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Abstract—Alzheimer’s disease (AD) research has focused on
understanding its causes, progression, and treatments, with
an emphasis on early detection, particularly diagnosing mild
cognitive impairment. Research AD data are typically longi-
tudinal, sparse, and irregularly spaced, with high-dimensional
features due to advances in neuroimaging techniques. Traditional
classification methods have limitations on handling such data.
This study proposes to combine multivariate functional principal
component analysis (MFPCA) with long short-term memory
(LSTM) networks to reconstruct variable functions over time
and classify data. The empirical results show that this approach
outperformed other methods, including the flexible discriminant
analysis and the regularized discriminant analysis. These findings
suggest that the proposed method holds great potential for the
early detection of AD.

Index Terms—Alzheimer’s disease, functional principal com-
ponent analysis, long short-term memory networks, longitudinal
data, discriminant analysis

I. INTRODUCTION

Dementia is a long-term effect of impairment in cognitive
functions that develops gradually and could be beyond what
we expect from biologically normal aging. Alzheimer’s Dis-
ease International (ADI) declares that among all types of
dementia, Alzheimer’s disease (AD) is the most prevalent and
well-known form over the age of 65’ [1]. AD is a growing
concern due to its increasing prevalence and the significant
burden it places on families and the healthcare system. Despite
extensive research, the causes of AD remain unclear, and there
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is no cure. Research focusing on the progression of the disease
is crucial for early detection and risk reduction.

The diagnosis of AD can be achieved through a combi-
nation of clinical assessments, including medical or family
history, physical and neurological examinations, cognitive as-
sessments, laboratory tests, and structural imaging. Typically,
medical data of AD are collected longitudinally, with variables
recorded at multiple time points. However, the observation
time points vary among subjects. The data can be sparse
due to the limited number of measurements per subject and
irregularly spaced. Additionally, neuroimaging data generate
high-dimensional features such as regions of interest (ROI).
Traditional statistical models have limitations in analyzing
such high-dimensional, sparse, and irregular longitudinal data
effectively. Therefore, dealing with longitudinal data with
missing values is one of the main purposes of this study.

This study introduces a novel approach by combining
functional principal component analysis (FPCA) with long
short-term memory (LSTM) networks to model AD data. The
FPCA reconstructs sparse and irregular data that have time
evolving variables, and hence is a novel imputation method
to predict missing information. LSTM, a recurrent neural
network designed for sequence and time series data, is applied
to model the reconstructed AD data. We also apply some
extended discriminant methods, the flexible discriminant anal-
ysis (FDA) and the regularized discriminant analysis (RDA),
by incorporating the features reconstructed by the FPCA as
benchmark models. Unlike LSTM, these methods can only
perform classification at one time point without considering
the disease progress over a period of time. Our empirical
results indicate that this method shows great potential for early
diagnosis of AD.

The contributions of this study are as follows.

o We handle longitudinal and multimodal data with missing
values by applying FPCA. The statistical methods used in
this study cannot be applied without the functional data
analysis technique. Furthermore, the method provides



both lower computational cost and higher explainability
in comparison to other state-of-the-art approaches.

o Conventional statistical and machine learning models
often rely on cross-sectional features, limiting their ability
to capture temporal dynamics in the data. LSTM incorpo-
rates temporal patterns in disease progression for patient
classification.

¢ The combination of FPCA and LSTM is a novel approach
and is promising in detecting the early stage of AD.

II. RELATED WORK

Research on AD focuses mainly on early prediction of
disease onset and identification of biomarkers. In the field
of medical researches, most data analyses of the disease
progression are made through the approaches of generalized
linear models [2]-[4], especially the mixed-effects model. Fur-
thermore, the search for better classification models for disease
diagnosis continues by investigating a variety of methods such
as logistic regression, linear discriminant analysis (LDA), K-
nearest neighbors (KNN), naive Bayes (NB), decision trees
(DT) or random forest (RF), and support vector machine
(SVM) [5]-{7].

However, there are challenges including complicated cor-
relation structures, irregularly spaced observation points, and
missing data for the longitudinal study [8]. Lately, more
researchers are turning to deep learning models to investigate
the classification problem (diagnosis) of AD, the convolutional
neural network (CNN), and the recurrent neural network
(RNN), for example [9]-[17].

Recent advances in machine learning (ML) and deep learn-
ing (DL) have significantly improved performance in medical
image analysis, enabling efficient extraction of features from
single or multimodal data to identify biomarkers for the
detection, classification and diagnosis of brain diseases [18].
However, there are still some challenges in recent studies
from the data and model point of view. Data-based challenges
include data availability, missing data, longitudinal and mul-
timodal data, and imbalanced data. Model-based challenges
include interpretability, explainability, reproducibility, applica-
bility, comparability, and reliability [18].

Most research deals with missing data by simple linear
interpolation [19], filling based on the RNN model [20],
sophisticated statistical methods such as MFPCA [20], [21],
and deep learning models such as deep generative models
[22]. Imbalanced data can be handled using several sampling
techniques. The fusion of deep learning models is proposed
to predict AD from multimodal data [23]. However, a unified
method that deals with all complex longitudinal data is not
available.

CNN and RNN models are most promising in AD prediction
for processing neuroimaging data [24], [25] and multimodal
data [26]. However, the complexity of the model, training
time, resources, and data requirements lead to model-based
challenges. The interpretability of machine learning models
helps researchers and clinicians gain insights and confidence
in their decision-making processes. On the other hand, deep

learning models are more data-intensive and require more
resources on computational power and training time. Recent
research shows that Al-supported brain volumetry improves
dementia diagnosis and integrates into radiological workflows
[27]. Systematic reviews can be found in [10], [18], [28]-[30].

III. METHODOLOGY
A. Functional Principal Component Analysis

Recently, large p small n problems (p > n) have emerged
increasingly in various fields of applications due to advances
in data collection. Under high-dimensional circumstances, one
needs to overcome the curse of dimensionality. The functional
data are realizations x;(s),i = 1,2,--- , N collected discretely
from an underlying stochastic process, X : 7' — R, over the
common domain 7" with the assumption that X lies in the
Hilbert space such as L2(T) [31].

1) Univariate FPCA: The Karhunen-Loe¢ve theorem [32],
[33] expands the random process X as

X(s) = p(s) + Y Axgn(s), ()
k=1

where ¢y (s) is the kth eigenfunction of the covariance func-
tion with respect to the kth eigenvalue, and Ay = fT [X (s)—
11(s)] ¢i(s)ds are the functional principal component scores
(or FPCs). It can be shown that

B(A) =0, BE(A}) =X Cov(Aw,4;)=0,ifk# j,
@)

and E/ [X(s) = pu(s)) ds = 3 A 3)
k=1

The eigenvalue Ay is the variance of X in the direction of
¢k, all of which can be summed to the total variance of X.
Thus, the Karhunen-Loeve decomposition is an analysis or a
decomposition of variance [31], [34]. Usually, the eigenvalues
Ak decrease to zero very fast and the first few FPCs contribute
a major proportion of variability of X. In this sense, it is
optimal that X can be well approximated by only few ¢;. That
is, the observations x1(s), -+ ,xn(s) can be approximated by
the first m FPCs as

21() = () + 3 Aiwu(s)
) @)
~ p(s) + ZAikqbk(s), seT, i=1,---,N.
k=1

In practice, X(s,t) and hence the functional principal
components (with corresponding eigenvalues and scores) are
unknown, and need to be estimated from the observations.
Several approaches have been proposed for the estimation.
One is the principal components analysis through conditional
expectation (PACE), which aims at irregularly-spaced sparse
longitudinal data with measurement error [35]. The PACE
estimator is a best linear unbiased predictor (BLUP) even the
assumption of Gaussian does not hold. Refer more details to
[35].



2) Multivariate FPCA: The FPCA is extended to multi-
variate functional data (MFPCA) with some methods being
proposed during recent years. Motivated by the neuroimag-
ing data of AD, a new method [36]-[38] is developed for
multivariate functional data on different domains, whose di-
mensions are allowed to be different. This approach can be
extended to non orthonormal basis for expanding the univariate
component of the random process, and can also be useful
for sparse longitudinal data with measurement error. A two-
stage approach by implementing this MFPCA method [36]
and using the resulting scores as features in the Cox regression
model is proposed to predict the progression of AD [39]. Other
applications of this MFPCA method [36] include analysis of
waveform features for hip osteoarthritis [40] and missing data
imputation for prediction of AD progress by deep learning
models [20].

B. Discriminant Analysis

The linear discriminant analysis (LDA) and the quadratic
discriminant analysis (QDA) are two commonly applied clas-
sification methods based on the normal distribution

P 1 1
Fr(X) = 2m) 72y 72 exp | =5 (X = ) "B (X = )
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where p; and o are the vector of population mean and the
covariance matrix for the kth class (1 < k < K), respectively.
The classification rule for QDA is

d;(X) = min di(X), (6)
with
de(X) = (X — ) T2 N (X — ) + 1In |2k | — 21Inmy,
@)

where 7 is the unconditional prior probability of observing
a member in the kth class. The LDA is a special case of the
QDA, where all of the within-group covariance matrices are
assumed to be identical, i.e.

=3, 1<k<K. ®)

For multi-group classification or discrimination, especially
for high-dimensional features, the flexible discriminant anal-
ysis (FDA) [41], [42] is proposed by using optimal scorings
to represent the groups in an adaptive classification procedure.
Two strategies for adaptive nonparametric regression are pro-
posed to use in the procedure, namely MARS (multivariate
adaptive regression splines) and BRUTO [43].

Similar to the FDA, the regularized discriminant analysis
(RDA) [44] is proposed, which combines the covariance of
QDA (3}) with the covariance of LDA () by introducing
two ridge-type tuning parameters A (€ [0,1]) and an v (€

0,1)).
(A7) = (1= B + eSO ©)

The tuning parameter A controls the level of shrinkage of each
group covariance matrix estimates toward the pooled estimate

while  controls shrinkage toward a multiple of the identity
matrix.

C. Long Short-Term Memory Networks

Recurrent neural networks (RNNs) are models designed for
sequence data prediction, where network depth corresponds to
input sequence length [45]. A standard RNN processes input
sequence x = (x1,---,xr) to produce hidden states h =
(h1,--- ,hr) and outputs y = (y1,--- ,yr) through:

hy = H(Wanze + Whnhi—1 + bp),
Yt = Whyhy + by,

(10)
(1)
where W represents weights and b biases. Long short-term

memory (LSTM) [46] extends RNNs by implementing the
hidden layer function H with memory cells:

iy = o(Waite + Whihs—1 + Weice—1 + by), (12)
fr=0Wgsxs + Whrhi—1 + Wepe—1 + by), (13)
¢t = frce—1 +igtanh(Woewy + Whchi—1 +be),  (14)
ht = o tanh(cy), (15)

where 7;, f;, and o; represent input, forget, and output gates
"respectively.

IV. DATA

The data, sampled from the ADNI study, consist of 364
subjects. All subjects are divided into three groups, cognitively
normal (CN), MCI, and dementia (Alzheimer’s disease; AD).
There are 276, 58, and 30 subjects in each group, respectively.
The observation time points for each subject range from 0 to
132 months. At each observation time point, the subject is
assessed by two Alzheimer’s disease assessment scales, i.e.,
MMSE and ADAS-Cog-13 [47], [48]. Low MMSE scores
indicate dementia, while high ADAS-Cog-13 scores reflect
severe cognitive impairment. Additionally, 315 regions of
interest (ROI) variables converted from fMRI data are also
recorded for all subjects at their observation time points. As a
result, a total of 317 features are included in the data. Figure 1
shows the sample paths for one of the 317 features, the right
hippocampus, of the AD group, illustrating the sparse and
irregularly spaced longitudinal data.

0 24 48 72 96 120

Observation Timepoints (month)
(2)
Fig. 1: Right Hippocampus vs.Time from AD Group.



V. EMPIRICAL RESULTS
A. Multivariate FPCA

We consider MFPCA to reconstruct the functions of 317
features simultaneously. Reconstruction allows us to perform
other tasks, such as classification of subjects. We implement
the MFPCA method by the R packages funData and MFPCA
[371, [38].

The proportion of variance explained by the multivariate
FPCs decreases rapidly. The first 31 PCs explain more than
90% of the cumulative explained variance, while they repre-
sent less than 10% of the total 317 extracted features.

B. Classification by Discriminant Analysis

Since there is only one observed subject at the time point of
month 132, we focus on the data from the baseline (0 month)
to the month of 120. We split the data into training set and
testing set by a 80/20 train-test split ratio. We implemented
discriminant analysis to perform classification at the last
observation time point (120 months) using the reconstructed
values of the 317 variables by MFPCA. Three discriminant
methods are applied to the data, i.e., the FDA with MARS,
the FDA with BRUTO, and the RDA.

The confusion matrix for each method in the testing set
is listed in Tables I, II, and III, respectively. The prediction
accuracy is 66.67% for the FDA using MARS, 77.78% for the
FDA using BRUTO, and 61.11% for the RDA, respectively.

Actual Actual
CN | MCI| AD CN | MCI | AD
CN |47 |6 5 CN |53 |9 3
Predicted | MCI | 2 1 1 Predicted | MCI | 0 0 0
AD |6 |4 0 AD |2 |2 3

TABLE I: Confusion Ma-
trix for FDA-MARS at 120

TABLE II: Confusion Ma-
trix for FDA-BRUTO at 120

Months Months
Actual
Actual CN [MCI| AD
CN [MCI| AD T Te T2
RS B E Predicted| MCI|5 |5 |1
Predicted| MCI | 5 1 1 AD |4 0 1
AD |9 |1 |2

TABLE IV: Confusion Ma-
trix for LSTM at 120
Months

TABLE III: Confusion Ma-
trix for RDA at 120 Months

C. Classification by LSTM

The LSTM model is constructed and trained by Keras,
the Python deep learning API [49]-[51]. The settings of
the LSTM structure are detailed as follows. The model we
use contains four layers, namely hidden layer (LSTM) —
hidden layer (LSTM) — dense layer — dense layer, where
— represents the connection between layers. The activation
functions between LSTM layers we use include the rectified
linear activation function (ReLU) for the first dense layer, the

linear function for the second, and the softmax function for
the output.

The number of LSTM neurons in each hidden layer is set
as 32 and 64 while the neurons in the dense layer are 128 and
256. The batch size is set as 128 and the number of epochs is
1000. Batch normalization is applied since it has been shown
to have great benefits in terms of training time and prediction
accuracy [52]. We choose the categorical cross-entropy as the
loss function, and Adam optimizer [53] for gradient-based
optimization of stochastic objective functions.

The confusion matrix for classification of the testing set is
in Table IV. Table V shows that the overall prediction accuracy
of the LSTM model is 72.22%, the second best among these
methods. Moreover, the LSTM correctly predicts the most
MCI cases (5 correct predictions; 0 or 1 by FDA or RDA).

Apart from the prediction accuracy and confusion matrix,
we can examine the prediction performance by other metrics,
the precision and the recall, for example. The precision of
one of the three groups (CN, MCI, and AD) is the number
of correctly predicted cases of all subjects predicted as a
group. The recall for one of the three groups is the number
of correctly predicted cases out of the number of subjects
actually in that group. That is, if we denote M;; as the number
of counts in the (7,7) element of the confusion matrix. The
precision and recall are defined as

M;; ii
> j M;; , > j M;; .

Table V compares the precision and recall of the three
groups in the test set by the four methods. Although the
best overall prediction performance belongs to FDA-MARS or
FDA-BRUTO, the LSTM has advantages regarding precision

and recall measurements. The LSTM can create the highest
precision and recall for MCI cases.

Precision; = Recall; =

FDA FDA RDA LSTM
MARS | BRUTO

CN precision 0.810 0.815 0.774 0.821
recall 0.855 0.964 0.746 0.836
MCI precision 0.250 0 0.143 0.455
recall 0.091 0 0.091 0.455
Dementia | precision 0 0.429 0.167 0.200
recall 0 0.500 0.333 0.167

accuracy | 66.67% | 77.78% 61.11% | 72.22%

TABLE V: Prediction Evaluation of The four Methods In
The Testing Dataset

2 Bold numbers indicate the largest value among the methods.
® We define the value 0/(0 + 0 + 0) as 0.

The LSTM model demonstrates notable strengths in Table
V, showing its effectiveness across different cognitive groups,
particularly in early stage detection, which is of significant
clinical importance.

For the CN (cognitively normal) group, the LSTM achieves
a precision of 0.821, the highest among all compared methods.
This indicates that the model excels at accurately identifying
individuals with normal cognition, minimizing the risk of
misclassifying patients with MCI or dementia as cognitively



normal. Although its recall of 0.836 is not the highest, it
remains robust and contributes to reliable predictions.

In the MCI (mild cognitive impairment) group, the LSTM
shows a recall of 0.455, significantly outperforming other
methods. This is a crucial advantage, as MCI represents
a transition stage between normal cognition and dementia,
and accurate identification at this stage is vital for early
intervention and treatment. Although its precision for this
group is relatively low at 0.143, the ability of the LSTM to
recognize this challenging transitional state surpasses that of
certain other methods, making it a valuable tool in clinical
contexts.

Regarding overall accuracy, the LSTM achieves 72.22%,
which, while not the highest, surpasses the RDA method.
Given the ability of the LSTM to handle temporal data,
this performance highlights its potential to capture disease
progression patterns effectively.

The primary advantage of the LSTM lies in its balanced
performance across three groups, particularly its superior
capability to detect MCI, a critical stage in clinical practice.
This balanced and reliable performance could prove to be
more practical in real-world applications than focusing on a
single metric, highlighting its potential to enhance diagnostic
accuracy in cognitive assessments.

VI. CONCLUSION

This study aims to classify subjects into multi-classes, fo-
cusing on early detection. Longitudinal, sparse, and irregularly
spaced data due to varying subject conditions and observation
times present challenges for analysis. To address this, the study
proposes reconstructing time-evolving features using FPCA.
The discriminant methods perform classification only based
on features at a fixed time point, while LSTM considers their
progress.

Although the LSTM model does not achieve the highest
overall accuracy, it excels in predicting MCI cases. LSTM
uses historical data for predictions, unlike FDA and RDA,
which classify on the basis of fixed time points. The advantage
of LSTM is its ability to capture long-term dependencies.
However, the data set used in this study is relatively small and
imbalanced, with 75% of subjects being cognitively normal,
which potentially limits the ability of the proposed procedure
to detect AD. Future improvements include resampling meth-
ods for better early detection. Replacing LSTM by other state-
of-the-art models is also our future work.
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