
Assessing the Impact of State-Space Complexity on
an Image based DQN via the Game of Snake

David J. Richter
Chonnam National University

Gwangju, South Korea
0000-0001-5413-6710

Kyungbaek Kim
Chonnam National University

Gwangju, South Korea
0000-0001-9985-3051

Abstract—Not too long ago Reinforcement Learning, one of the
three fundamental approaches to Machine- and Deep Learning,
was mostly incapable of handling complex and difficult tasks.
This, however, has since changed and Reinforcement Learning
agents, most of them utilizing Deep Reinforcement Learning, have
mastered ever more difficult problems. One of the key aspects
to consider when designing Reinforcement Learning systems is
the state observation, which is what the agent ”sees” of the task
environment and is also used as the input to the Deep Neural
Network on top. In this work we will explore how the state-
space complexity of the image based observations impacts the
training and final performance of the DQN agents, and how
having data rich states compares to creating states that are more
data efficient. In this work we will experiment with different
possible state-space representations, all of which contain a full
observation of the current game state, and inspect how they will
influence the agents performance and/or how the agent has to
account for said states, in order for them to perform well.

Index Terms—Reinforcement Learning, Deep Learning, DQN,
State Representation, Snake, Video Games

I. INTRODUCTION

Reinforcement Learning (RL) has gained popularity after
showing a lot of promise in a multitude of different tasks
in recent years, most notably due to the advances in Deep
Reinforcement Learning (DRL), which has shown to have
better-than-human capabilities. Reinforcement Learning learns
in a trial and error type fashion, where an agent learns online
on an environment. The agent sees said environment through
a state representation, interacts with it via actions and receives
rewards for them. A Deep Neural Network is then used as a
function approximator to estimate how much future reward
the agent can expect per state-action pair, which form the
optimal policy by picking the best state-action pair at each
time-step. This Deep Reinforcement Learning methodology
has been refined and popularized by Mnih et al. [1], who
designed and introduced the Deep Q-Networks (DQN). Since
then, RL has picked up a lot of steam and has been applied
to a large number of different fields, which include, but are
not limited to: robotics [2], flight [3], autonomous driving [4],
imaging [5], gaming [1], among many more.

One field that has seen a lot of attention, ever since the
beginning of Deep RL, are games. Video Games inherently
offer themselves up to be used with RL since they already,
by nature, posses all the prerequisites that RL requires, those
being the state representation (screen rendering), the action

space (controller inputs) and a reward function (highscores).
In this work we will also be experimenting with a game,
the game of snake, which has also already seen some work
in the past [6]–[9]. But in this paper, instead of trying to
beat any highscores or trying to fine-tune hyperparameters,
we will look at how the state-space itself will impact the
agent. We will look at different state-representations, using
the game of snake as our test environment, to see how they
impact the agents. We compared 17 different states with
different complexity (all full observations of the game) and
compared their performance. These findings will hopefully
aid future works when creating image based state-spaces,
even beyond snake. The contributions of this paper include
an implementation of the game of snake and incorporating
it into the DRL workflow (Open Source), a comparison of
17 different state representations (both from previous work
as well as our own), and an analysis of the results of those
different state-representations.

II. BACKGROUND

A. Related Work

Reinforcement Learning, boasts a long history [10]. But
its recent renaissance can be attributed in large parts to the
work by Mnih et al. [1], who developed a widely-applicable
and highly-capable method, accelerated by Deep Learning
(DL). This Deep Q-Network approach, which utilizes Neural
Networks (NN) was the first of its kind to do so in a way that
allowed it to solve a multitude of different and complex tasks,
showcasing a new ceiling in potential to the field of RL. RL
has even managed to beat the world champion of Go [11].

Reinforcement Learning has seen application in the fields
of robotics [2], autonomous driving [4], as well as gaming
[12] (among many more). Snake is not without prior research
either. Ma et al. [6] use a heavily reduced state representation
to learn the game of snake via the Q-Learning and SARSA
algorithms. As both these algorithms are not utilizing Deep
Learning methods, there is a need to reduce state this much.
In this work we will not consider this state design, as it would
not work with a CNN model and therefore would conflict with
the other state-space designs that we are looking at.

In [7] Wei et al. are using DQN with prioritized replay
memory to train their agent. The state is made up of 4



sequential RGB images (all reprocessed screenshots of the
game) to present the current state as well as motion.

Almalki et al. also ran experiments with RL in snake in
[8] using SARSA, but do not describe the states, actions or
rewards used and also do not present quantitative results.

Tushar et al. use a heavily pre-processed state representation
in their paper [9], reducing the RGB images used in [7] to
simple grey-scale images (still multiple images in sequential
order), while also getting rid of the prioritized replay memory
in the process. Results were good, but many different param-
eters were changed when compared to Wang et al.’s work, so
it it hard to draw conclusions simply based on the difference
in state-space-representations.

B. Reinforcement Learning

Reinforcement Learning works rather different than other
DL methods. In RL there is no dataset and there are no
labels/instructions. In RL, agents learn ”on-the-fly”, by in-
teracting directly with the environment in which they are
supposed to solve the given task. The agent starts of with
no knowledge of the task, the environment, the actions it can
control or what is considered to be good or bad. This means
that the agent will first act completely at random (random
actions at any given state), and over time learn what actions
are considered good/bad at what state via the reward function,
maximizing the possible future rewards over time, by picking
the best possible action for the given state at every time-step.
The next few subsections will explain this in a bit more detail.

C. Environment

The environment is the world/scenario that the agent can
interact with/exist in. In the case of this paper the environment
would be the snake game. The environment will present the
agent with a state and a reward at every time-step, while also
receiving and then applying actions sent from the agent. One
full run through the environment (here one full game of snake)
is considered an episode. Agents usually needs thousands if
not hundreds of thousands of episodes to master the task.

a) States: States are the representation of the current
condition of the environment that the agent receives. This is
the only way the agent can ”see” what is going on (which is
why they are so important) and also used to learn as the input
to the agent’s NN. In the case of snake, the state depicts the
current information about the game, e.g. where the snake is
located, where the fruits are, etc., often via a screenshot.

b) Actions: The actions are the control commands sent
form the agent to the environment. They are generated &
chosen by the NN and impact the environment upon reception.
In the snake use-case, the actions would most be the game
controls, those being up, down, left and right.

c) Rewards: Rewards are the mechanism that actually
allow learning. States and actions alone would allow the agent
to ”play”, but only with random controls. Rewards tell the
agent whether it is currently doing well, or not. Rewards are
usually given per action per state and need to be designed by
the person designing the experiments. In the case of snake,

rewards could be: positive (reward) for eating a fruit, negative
(punishment) for running into the wall.

D. Agent

While the environment offers the problem and the potential
to solve it, the agent is the ”brain”. The agent is the one that
learns, via the NN it contains. Here it could be compared to
a human learning and playing the game.

a) Networks: In DQN, a single agent has two networks.
A target network and a policy network. The target network is
only updated every n episodes, but when it gets updated it just
copies the policy network. The policy network is the ”normal”
network that get constantly updated (every time-step). Actions
are taken from the less volitile target network however, as that
improves stability.

b) Q-Values: Q-Values are what the networks are trying
to predict. They represent the expected future rewards (the
amount of rewards the agent can expect if taking action a in
state s at time-step t as well as the best action for all future
steps). Agents are trying to maximize Q-Values.

c) Replay Memory: Usually, Neural Networks are given
batches from huge datasets to train on, to prevent overfitting. In
RL, however, at each time-step, there only exists a single state-
action-reward pairing to train on, which is far from ideal. To
compensate, DQN uses Replay Memory, a ”dynamic dataset’
of a fixed size. The newest state-action-reward pairs get saved
in the replay memory and once it has reached its capacity, the
oldest ones get deleted again. This helps to stabilize training.
Agents can batch from the replay memory during training.

d) Exploration & Exploitation: To ensure that the agent
explores the environment well for possible strategies but later
focuses on and optimizes a good one, the exploration and
exploitation trade-off needs to be considered (also called ϵ-
greedy). What this means is that at first the agent acts at
random (100% random: ϵ = 1), in order to explore the
environment for all possible policies in search for the best
possible one, but later abandons that randomness to focus on
a good policy and exploit that policy for the rest of the training.
For that the ϵ value will decay over time and reach a minimum
value (1% leftover randomness: e.g. ϵ = 0.01).

E. Snake

The objective of the snake game is rather simple, the snake
grows longer the more fruits it eats. Eating fruits earns the
player points, forcing them to keep eating fruits in the hunt
for a highscore, but in turn also consciously complicating the
game, as touching the body of the snake with the snake’s head
will kill the snake (as will touching the walls).

III. METHODOLOGY

This paper will focus mostly on different state-
representations. For this purpose, a number of different
state-representations have been added and implemented [13]
to our testbed. This will hopefully help researchers when
designing state-spaces in the future.



A. Snake Game

The game of snake was written in compliance with previous
work. The size of the field was 12x12, the snake started with a
length of 3 at a random location with a distance of 3 cells from
the wall (unless stated otherwise (see Section IV-B)) while
facing a random direction. There was always only a single fruit
on the field at a time. Fruit would always respawn in a new
random location, as did the snake (random location & facing
random direction). Colliding with the walls and the snake’s
body would trigger a ”Game Over” and reset the episode.

B. Reinforcement Learning

In this section we will explain the RL setup used in this
work.

1) Actions: The action-space we chose for this set of
experiments was rather simple and straight-forward. Just like
in the video-game, the agent has 4 possible control choices,
those being Up, Down, Left and Right.

[Up, Right, Down, Left]

Actions are discrete, as they need to be, by nature of the
DQN algorithm, but in this case this is just fine. Continuous
actions would make no difference here.

2) States: With states being the main point of interest of
this work, multiple different state-space representation meth-
ods have been tested here.

a) RGB Screenshot: The first approach is a simple
screenshot of the game, that was only slightly modified to
allow the agent to see movement even in a single frame.
To achieve that the head of the snake was painted in a
color different from the color of the body. The screenshot is
downscaled to simplify it for the NN. A simplified example
of this state can be seen in Figure 1.

b) Minimal: The most condensed and minimal represen-
tation of the game of snake is the minimal state representation,
that we designed. Here the game state is converted pixel by
pixel, meaning that if the game of snake is running on a 12x12
grid, then the state space will also only represent the grid with
12x12 datapoints. Each color is assigned to a single integer
value, with the head having it’s own, representing movement.
This approach can be seen in Table I.

c) RGB Sequential: The approach taken in [7] was
implemented also. The agent receive the most recent 4 screen-
shots from the game (unmodified in appearance, besides
preprocessing) as a single state, so that the agent can identify
motion by seeing the transitions from one image to the next.
This will result in a state as it can be seen in Figure 2(a).

Fig. 1: Sample of a non-deep screenshot. Note: Here the field shown
is of size 6x6, whereas the actual field will be of size 12x12. The
snake’s body is red, the head (to portrait motion) is yellow and the
fruit is green.

TABLE I: Visualization of the minimal tabular state (would be 12x12
in experiments). The snake’s head is represented by a 4, the body by
1s, and the fruit by a 7.

0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 7 0 0 0

(a) Frame Stacking (b) True Size

Fig. 2: (a): A Representation of what the 4 sequential screenshot
state looks like. Here the motion is shown via multiple images (not
the head). (b): This figure showcases the screenshot states true size.
One logical pixel does is made up of multiple image pixels.

3) : Noteworthy Additional Information
a) Pixels: As mentioned before, the screenshot state

methods are not pixel-for-pixel, meaning that one pixel of the
in-game snake logic is represented by multiple image pixels
(see Figure 2(b)). This bloats the size of the state, unclear
from previous work whether this is beneficiary, detrimental or
plainly irrelevant.

b) RGB: Additionally, each in game pixel is also repre-
sented by not just one of these multi-pixel pairs, but by 3, one
for each color channel (see Figure 3), further bloating the size
and further cementing our curiosity.

c) Black and White Sequential: Lastly, we will also
implement a state representation very similar to the one used
in [9]. The state representation in this paper is very similar to
the one in [7], but instead of having 3 channels (RGB), they
are condensed to a black and white image of a single channel
per image. The state is however still of depth 4 (4 sequential
images) in order to maintain motion information.

4) Rewards (constant): The reward function is very similar
to the one suggested in [7], with some heuristical changes.
The reward function can be seen in Equations 1, 2 and 4.

rconditional = 25 | True if Fruit eaten

rconditional = −50 | True if Dead
(1)

Fig. 3: Visualization of RGB sequential states. The RGB channels
would also be split like this for any other state that uses RGB (e.g.
Figure 1).



TABLE II: CNN Architecture

Layer Info
Input (State)
Conv2D (f=16,k=(3,3),relu)
Dropout (d=0.2)
Conv2D (f=16,k=(3,3),relu)
Dropout (d=0.2)
Flatten (-)
Dense (n=64,a=linear)
Dense (n=4,a=linear)
loss=mse, optimizer=adam, lr=0.001

This conditional (rconditional) award is only applied when the
snake fulfills the conditions listed. A high reward is given
when the agent eats a fruit and a even higher punishment is
handed out when it dies.

d(h, f) =
√

(xh − xf )2 + (yh − yf )2 (2)

This is the Euclidean distance between the head (h) of the
snake and the fruit (f ) using their (x, y) coordinates. It
calculates how far the snake it from the fruit at every timestep.

rdistance = (d(ht−1, ft−1) − d(ht, ft)) / 10 (3)

The distance reward (rdistance) measures the difference be-
tween the previous and the current distance (using the Eu-
clidean distance from Equation 2), giving positive reward if
the snake is moving closer to the fruit and negative reward if
it is moving away from it.

rtotal = rconditional + rdistance (4)

The rewards are then combined by simply adding them and
handed to the DQN.

5) DQN: Q-Learning uses the Bellman equation (see Equa-
tion 5) to calculate the Q-Values, in DQN we still use Bellman
to create labels for the Memory Replay, but we use the Neural
Networks as Q-Value function approximators.

Q (st, at) = Q (st, at) + lr ∗ (r + γ ∗ Q (st+1, at+1)) (5)

Here Q (st, at) represents the Q-Value for state st and action
at at timestep t. lr stands for the learning rate, r represents
the reward and gamma is the discount factor.

We have opted to model our DQN similarly to what it
was looked like in previous papers [7], [9], while trying to
keep it simple yet capable enough to handle the task. The
NN we opted for is a CNN (Convolutional Neural Network)
with both regular and priority replay memory implementations.
Epsilon Decay and Policy & Target Networks are implemented
in accordance with the regular DQN approach.

a) Neural Network (constant): The NN architecture is
one of a rather simple CNN, with 2 convolutional layers,
corresponding dropout layers and 2 dense layers post flattening
(see Listing II). Of course, with this the number of trainable
values will vary from state-space to state-space, as different
states are of different dimensionality which will lead to more
depth layers after each convolutional layer.

Algorithm 1: The Snake DQN Game & Learning Loop
Init Replay Memory D with max. size N
if using Priority Replay then

Init Priority Replay Memory D̂ with max. size N̂
end
Init Policy Network Q with random values θ
Init Target Network Q̂ with random values θ̂ = θ
Init Snake Environment E
for episode e = 1, M do

Reset E and get initial State st=0

for timestep t = 1, T do
if Explore with probability ϵ then

Select Action at from Q̂ via st
else

Select Action at at random
end
Send a to E and apply it.
Receive Reward r and New State st+1 from E
if using Deep States then

Append State to Deep State List st+1 of size L
end
Append rt, st, st+1, at to D (and D̂)
Train Q with batch of r, s, s, a pairs from D (and D̂)
Set Current State to be New State: st = st+1

Decay Epsilon Value ϵ with Decay Rate d: ϵ = ϵ ∗ d
end
if Every C Episodes then

Set Q̂ to Q: θ̂ = θ
end

end

b) Replay Memory (constant): We implemented priority
replay memory, to follow the approach of [7], where the
”normal” replay memory buffer holds 50,000 former timesteps
and the priority replay holds 25,000. Timesteps that have
received rewards of 0.005 and higher are being fed to the
priority buffer, with all other being sent to the regular one.
Once the normal buffer reaches 1,000 and the priority one
reaches 330. training will begin. The split of priority and
normal experience to be sampled into the batch is 50/50.

c) Parameters (varying): The parameters used for the
experiments can be seen in Table III.

d) Loop (varying): The training Loop that drives the RL
process can be seen in Algorithm 1. This Loop is mostly
constant across all experiments, and the main idea and work-
flow behind it is completely constant. State Depth (Sequential
Images for Motion) are what varies the loop, but only slightly.

IV. RESULTS

In 3 different experiment setups we will compare the resize
factor (and via that the image size) as the observation space
and how different sizes impact performance, then we will use

TABLE III: Parameters used

Parameter Value
Discount Factor 0.99
Replay Memory Section III-B5b
Minibatch Size 64
Update Target Net Rate 5
Episodes 15,000
Max Steps per Episode 150
Network Architecture Table II
Input Layer Size / States Section IV
Action Space 4
Reward Equation 4
Replay Memory Section III-B5b

Parameter Value
Epsilon Start 1
Epsilon Decay Rate 0.9995
Episode before Decay Start 31
Epsilon Minimum Value 0.001
Board Size 12x12
Board Border +1
Snake Starting Length 3
Snake Starting Position Section III-A
Snake Starting Direction Section III-A
Number Fruits 1
Fruits Position Random



one of the top performing resize factors and use it to test for
state depth, again to see which one does best. Then, lastly, we
will compare the approach we have proposed (minimal size),
with the black and white approach by [9] and the RGB deep
image approach by [7].

A. Comparing Image Size

In order to run these images we used the screenshot of
our implementation of snake as the input to the DQN agent.
The screenshot was then resized by a factor as listed below.
For this set of runs, we kept the state depth (number of
sequential images) to 1, so in order to portrait motion we
have colored the snake head in yellow, as mentioned before.
When looking at the results of the experiments (see Figure
4) one can see that resize factor 9 did the best (with smaller
images still generally doing better than large ones). By nature
of down-sampling images, it is possible that the smaller the
images get (e.g. here resize factor 15) get modified to a point
where some information gets lost or distorted. Overall one
can, however, see that the really large images are performing
worse by comparison and smaller images do better. Also, one
can see how much slower the bigger images are in real time
(training hours, see Figure 5). Resize factors 3, 5, 11 and 13
were also tested but not plotted for better visibility. 13 was
similarly strong in performance to 9 and 3, 5 and 11 were
comparable with 1.

B. Comparing State Depth

Next we compared the impact of state depth (see Figure
2(a)). For this we will use an image resize factor of 9 as it was
among the top performing ones in the previous experiment.
Here we have (except for depth 1) removed the yellow color
from the snake head and kept it all red, in order for the motion
to be portrayed only through depth (as is [7]). As all images are
RGB images and therefore inherently have a depth of 3 already
(RGB channels) the depth will be multiplied by 3 to get the
actual depth of the input (e.g. depth 4 means 4 RGB images,
so 12 total layers). Also, usually agents were spawned at a
random location at a distance of 3 fields from the walls, this
was changed after a depth of 4, so that the agent would never
be able run into the wall before the snake is fully built. When
looking at the results (see Figure 4) we can see that all agents
perform at a level that is almost identical, state depth seems
to not have too much of an impact on the performance of the
agent. The difference in training time is also less significant.
Depths 2 and 4 were also tested and performed very similar
to the other factors.

TABLE IV: Resize factors and their corresponding image size. RGB
images have a third dimension of size 3.

Resize Factor 1 3 5 7
Image Size 196x196 66x66 40x40 28x28
Resize Factor 9 11 13 15
Image Size 22x22 18x18 16x16 14x14

C. Special Cases

In this section we will discuss and compare the performance
of the minimal state that we suggest, the black and white
approach by [9], a greyscale agent, and the 4 deep and resize
factor 9 approach mentioned above (similar to [7]) with the
parameters that worked better according to our findings. When
looking at the graph (see Figure 4) we can see that the RGB
agent that did really well in the afore mentioned runs also
performed best here. Our simplistic approach (see Table I) did
learn a working strategy but the performance was outclassed
by the RGB agent (it did learn the fastest early on, before
somewhat collapsed). The greyscale agent (similar to the black
and white approach in [9], but instead of only 0s and 1s, here
values are either 0 or 255) did perform on a similar level to
the simplified state agent. The pure black and white agent did
barely learn in our setup. With that, we decided to also adjust
our simplified agent to have values that range from 0 to 255
(background = 0, body = 80, head = 160, fruit = 240). As
can be seen, this agent did a lot better, learning a good policy
and doing so faster than all other agents, suggesting that this
scaling is beneficial).

V. DISCUSSION

As can be seen, different complexities of states have large
impact on the performance of the agents, even though all state
representations are full observations of the current state of the
game. As such it can be seen that smaller image size states did
outperform more complex observations, generally speaking,
and they took less time. In terms of depth, no big difference
was observed. The only state representation that did worse than
the others was the one without state depth (but smaller depths
trained in less time). The special cases introduced did not
perform better than the best depth and resized approaches, but
the minimized agent with larger scaling (as mentioned above)
did perform comparatively and learned quite a bit faster.

VI. CONCLUSION

In this work we have compared 17 different complexities to
portrait the state space of the game of snake, all of which are
holding a full representation of the game state at each timestep.
As such we can guarantee that not the amount of necessary
game data is impacting the results. In our comparison we have
found that image size had a large impact on performance,
with agents that had a large resize factor (smaller images)
performing better. Image depth on the other hand had little
to no impact. The set of special cases that minimize the state
space did produce well performing agents, but did not manage
to outperform the best agent of the resized runs. Scaling values
from 0 to 255 did better for both the black and white agent
and the minimized one, compared to scaling from 0 to 1 (or 7
respectively). These findings will hopefully help future work
in picking suitable and well performing state representations
for their DQN agents, when using images as states.



(a) Image Size (b) Image Depth (c) Special Cases

Fig. 4: The rewards over time for different sizes (a), different depths (b) and special cases (c).

(a) Image Size (b) Depth (c) Special Cases

Fig. 5: Training time to reach 15,000 episodes. All special cases were run with more debugging enabled, so times between graphs are not
fully comparable, but within graphs they all ran with the same settings.

ACKNOWLEDGEMENTS

This work was supported by Innovative Human Resource Development
for Local Intellectualization program through the Institute of Information
& Communications Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT)(IITP-2024-RS-2022-00156287, 34%). This
work was supported by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) under the Artificial Intelligence Con-
vergence Innovation Human Resources Development (IITP-2023-RS-2023-
00256629, 33%) grant funded by the Korea government(MSIT). This work
was supported by Korea Institute of Planning and Evaluation for Technology
in Food, Agriculture and Forestry(IPET) through the Agriculture and Food
Convergence Technologies Program for Research Manpower development,
funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(project
no. RS-2024-00397026, 33%).

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in un-
known cluttered environments,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 610–617, 2019.

[3] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
learning for uav attitude control,” ACM Transactions on Cyber-Physical
Systems, vol. 3, no. 2, pp. 1–21, 2019.

[4] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[5] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” arXiv
preprint arXiv:2004.13649, 2020.

[6] B. Ma, M. Tang, and J. Zhang, “Exploration of reinforcement learning
to snake,” 2016.

[7] Z. Wei, D. Wang, M. Zhang, A.-H. Tan, C. Miao, and Y. Zhou,
“Autonomous agents in snake game via deep reinforcement learning,”
in 2018 IEEE International Conference on Agents (ICA). IEEE, 2018,
pp. 20–25.

[8] A. J. Almalki and P. Wocjan, “Exploration of reinforcement learning to
play snake game,” in 2019 International Conference on Computational
Science and Computational Intelligence (CSCI). IEEE, 2019, pp. 377–
381.

[9] M. R. R. Tushar and S. Siddique, “A memory efficient deep reinforce-
ment learning approach for snake game autonomous agents,” in 2022
IEEE 16th International Conference on Application of Information and
Communication Technologies (AICT). IEEE, 2022, pp. 1–6.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[12] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep rein-
forcement learning in video games,” arXiv preprint arXiv:1912.10944,
2019.

[13] D. J. Richter, “pythonsnake,” https://github.com/JDatPNW/pythonSnake,
2023.


