 
interface, allows for rapid annotation, and supports exporting 
annotated datasets in multiple formats such as YOLOv8, 
YOLOv9, Tensorflow Object Detection, Tensorflow 
TFrecord, and Pascal VOC, among others. All images were 
annotated by manually creating bounding boxes, which 
involved precisely defining the boundaries and positions of 
the objects of interest. After annotating all 3,764 images, the 
number of annotations totaled 7,527, with 6,534 classified as 
OK and 993 as NG. Figures 5 and 6 show the dataset analytics 
and sample annotations, respectively. 

 

 
Fig. 5. Dataset analytics 

 

Fig. 6. Examples of annotations 

C. Data Preprocessing 
Before we began training the model, we performed data 

preprocessing on all the images in our dataset. Initial data 
preparation is crucial for improving data quality and making 
it suitable for the selected model. Preprocessing helps reduce 
data complexity, minimizes potential noise, and enhances the 
model's training efficiency. All preprocessing steps were 
conducted in Roboflow. The process included: (1) Auto-
Orienting all images to ensure they have the correct 
orientation, which is vital to prevent the model from 
misinterpreting the data, and (2) Resizing the images using the 
"Stretch to 640x640" function to ensure that all image sizes 
are consistent with the model's requirements, thereby enabling 
the model to process the data efficiently and consistently. 

D. Data Augmentation 
We employed Data Augmentation techniques in the 

training set to increase data diversity, enhancing the model's 
efficiency and accuracy in object detection and classification. 
This technology plays a crucial role in helping the model learn 
from a wider variety of examples, increasing flexibility, and 
reducing the issue of overfitting. The augmentation steps we 
implemented include (1) Flip horizontal, (2) Random adjust 
saturation between -20% and +20%, and (3) Random adjust 
brightness between -20% and +20%, as shown in figure 7. 
After augmentation, the dataset was divided as follows: 9,032 
images (92%) for the training set, 377 images (4%) for the 
validation set, and 376 images (4%) for the test set. 



 
Fig. 7. Images augmentation 

E. Model Training 
The next crucial step is model training, which will be 

conducted using Python on the Google Colaboratory (Colab) 
platform. Google Colab provides an interactive environment 
for writing and executing code, making it an ideal space for 
training machine learning models. 

1) Uploading the Dataset: Following this, the dataset is 
uploaded to Google Colab. Exported from Roboflow, this 
dataset is utilized within the Colab environment for model 
training. 

2) Model Selection: Several models were evaluated for 
their performance, and among them, the SSD-MobileNet-v2-
FPNLite-320 model, a Single-Shot Multibox Detection 
(SSD) model that uses MobileNetV2 as the feature extractor 
and incorporates Feature Pyramid Network Lite (FPN-Lite) 
to enhance the detection of objects across different scales, 
demonstrated the best results for object detection tasks. After 
selecting this model, it was downloaded to Google Colab and 
stored in a directory named "mymodel." 

3) Setting Training Parameters: Key training parameters, 
specifically the number of training steps and batch size, were 
configured. The “steps” parameter represents the number of 
iterations the model will undergo during training, while the 
“batch size” refers to the number of images processed in each 
iteration. In this case, the batch size was set to 16, meaning 
that the model was trained on 16 images per step. The number 
of steps was set to 20,000, indicating that the model would 
undergo 20,000 iterations, each with 16 images. 

 
Fig. 8. Example of a batch 

4) Training Loss: While training, we can monitor the 
progress of the model using TensorBoard as shown in figure 

9, a tool provided by TensorFlow. Loss represents the ratio 
of incorrect detections made by the model. During the 
training session, TensorBoard displays real-time loss. If the 
loss value continues to decrease, it indicates that the model is 
improving. 

 

 

Fig. 9. Training loss 

F. Challenges Encountered During Training and Solutions 
1) Problem: During the training process, a significant 

issue arose where the model frequently misclassified NG 
instances as OK. This misclassification was suspected to 
result from an imbalance in the dataset, where NG instances 
were underrepresented compared to OK instances. 

2) Solution: To address this issue and optimize training 
results, adjustments were made to the model’s configuration 
file. Specifically, the “Alpha (𝛂!)” in Focal Loss Equation (1) 
The Focal Loss (FL) value indicates the model's prediction 
accuracy. A low FL value shows accurate predictions, 
especially for easy instances, while a high FL value highlights 
poor predictions, particularly for difficult instances.  

 

 (1) 
 
Where: 

• 𝑝!  is the model's estimated probability for the 
NG class. 

• 𝛂! is the weighting factor that gives importance 
to the NG class. 

• γ is the focusing parameter that reduces the 
relative loss for well-classified examples, 
putting more focus on hard, misclassified 
examples. 

The 𝛂!  parameter was modified from 0.25 to 0.75. It 
controls the emphasis placed on NG instances relative to OK 
instances. By increasing 𝛂!  to 0.75, the model's focus was 
shifted to prioritize the correct identification of NG instances. 
This adjustment aimed to mitigate the imbalance issue and 
enhance the model’s ability to accurately differentiate 
between NG and OK instances. After the parameter was 
modified, the problem was resolved. 



V. EVALUATION AND RESULTS 

A. Evaluation 
To assess the performance of our model, we employed 

mean average precision (mAP) as the primary metric. mAP is 
widely recognized in object detection tasks for evaluating the 
accuracy of models by considering both precision and recall 
across different confidence thresholds. mAP calculation is 
shown in Equation (2). 

 

 
(2) 

 Where: 

• N is the total number of classes. 

• APi is the average precision for the i-th class, 
calculated as the area under the precision-recall 
curve for that class. 

We opted to use mAP with an Intersection over Union 
(IoU) threshold of 0.5, which means that an object detection 
is considered correct if the overlap between the predicted 
bounding box and the ground truth box has an IoU value of 
0.5 or higher, as shown in Equation (3). 

 (3) 

B. Results 
We measured the performance using mAP and utilized a 

test set consisting of 652 OK objects and 100 NG objects. 
From the entire set of experiments, it was found that the best 
method is the SSD-MobileNet-v2-FPNLite-320 detection 
model, trained for 20,000 steps with a batch size of 16 and an 
Alpha value set to 0.75. The accuracy of the test set achieved 
an mAP of 99.58%. 

1) Comparison table: In this experiment, we tested a total 
of 8 models and found that the SSD-MobileNet-v2-FPNLite-
320 detection model provided the best results as shown in 
TABLE I. 

TABLE I.  MAP COMPARISONS OF SELECTED MODELS 

No. Model name 

Mean Average 
Precision (mAP) 
IoU Threshold = 

0.5 

1 roboflow 3.0 object detection (fast) 98.6 % 

2 yolo v8 detection 99.5 % 

3 yolo v9-c detection 99.1 % 

4 yolo v9 (gelan) detection 99.4 % 

5 ssd-efficientdet-d0 -512 detection 97.72 % 

6 ssd-efficientdet-d1 -640 detection 98.51 % 

7 ssd-mobilenet-v2-fpnlite-640 detection 99.42 % 

8 ssd-mobilenet-v2-fpnlite-320 detection 99.58% 

 
 
 
 
 

2) Confusion Matrix:  

 
Fig. 10. Confusion matrix 

As shown in figure 10: 

• Out of 100 NG objects, the model correctly 
predicted all 100 as NG. 

• Out of 652 OK objects, the model correctly 
identified 649 as OK and incorrectly classified 
3 OK objects as NG. 

 

 
Fig. 11. Correct classification of OK parts using proposed method 

As shown in Figure 11, this is an example image of OK 
parts that were mistakenly classified as NG by the original 
classification tool. Using our method, the parts were correctly 
classified as OK. 

VI. DEPLOYMENT 
After evaluating the models using the mAP metric in the 

previous stage, we selected the model with the highest 
accuracy for deployment. The chosen model is the SSD-
MobileNet-v2-FPNLite-320. At this stage, we simulated the 
deployment using Streamlit as a tool for creating the user 
interface (UI) for the model's operation and Visual Studio 
Code (VS Code) as the development environment. In this 
deployment model, users can upload images and receive 
object detection results immediately. The Streamlit interface 
is designed to allow users to adjust the confidence threshold 
as needed for greater flexibility, as shown in figure 12. 

 



 
Fig. 12. Interface of Singlsyn OK-NG Detection system 

VII. CONCLUSION 
In the process of sorting usable (OK) and unusable (NG) 

parts, incorrect classification leads to the need for rechecking, 
which causes delays for employees. This paper presents the 
implementation of deep learning techniques to assist in 
detection and classification using image data provided by the 
company. Several models were tested, and parameters were 
adjusted, resulting in the SSD-MobileNet-v2-FPNLite-320 
detection model. With optimized parameter settings, this 
model achieved the highest accuracy, improving from a 
previous accuracy of 90% to 99.58%, as measured by mean 
Average Precision (mAP), thereby significantly reducing the 
workload and time required by employees. 

However, since there are 684 images of NG and 3,082 
images of OK, it is evident that OK data outnumbers NG data 
by a factor of 4.5. This data imbalance presents a challenge. 
Future improvements could involve increasing the amount of 
NG data to balance the dataset, which would enable the 
model to make more accurate and equitable predictions. 
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