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Abstract— The use of computers for inspecting Singlsyn
parts before shipment has resulted in occasional errors when
distinguishing between usable (OK) and non-usable (NG) parts.
Initially, the company's classification system exhibited
inaccuracies, sometimes misclassifying OK parts as NG,
achieving an accuracy rate of 90%, necessitating manual sorting
of the misclassified parts, which was time-consuming. To
enhance the accuracy and efficiency in differentiating between
OK and NG parts—an inherently challenging task—deep
learning techniques were introduced, particularly object
detection methods. The target accuracy for this research was set
at 97%. A total of eight models were tested, with various
parameters adjusted throughout the process. The SSD-
Mobilenet-V2-FPNLite-320 model delivered the best results,
improving the system's accuracy in detecting OK and NG parts
from 90% to 99.58%.
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I. INTRODUCTION

Singlsyn is an ultra-thin, absolute-angle detector known
for its exceptional reliability under high temperature, vibration,
and shock conditions. Its design enhances reliability and
reduces production costs by eliminating the need for a coil on
the rotor. By shaping the rotor core uniquely and adjusting the
gap between the rotor and stator cores, variations in the output
voltage amplitude are produced. The compact, ultra-thin
design of the built-in model allows for installation in very
limited spaces. Figure 1 (Tamagawa Seiki Co., Ltd. 2022)
shows the six lineups of Singlsyn.
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Fig. 1. Six lineups of Singlsyn (Tamagawa Seiki Co.,Ltd. 2022)

Before components produced by the company can advance
to the next stage of production, they must pass a quality test to
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determine whether they are usable (OK) or defective and
therefore unusable (NG). Currently, the company uses a
computer program to conduct these quality tests, achieving an
accuracy rate of 90%. However, due to the high visual
similarity between OK and NG parts, the program
occasionally misclassifies 10% of the components, often
identifying OK parts as NG and discarding them. While a 10%
error rate may appear relatively low, the large-scale
production in the factory results in a substantial number of
misclassified parts. These incorrectly classified parts require
manual review by employees, causing significant delays due
to the need for re-inspection and re-sorting. Upon further
inspection by employees, it was discovered that some OK
parts had been mistakenly rejected. This misclassification
leads to additional time spent reevaluating the discarded parts.

In response to this issue, the company seeks to enhance
accuracy to 97% by incorporating Al. The effectiveness of
each tested method will be evaluated using the mean average
precision (mAP) metric.

This paper aims to identify the most effective method and
model for detecting and distinguishing between OK and NG
parts using deep learning techniques. The detection process
will involve analyzing images of the components. The dataset
comprises three types of images: (1) OK: images of OK parts
that have been correctly identified as OK by the company’s
equipment; (2) OK-NG: images of OK parts that have been
mistakenly classified as NG; and (3) NG: images of NG parts
that have been accurately identified as NG by the company's
equipment.

OK-NG
Fig. 2. Examples of OK, OK-NG, and NG

In this experiment, the model that achieved the highest
mAP was the SSD-MobileNet-v2-FPNLite-320 detection.
This model, which uses Single-Shot Multibox Detection



(SSD) with MobileNetV2 as the feature extractor and
incorporates Feature Pyramid Network Lite (FPN-Lite) to
enhance object detection across various scales, significantly
improved the accuracy of detecting OK and NG components
from 90% to 99.58%.

Section II introduces related studies on object detection
and classification in inspection images. Section III presents
the methodology, and Section IV verifies the experimental
design. In Section V, we analyze the evaluation and
experimental results, and Section VI draws deployment, and
Section VII delivers our conclusions.

II. RELATED WORKS

In recent years, the fields of object detection and object
classification have made significant advancements,
particularly in the development of Convolutional Neural
Networks (CNNs). These networks have become crucial
tools in tasks such as quality inspection and defect detection.
Notably, popular models like SSD MobileNet, YOLO, and
EfficientDet have been widely applied in various scenarios
for object detection and classification. Numerous studies
have demonstrated the effectiveness of these models in
enhancing accuracy and efficiency in inspecting complex
objects, especially in industries that require precision, such as
manufacturing and product quality control.

Quality control in manufacturing, particularly in casting
processes, is crucial for ensuring product performance and
competitiveness. Traditional inspection methods, which
involve manual checks or basic vision systems, often fall
short in terms of accuracy and speed. Recent advances in
deep learning, especially Convolutional Neural Networks
(CNNs), have significantly improved the efficiency of quality
inspection. CNNs have been widely applied to analyze
images of cast products, enhancing the precision of defect
detection and classification. This paper highlights the use of
CNNs for inspecting surface defects in cast products,
specifically submersible pump impellers. By employing a
CNN architecture with advanced data augmentation
techniques, the proposed model effectively addresses data
imbalance issues and achieves superior performance
compared to previous approaches. The integration of data
augmentation not only enhances the CNN model's ability to
identify defects but also demonstrates its suitability for
detailed surface inspection. Future work will focus on
refining this approach to classify and locate various types of
defects, such as porosity, flash burr, and cracks, further

advancing the quality control process in casting industries [1].

Recent advancements in deep learning have significantly
impacted object detection and classification across various
fields, including environmental monitoring and industrial
quality control. Federico Zocco and colleagues (2024)
presented a novel approach to marine debris detection using
Autonomous Underwater Vehicles (AUVs) equipped with an
optimized version of EfficientDets, a state-of-the-art object
detection model. By refining the architecture—specifically
reducing BiFPN layers and increasing the depth of the
class/box subnets—they achieved up to 2.6% improvements
in Average Precision (AP) across different models without
increasing GPU latency. Their work also introduced a new
public dataset (WPBB) for detecting in-water plastic debris
and utilized simulation tools like Unity and Gazebo to
enhance the realism of testing conditions, highlighting the

potential of deep learning for accurate object detection in
complex environments [4].

In recent studies, the classification and detection of
cyanosis have gained attention through the use of lightweight
deep learning models such as MobileNet. A modified
MobileNet architecture was introduced to classify peripheral
and central cyanosis using a dataset of 1300 images collected
from various cyanosis-related datasets. To enhance
performance, data augmentation techniques were applied to
the training set. The model achieved impressive results with
a validation accuracy of 95% and test accuracy of 97%,
outperforming previous methods like Simple Convolutional
Neural Networks (SCNNs) and fine-tuned VGG16 models,
which yielded lower validation accuracies of 79% and 82%,
respectively [3].

Recent advancements in image processing for road
damage detection have highlighted the potential of using deep
learning models like CNNs and YOLOvS. Among these,
CNN models have shown superior accuracy, achieving up to
93.34% compared to YOLOvVS's 73.34%. Roboflow has
played a crucial role in optimizing these models by providing
tools for efficient data annotation, augmentation, and training.
By utilizing Roboflow, researchers can enhance model
performance and streamline the road damage detection
process, facilitating real-time data collection and analysis.
This integration of Roboflow enables more accurate and cost-
effective road maintenance solutions, ultimately improving
road safety and reducing labor costs [2].

A recent study evaluated the Road Damage Dataset (RDD
2018) for its suitability in road inspection systems based on
the ASTM D6433-18 standard. The research involved re-
annotating the dataset to include 19 types of pavement
distress and assessing its compatibility using the YOLOv8
deep learning model. The results indicated that the dataset
was not ideal for this purpose due to an imbalanced
distribution of instances among classes and varying image
quality. The YOLOv8 model achieved a mean Average
Precision (mAP) of 37.40%, highlighting the challenges
posed by insufficient data in certain classes and inconsistent
image quality. The study suggests that to enhance the
dataset's utility, it is necessary to augment underrepresented
classes, standardize image capture techniques, and use high-
resolution cameras [10].

Based on previous papers, it has been shown that there is
an increase in capability when using deep learning techniques.
Therefore, we intend to apply deep learning in the detection
and classification of Singlsyn in this study.

III. METHODOLOGY

In this research, we divided the process into seven steps:
(1) Dataset construction, where all images were provided by
Tamagawa Seiki, (2) Data labeling to identify the positions
used to separate usable (OK) and unusable (NG) parts, (3)
Data preprocessing, where the labeled data undergoes
preprocessing to reduce complexity and enhance model
training efficiency, (4) Data augmentation on training set to
enable the model to learn from more diverse data, (5) Model
selection and training with the prepared dataset to achieve the
highest accuracy in object detection and classification, (6)
Evaluation on the test set to measure the model's performance
and accuracy in detecting the targeted objects, and (7)
Deployment of the evaluated model for real-world use by



simulating it through Streamlit to create a user-friendly
interface that conveniently displays object detection results.
Figure 3 illustrates our methodology, summarizing all the

steps mentioned.
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Fig. 3. Methodology

IV. EXPERIMENTS

A. Dataset Construction

In this research, the company provided a dataset of 3,764
images of Singlsyn in JPG and BMP formats. Each image
displays 2 objects of interest, categorized into 2 classes: 3,082
images of usable parts (OK), where both objects are usable,
and 684 images of unusable parts (NG), where at least 1 of the
2 objects is unusable. Figure 4 shows an example from our
dataset. We then divided the dataset into 3 parts: 80% for the
training set (3,011 images), 10% for the validation set (377
images), and 10% (376 images) for the test set.
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Fig. 4. Examples images of singlsyn dataset

B. Data Annotation

We annotated the data to train a model for object detection
and classification, where the objects were categorized into
two classes: OK (green) and NG (red). We chose Roboflow
for annotating all the images because it has a user-friendly
interface, allows for rapid annotation, and supports exporting
annotated datasets in multiple formats such as YOLOVS,
YOLOV9, Tensorflow Object Detection, Tensorflow
TFrecord, and Pascal VOC, among others. All images were
annotated by manually creating bounding boxes, which
involved precisely defining the boundaries and positions of
the objects of interest. After annotating all 3,764 images, the
number of annotations totaled 7,527, with 6,534 classified as
OK and 993 as NG. Figures 5 and 6 show the dataset analytics
and sample annotations, respectively.
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Fig. 5. Dataset analytics
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Fig. 6. Examples of annotations

C. Data Preprocessing

Before we began training the model, we performed data
preprocessing on all the images in our dataset. Initial data
preparation is crucial for improving data quality and making
it suitable for the selected model. Preprocessing helps reduce
data complexity, minimizes potential noise, and enhances the
model's training efficiency. All preprocessing steps were
conducted in Roboflow. The process included: (1) Auto-
Orienting all images to ensure they have the correct
orientation, which is vital to prevent the model from
misinterpreting the data, and (2) Resizing the images using the
"Stretch to 640x640" function to ensure that all image sizes
are consistent with the model's requirements, thereby enabling
the model to process the data efficiently and consistently.

D. Data Augmentation

We employed Data Augmentation techniques in the
training set to increase data diversity, enhancing the model's
efficiency and accuracy in object detection and classification.
This technology plays a crucial role in helping the model learn
from a wider variety of examples, increasing flexibility, and
reducing the issue of overfitting. The augmentation steps we
implemented include (1) Flip horizontal, (2) Random adjust
saturation between -20% and +20%, and (3) Random adjust
brightness between -20% and +20%, as shown in figure 7.
After augmentation, the dataset was divided as follows: 9,032
images (92%) for the training set, 377 images (4%) for the
validation set, and 376 images (4%) for the test set.
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Fig. 7. Images augmentation

E. Model Training

The next crucial step is model training, which will be
conducted using Python on the Google Colaboratory (Colab)
platform. Google Colab provides an interactive environment
for writing and executing code, making it an ideal space for
training machine learning models.

1) Uploading the Dataset: Following this, the dataset is
uploaded to Google Colab. Exported from Roboflow, this
dataset is utilized within the Colab environment for model
training.

2) Model Selection: Several models were evaluated for
their performance, and among them, the SSD-MobileNet-v2-
FPNLite-320 model, a Single-Shot Multibox Detection
(SSD) model that uses MobileNetV2 as the feature extractor
and incorporates Feature Pyramid Network Lite (FPN-Lite)
to enhance the detection of objects across different scales,
demonstrated the best results for object detection tasks. After
selecting this model, it was downloaded to Google Colab and
stored in a directory named "mymodel."

3) Setting Training Parameters: Key training parameters,
specifically the number of training steps and batch size, were
configured. The “steps” parameter represents the number of
iterations the model will undergo during training, while the
“batch size” refers to the number of images processed in each
iteration. In this case, the batch size was set to 16, meaning
that the model was trained on 16 images per step. The number
of steps was set to 20,000, indicating that the model would
undergo 20,000 iterations, each with 16 images.

Fig. 8. Example of a batch

4) Training Loss: While training, we can monitor the
progress of the model using TensorBoard as shown in figure

9, a tool provided by TensorFlow. Loss represents the ratio
of incorrect detections made by the model. During the
training session, TensorBoard displays real-time loss. If the
loss value continues to decrease, it indicates that the model is
improving.
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Fig. 9. Training loss

F. Challenges Encountered During Training and Solutions

1) Problem: During the training process, a significant
issue arose where the model frequently misclassified NG
instances as OK. This misclassification was suspected to
result from an imbalance in the dataset, where NG instances
were underrepresented compared to OK instances.

2) Solution: To address this issue and optimize training
results, adjustments were made to the model’s configuration
file. Specifically, the “Alpha (a;)” in Focal Loss Equation (1)
The Focal Loss (FL) value indicates the model's prediction
accuracy. A low FL value shows accurate predictions,
especially for easy instances, while a high FL value highlights
poor predictions, particularly for difficult instances.

Focal Loss(pr) = - (xt( l—pr) 4 log(p[) (1)
Where:
e p, is the model's estimated probability for the
NG class.
e «, is the weighting factor that gives importance
to the NG class.

e v is the focusing parameter that reduces the
relative loss for well-classified examples,
putting more focus on hard, misclassified
examples.

The a; parameter was modified from 0.25 to 0.75. It
controls the emphasis placed on NG instances relative to OK
instances. By increasing a; to 0.75, the model's focus was
shifted to prioritize the correct identification of NG instances.
This adjustment aimed to mitigate the imbalance issue and
enhance the model’s ability to accurately differentiate
between NG and OK instances. After the parameter was
modified, the problem was resolved.



V. EVALUATION AND RESULTS

A. Evaluation

To assess the performance of our model, we employed
mean average precision (mAP) as the primary metric. mAP is
widely recognized in object detection tasks for evaluating the
accuracy of models by considering both precision and recall
across different confidence thresholds. mAP calculation is
shown in Equation (2).

N
1
mAP = — ) AP ?)
N i=1 !
Where:
e N is the total number of classes.

e AP is the average precision for the i-th class,
calculated as the area under the precision-recall
curve for that class.

We opted to use mAP with an Intersection over Union
(IoU) threshold of 0.5, which means that an object detection
is considered correct if the overlap between the predicted
bounding box and the ground truth box has an IoU value of
0.5 or higher, as shown in Equation (3).

Area of Overlap
IoU = 3)
Area of Union

B. Results

We measured the performance using mAP and utilized a
test set consisting of 652 OK objects and 100 NG objects.
From the entire set of experiments, it was found that the best
method is the SSD-MobileNet-v2-FPNLite-320 detection
model, trained for 20,000 steps with a batch size of 16 and an
Alpha value set to 0.75. The accuracy of the test set achieved
an mAP 0f99.58%.

1) Comparison table: In this experiment, we tested a total
of 8 models and found that the SSD-MobileNet-v2-FPNLite-
320 detection model provided the best results as shown in
TABLE L.

TABLE L MAP COMPARISONS OF SELECTED MODELS

Mean Average

No. Model name I;Z?i;i,orzs(htl;:z)

0.5

1 roboflow 3.0 object detection (fast) 98.6 %
2 yolo v8 detection 99.5 %
3 yolo v9-c detection 99.1 %
4 yolo v9 (gelan) detection 99.4 %
5 ssd-efficientdet-d0 -512 detection 97.72 %
6 ssd-efficientdet-d1 -640 detection 98.51 %
7 ssd-mobilenet-v2-fpnlite-640 detection 99.42 %
8 ssd-mobilenet-v2-fpnlite-320 detection 99.58%

2) Confusion Matrix:
Confusion Matrix
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Fig. 10. Confusion matrix

As shown in figure 10:

e Out of 100 NG objects, the model correctly
predicted all 100 as NG.

e Outof 652 OK objects, the model correctly
identified 649 as OK and incorrectly classified
3 OK objects as NG.

OK parts that have been mistakenly
classified as NG by original
classification tool

Classification using our method

Fig. 11. Correct classification of OK parts using proposed method

As shown in Figure 11, this is an example image of OK
parts that were mistakenly classified as NG by the original
classification tool. Using our method, the parts were correctly
classified as OK.

VI. DEPLOYMENT

After evaluating the models using the mAP metric in the
previous stage, we selected the model with the highest
accuracy for deployment. The chosen model is the SSD-
MobileNet-v2-FPNLite-320. At this stage, we simulated the
deployment using Streamlit as a tool for creating the user
interface (UI) for the model's operation and Visual Studio
Code (VS Code) as the development environment. In this
deployment model, users can upload images and receive
object detection results immediately. The Streamlit interface
is designed to allow users to adjust the confidence threshold
as needed for greater flexibility, as shown in figure 12.



Singlsyn OK-NG Detection

Fig. 12. Interface of Singlsyn OK-NG Detection system

VII. CONCLUSION

In the process of sorting usable (OK) and unusable (NG)
parts, incorrect classification leads to the need for rechecking,
which causes delays for employees. This paper presents the
implementation of deep learning techniques to assist in
detection and classification using image data provided by the
company. Several models were tested, and parameters were
adjusted, resulting in the SSD-MobileNet-v2-FPNLite-320
detection model. With optimized parameter settings, this
model achieved the highest accuracy, improving from a
previous accuracy of 90% to 99.58%, as measured by mean
Average Precision (mAP), thereby significantly reducing the
workload and time required by employees.

However, since there are 684 images of NG and 3,082
images of OK, it is evident that OK data outnumbers NG data
by a factor of 4.5. This data imbalance presents a challenge.
Future improvements could involve increasing the amount of
NG data to balance the dataset, which would enable the
model to make more accurate and equitable predictions.
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